Package ‘multilevelPSA’

October 13, 2022

License GPL (>= 2)
Title Multilevel Propensity Score Analysis
Type Package
Author Jason Bryer <jason@bryer.org>
Maintainer Jason Bryer <jason@bryer.org>
Version 1.2.5
URL http://github.com/jbryer/multilevelPSA
BugReports https://github.com/jbryer/multilevelPSA/issues
Depends ggplot2, xtable, R (>= 3.0)
Imports PSAgraphics, plyr, psych, reshape, grid, party, MASS
Suggests testthat
Date 2018-03-22
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-03-22 20:21:26 UTC

R topics documented:

 multilevelPSA-package ... 2
 align.plots .. 3
 as.data.frame.covariate.balance 4
 covariate.balance .. 4
 covariateBalance .. 5
 cv.trans.psa .. 6
 difftable.plot .. 7
 getPropensityScores ... 7
 getStrata ... 8
Description

This package provides functions to estimate and visualize multilevel propensity score analysis.

Details

This package extends the principles put forth by the PSAgraphics (Helmreich, Pruzek, & Xiong, 2010) for multilevel, or clustered, data.

Propensity score analyses are typically done in two phases. In phase I, a statistical model predicting treatment using the available individual covariates is estimated. This package currently provides functions to perform propensity score estimates using logistic regression (see `mlpsa.logistic`) and conditional inference trees (see `mlpsa.ctree`). The latter method provides explicit stratifications as defined by each leaf node. The former however, results in a numerical value ranging from zero to one (i.e. the fitted values). A common approach is to then create stratifications using quintiles. However, other approaches such as Loess regression are also provided.
Phase II of typical propensity score analyses concerns with the comparison of an outcome between the treatment and comparison groups. The \texttt{mlpsa} method will perform this analysis in a multilevel, or clustered, fashion. That is, the results of the \texttt{mlpsa} procedure produce summary results at level one (i.e. each strata within each cluster), level two (i.e. overall results for each cluster), and overall (i.e. overall results across all clusters).

This package also provides a number of visualizations that provide a critical part in presenting, understanding, and interpreting the results. See \texttt{plot.mlpsa} for details.

Author(s)

Jason Bryer <jason@bryer.org>

References

https://CRAN.R-project.org/package=PSAgraphics http://www.jstatsoft.org/v29/i06/

See Also

PSAgraphics

align.plots

Adapted from \texttt{ggExtra} package which is no longer available. This is related to an experimental \texttt{mlpsa} plot that will combine the circular plot along with the two individual distributions.

Description

Adapted from \texttt{ggExtra} package which is no longer available. This is related to an experimental \texttt{mlpsa} plot that will combine the circular plot along with the two individual distributions.

Usage

```r
## S3 method for class 'plots'
align(gl, ...)
```

Arguments

- `gl` grid.layout
- `...` graphic elements to combine.
as.data.frame.covariate.balance

Returns the overall effects as a data frame.

Description

Returns the overall effects as a data frame.

Usage

```r
## S3 method for class 'covariate.balance'
as.data.frame(x, row.names = NULL,
              optional = FALSE, ...)
```

Arguments

- `x`: results of `covariate.balance`.
- `row.names`: unused.
- `optional`: unused.
- `...`: unused

Value

A data frame with overall covariate effects before and after adjustment.

covariate.balance

Estimate covariate effect sizes before and after propensity score adjustment.

Description

Estimate covariate effect sizes before and after propensity score adjustment.

Usage

```r
covariate.balance(covariates, treatment, level2, strata, abs = TRUE)
```

Arguments

- `covariates`: frame or matrix of covariates.
- `treatment`: vector of treatment indicators.
- `level2`: vector indicating level 2 membership.
- `strata`: strata indicators.
- `abs`: if TRUE absolute values of effect sizes will be plotted.
covariateBalance

\[\text{covariateBalance} \]

\text{Calculate covariate effect size differences before and after stratification.}

\section*{Description}

This function is modified from the \texttt{cv.bal.psa} function in the \texttt{PSAgraphic} package.

