Package ‘multicmp’

October 13, 2022

Type Package

Title Flexible Modeling of Multivariate Count Data via the Multivariate Conway-Maxwell-Poisson Distribution

Version 1.1

Maintainer Diag Davenport <diag.davenport@gmail.com>

Description A toolkit containing statistical analysis models motivated by multivariate forms of the Conway-Maxwell-Poisson (COM-Poisson) distribution for flexible modeling of multivariate count data, especially in the presence of data dispersion. Currently the package only supports bivariate data, via the bivariate COM-Poisson distribution described in Sellers et al. (2016) <doi:10.1016/j.jmva.2016.04.007>. Future development will extend the package to higher-dimensional data.

Imports stats, numDeriv

URL http://dx.doi.org/10.1016/j.jmva.2016.04.007

BugReports https://github.com/diagdavenport/multicmp/issues

License GPL-3

LazyData TRUE

RoxygenNote 6.0.1

NeedsCompilation no

Author Kimberly Sellers [aut],
 Darcy Steeg Morris [aut],
 Narayanaswamy Balakrishnan [aut],
 Diag Davenport [aut, cre]

Repository CRAN

Date/Publication 2018-06-29 12:08:59 UTC

R topics documented:

accidents ... 2
dbivCMP ... 2
multicmpests ... 3

Index 5
accidents
Shunter accidents

Description

The number of accidents incurred by 122 shunters in two consecutive year periods, namely 1937 - 1942 and 1943 - 1947

Usage

`accidents`

Format

A dataframe with 122 rows and 2 variables:

- `x`: Number of shunter accidents between 1937 and 1942
- `y`: Number of shunter accidents between 1943 and 1947

Source

A. Arbous, J.E. Kerrick, Accident statistics and the concept of accident proneness, Biometrics 7 (1951) 340-432.

dbivCMP
The Bivariate Conway-Maxwell-Poisson Distribution

Description

Density for the Bivariate Conway-Maxwell-Poisson (CMP) distribution

Usage

`dbivCMP(lambda, nu, bivprob, x, y, maxit)`

Arguments

- `lambda`: Mean/rate parameter under Poisson model.
- `nu`: Dispersion parameter.
- `bivprob`: Bivariate probabilities, p00, p01, p10, p11.
- `x`: x values
- `y`: y values
- `maxit`: Number of terms used to truncate infinite sum calculations.
multicmpests

References

Examples

dbivCMP(lambda=10, nu=1, bivprob=c(0.4, 0.2, 0.3, 0.1), x=2, y=3, maxit = 100)
#this is equivalent to the pmf P(X=2,Y=3) of a bivariate Poisson
##with lambda1=3, lambda2=2, lambda3=1

Bivariate COM-Poisson Parameter Estimation

Description

multicmpests computes the maximum likelihood estimates of a bivariate COM-Poisson distribution (based on the model described in Sellers et al. (2016)) for given count data and conducts a test for significant data dispersion, relative to a bivariate Poisson model. The bivariate Poisson case is addressed via the bivpois package by Karlis and Ntzoufras (2009).

Usage

multicmpests(data, max = 100, startvalues = NULL)

Arguments

data
A two-column dataset of counts.

max
Truncation term for infinite summation associated with the Z function. See Sellers et al. (2016) for details.

startvalues
A vector of starting values for maximum likelihood estimation. The values are read as follows: c(lambda, nu, p00, p10, p01, p11). The default is c(1,1, 0.25, 0.25, 0.25, 0.25).

Value

multicmpests will return a list of four elements: $par (Parameter Estimates), $negll (Negative Log-Likelihood), $LRTbpd (Dispersion Test Statistic), and $pbpd (Dispersion Test P-Value).

References

Examples

```r
x1 <- c(3,2,5,4,1)
x2 <- c(0,4,1,0,1)
ex.data <- cbind(x1,x2)

# starting close to the optimum for sake of run time
multicmpests(ex.data, startvalues = c(12.5, 1.7, 0, 0.25, 0.75, 0))
```
Index

* datasets
 - accidents, 2

accidents, 2

dbivCMP, 2

multicmpests, 3