\section*{Usage}

\texttt{covariateBalance(covariates, treatment, propensity, strata = NULL, int = NULL, tree = FALSE, minsize = 2, universal.psd = TRUE, trM = 0, absolute.es = TRUE, trt.value = NULL, use.trt.var = FALSE, verbose = FALSE, xlim = NULL, plot.strata = TRUE, na.rm = TRUE, ...)}

\section*{Arguments}

- \texttt{covariates} data frame of interest
- \texttt{treatment} binary vector of 0s and 1s (necessarily? what if character, or 1, 2?)
- \texttt{propensity} PS scores from some method or other.
- \texttt{strata} either a vector of strata number for each row of covariate, or one number \(n \) in which case it is attempted to group rows by ps scores into \(n \) strata of size approximately \(1/n \). This does not seem to work well in the case of few specific propensity values, as from a tree.
- \texttt{int} either a number \(m \) used to divide \([0,1]\) into \(m \) equal length subintervals, or a vector of cut points between 0 an 1 defining the subintervals (perhaps as suggested by loess.psa). In either case these subintervals define strata, so strata can be of any size.
- \texttt{tree} logical, if unique ps scores are few, as from a recursively partitioned tree, then \texttt{TRUE} will force each ps value to define a stratum.
- \texttt{minsize} smallest allowable stratum-treatment size. If violated, strata is removed.
- \texttt{universal.psd} If 'TRUE', forces standard deviations used to be unadjusted for stratification.
- \texttt{trM} trimming proportion for mean calculations.
- \texttt{absolute.es} logical, if 'TRUE' routine uses absolute values of all effect sizes.
- \texttt{trt.value} allows user to specify which value is active treatment, if desired.
- \texttt{use.trt.var} logical, if true then Rubin-Stuart method using only treatment variance with be used in effect size calculations.
- \texttt{verbose} logical, controls output that is visibly returned.
- \texttt{xlim} limits for the x-axis.
- \texttt{plot.strata} logical indicating whether to print strata.
- \texttt{na.rm} should missing values be removed.
- \texttt{...} currently unused.
Details

Note: effect sizes are calculated as treatment 1 - treatment 0, or treatment B - treatment A.

Author(s)

Robert M. Pruzeck RMPruzek@yahoo.com
James E. Helmreich James.Helmreich@Marist.edu
KuangNan Xiong harryxkn@yahoo.com
Jason Bryer jason@bryer.org

cv.trans.psa Transformation of Factors to Individual Levels

Description

The function cv.trans.psa takes a covariate data frame and replaces each categorical covariate of \(n \geq 3 \) levels with \(n \) new binary covariate columns, one for each level. Transforms covariate dataframe for use with the function cv.bal.psa.

Usage

cv.trans.psa(covariates, fcol = NULL)

Arguments

covariates A dataframe of covariates, presumably some factors.
fcol An optional vector containing the factor columns in the covariate data frame. In NULL (default) routine to identify factors internally.

Details

NOTE: This function originated in the PSAgraphics package. It has been adapted here for the multilevelPSA package.

Author(s)

James E. Helmreich James.Helmreich@Marist.edu
Robert M. Pruzeck RMPruzek@yahoo.com
KuangNan Xiong harryxkn@yahoo.com
Jason Bryer jason@bryer.org
difftable.plot

This function produces a ggplot2 figure containing the mean differences for each level two, or cluster.

Description

This function produces a ggplot2 figure containing the mean differences for each level two, or cluster.

Usage

difftable.plot(x, fill.colors = NULL, legendlab = NULL, ...)

Arguments

- **x**: the results of `mlpsa`.
- **fill.colors**: the colors to use for each level two.
- **legendlab**: the label to use for the legend, or NULL to exclude.
- **...**: currently unused.

Value

a ggplot2 figure

getPropensityScores

Returns a data frame with two columns corresponding to the level 2 variable and the fitted value from the logistic regression.

Description

Returns a data frame with two columns corresponding to the level 2 variable and the fitted value from the logistic regression.

Usage

getPropensityScores(lr.results, nStrata = 5)

Arguments

- **lr.results**: the results of `mlpsa.logistic`.
- **nStrata**: number of strata within each level.

Value

a data frame
getStrata

Returns a data frame with two columns corresponding to the level 2 variable and the leaves from the conditional inference trees.

Description

Returns a data frame with two columns corresponding to the level 2 variable and the leaves from the conditional inference trees.

Usage

getStrata(party.results, data, level2)

Arguments

party.results the results of \texttt{mlpsa.ctree}
data the data frame to merge results to
level2 the name of the level 2 variable.

Value

a data frame

See Also

\texttt{mlpsa.ctree}

is.mlpsa

Returns true if the object is of type \texttt{mlpsa}

Description

Returns true if the object is of type \texttt{mlpsa}

Usage

is.mlpsa(x)

Arguments

x the object to test
loess.plot

Loess plot with density distributions for propensity scores and outcomes on top and right, respectively.

Description

Loess plot with density distributions for propensity scores and outcomes on top and right, respectively.

Usage

loess.plot(x, response, treatment, responseTitle = "", treatmentTitle = "Treatment", percentPoints.treat = 0.1, percentPoints.control = 0.01, points.treat.alpha = 0.1, points.control.alpha = 0.1, plot.strata, plot.strata.alpha = 0.2, ...)

Arguments

x vector of propensity scores.
response the response variable.
treatment the treatment variable as a logical type.
responseTitle the label to use for the y-axis (i.e. the name of the response variable)
treatmentTitle the label to use for the treatment legend.
percentPoints.treat the percentage of treatment points to randomly plot.
percentPoints.control the percentage of control points to randomly plot.
points.treat.alpha the transparency level for treatment points.
points.control.alpha the transparency level for control points.
plot.strata an integer value greater than 2 indicating the number of vertical lines to plot corresponding to quantiles.
plot.strata.alpha the alpha level for the vertical lines.
... other parameters passed to geom_smooth and stat_smooth.

Value

a ggplot2 figure

See Also

plot.mlpsa
Examples

```r
## Not run:
require(multilevelPSA)
require(party)
data(pisana)
data(pisa.psa.cols)
cnt = 'USA' #Can change this to USA, MEX, or CAN
pisana2 = pisana[pisana$CNT == cnt,]
pisana2$treat <- as.integer(pisana2$PUBPRIV) %% 2
lr.results <- glm(treat ~ ., data=pisana2[,c('treat',pisa.psa.cols)], family='binomial')
st = data.frame(ps=fitted(lr.results),
math=apply(pisana2[,paste('PV', 1:5, 'MATH', sep=''),] 1, mean),
pubpriv=pisana2$treat)
st$treat = as.logical(st$pubpriv)
loess.plot(st$ps, response=st$math, treatment=st$treat, percentPoints.control = 0.4,
percentPoints.treat=0.4)

## End(Not run)
```

Description

Usage

```r
lsos(..., n = 10)
```

Arguments

- `...`: not used.
- `n`: the number of objects to return.

Value

A list of objects loaded sorted by size.
missing.plot

Returns a heat map graphic representing missingness of variables grouped by the given grouping vector.

Description

NOTE: This is an experimental function and the results may vary depending on the nature of the dataset.

Usage

missing.plot(x, grouping, grid = FALSE, widths = c(ggplot2::unit(3, "null"),
 ggplot2::unit(1, "inches")), heights = c(ggplot2::unit(1, "inches"),
 ggplot2::unit(3, "null")), color = "red", ...)

Arguments

x a data frame containing the variables to visualize missingness

grouping a vector of length nrow(vars) corresponding to how missing will be grouped by

grid whether to draw a grid between tiles

widths the ratio of the widths of the heatmap and histogram.

heights the ratio of the heights of the heatmap and histogram.

color the color used for indicating missingness.

... currently unused.

Value

a ggplot2 expression

See Also

plot.mlpsa

mlpsa

This function will perform phase II of the multilevel propensity score analysis.

Description

TODO: Need more details

Usage

mlpsa(response, treatment = NULL, strata = NULL, level2 = NULL,
 minN = 5, reverse = FALSE, ci.level = 0.05)
Arguments

response vector containing the response values
treatment vector containing the treatment conditions
strata vector containing the strata for each response
level2 vector containing the level 2 specifications
minN the minimum number of subjects per strata for that strata to be included in the analysis.
reverse reverse the order of treatment and control for the difference calculation.
ci.level the confidence level to use for confidence intervals. Defaults to a 95% confidence level.

Details

The ci.adjust provides a Bonferroni-Sidak adjusted confidence intervals based on the number of levels/clusters.

Value

a mlpSA class

See Also

mlpsa.ctree mlpSA.logistic

Examples

Not run:
require(multilevelPSA)
require(party)
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpSA.ctree(pisana[,c('CNT', 'PUBPRIV', pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpSA(response=student.party$mathscore,
treatment=student.party$PUBPRIV,
strata=student.party$strata,
level2=student.party$CNT, minN=5)
results.psa.math
summary(results.psa.math)

End(Not run)
Plots the results of a multilevel propensity score model.

Description

The plot created uses the ggplot2 framework. As such, additional modifications can be made. This plot is an extension of the circ.psa function in the PSAgraphics package for multilevel models.

Usage

mlpsa.circ.plot(x, xlab = names(multilevelPSA$level2.summary)[4],
 ylab = names(multilevelPSA$level2.summary)[5], legendlab = "Level 2",
 title = NULL, overall.col = "blue", overall.ci.col = "green",
 level1.plot = FALSE, level1_point.size = NULL, level1_rug.plot = NULL,
 level1_projection.lines = FALSE, level2.plot = TRUE,
 level2_point.size = NULL, level2_rug.plot = "tr",
 level2_projection.lines = TRUE, level2_label = FALSE,
 unweighted.means = FALSE, weighted.means = FALSE, fill.colors = NULL,
 ...)

Arguments

x the results of mlpsa.
xlab label for the x-axis.
ylab label for the y-axis.
legendlab the label for the legend, or NULL to exclude.
title title for the figure.
overall.col the color used for the overall results.
overall.ci.col the color used for the confidence intervals.
level1.plot logical value indicating whether level 1 points should be plotted.
level1_point.size the size of level 1 points
level1_rug.plot the placement for plotting a level 2 rug. Possible values are bl (for left and bottom), tr (for top and right), or NULL (to exclude).
level1_projection.lines logical value indicating whether level 1 projection lines (parallel to the unit line) are drawn.
level2.plot logical value indicating whether level 2 points should be plotted.
level2_point.size the size of level 2 points
level2_rug.plot the placement for plotting a level 2 rug. Possible values are bl (for left and bottom), tr (for top and right), or NULL (to exclude).
level2.projection.lines
logical value indicating whether level 2 project lines (parallel to the unit line) are drawn.

level2.label
logical value indicating whether level 2 points should be labeled.

unweighted.means
logical value indicating whether horizontal and vertical lines are drawn representing the unweighted (i.e., unadjusted from phase I of PSA) means for each level 2, or cluster.

weighted.means
logical value indicating whether horizontal and vertical lines are drawn representing the weighted means for each level 2, or cluster.

fill.colors
if specified, the colors to use for level 2 points.

... currently unused.

See Also
plot.mlpsa

Examples

Not run:
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c("Var CNT", "Var PUBPRIV", pisa.psa.cols)],
 formula="PUBPRIV ~ .", level2="CNT")
student.party = getStrata(mlctree, pisana, level2="CNT")
student.party$mathscore = apply(student.party[,paste0("PV", 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore,
 treatment=student.party$PUBPRIV,
 strata=student.party$strata,
 level2=student.party$CNT, minN=5)
mlpsa.circ.plot(results.psa.math, legendlab=FALSE)

End(Not run)
Usage

mlpsa.ctree(vars, formula, level2, ...)

Arguments

- **vars**: a data frame containing the covariates to use for estimating the propensity scores.
- **formula**: the model for estimating the propensity scores. For example, treat ~ .
- **level2**: the name of the column in `vars` specifying the level 2 (or cluster).
- **...**: currently unused.

Value

A list of BinaryTree-class classes for each level 2

References

See Also

- `getStrata`
- `tree.plot`

mlpsa.difference.plot

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Description

Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.

Usage

mlpsa.difference.plot(x, xlab, ylab = NULL, title = NULL, overall.col = "blue", overall.ci.col = "green", level2.point.size = NULL, level1.points = TRUE, errorbars = TRUE, errorbars.adjusted.ci = TRUE, level2.rug.plot = TRUE, jitter = TRUE, reorder = TRUE, labelLevel2 = TRUE, sd = NULL, xlim, ...)
Arguments

- `x` the results of `mlpsa`.
- `xlab` label for the x-axis, or NULL to exclude.
- `ylab` label for the y-axis, or NULL to exclude.
- `title` title of the figure, or NULL to exclude.
- `overall.col` the color of the overall results line.
- `overall.ci.col` the color of the overall confidence interval.
- `level2.point.size` the point size of level 2 points.
- `level1.points` logical value indicating whether level 1 strata should be plotted.
- `errorbars` logical value indicating whether error bars should be plotted for each level 1.
- `errorbars.adjusted.ci` whether the Bonferroni adjusted error bars should be plotted (these will be dashed lines).
- `level2.rug.plot` logical value indicating whether a rug plot should be plotted for level 2.
- `jitter` logical value indicating whether level 1 points should be jittered.
- `reorder` logical value indicating whether the level two clusters should be reordered from largest difference to smallest.
- `labelLevel2` logical value indicating whether the difference for each level 2 should be labeled.
- `sd` If specified, effect sizes will be plotted instead of difference in the native unit.
- `xlim` the limits of the x-axis.
- `...` currently unused.

See Also

- `plot.mlpsa`

Examples

```r
## Not run:
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore, treatment=student.party$PUBPRIV, strata=student.party$strata, level2=student.party$CNT, minN=5)
mlpsa.difference.plot(results.psa.math, sd=mean(student.party$mathscore, na.rm=TRUE))
## End(Not run)
```
mlpsa.distribution.plot

Plots distribution for either the treatment or comparison group.

Description

Plots distribution for either the treatment or comparison group.

Usage

mlpsa.distribution.plot(x, treat, fill.colours = NULL, flip = TRUE,
 label = treat, level2.label = NULL, legendlab = NULL,
 axis.text.size = 8, fill.colors = NULL, ...)

Arguments

x the results of mlpsa.
treat the group to plot. This must be one of the two levels of the treatment variable.
fill.colours if specified, the colors to use for level 2 points.
flip if TRUE, the level 2 clusters will be on the y-axis and the outcome variable on
 the x-axis. Otherwise reversed.
label the label to use for the axis.
level2.label the axis label for the level 2 indicators.
legendlab the label for the legend, or NULL to exclude a legend.
axis.text.size the size of the axis text
fill.colors if specified, the colors to use for level 2 points.
... currently unused.

See Also

plot.mlpsa

mlpsa.logistic

Estimates propensity scores using logistic regression.

Description

This method will estimate a separate logistic regression model for each level 2 (or cluster).

Usage

mlpsa.logistic(vars, formula, level2, stepAIC = FALSE, ...)

Arguments

- `vars` : data frame containing the variables to estimate the logistic regression
- `formula` : the logistic regression formula to use
- `level2` : the name of the column containing the level 2 specification
- `stepAIC` : if true, the `stepAIC` from the MASS package will be used within each level.
- `...` : currently unused.

Value

a list of glm classes for each level 2 or stepwise-selected model if stepAIC is true.

See Also

getPropensityScores

pisa.colnames

Mapping of variables in pisana with full descriptions.

Description

This data frame provides three variables, `Variable` corresponding to the column names in pisana, `ShortDesc` providing a short description of the variable as a valid R object name, and `Desc` providing a longer description of the variable.

Format

da data frame with 50 rows of 3 variables.

pisa.countries

Data frame mapping PISA countries to their three letter abbreviation.

Description

This data frame has two columns, `CNT3` for the three letter abbreviation of each country and `Country` that provides the full country name in English.

Format

data frame with 65 rows of 2 variables.
pisa.psa.cols

Character vector representing the list of covariates used for estimating propensity scores.

Description

Character vector representing the list of covariates used for estimating propensity scores.

Format

a character vector with covariate names for estimating propensity scores.

pisana

North American (i.e. Canada, Mexico, and United States) student results of the 2009 Programme of International Student Assessment.

Description

Student results from the 2009 Programme of International Student Assessment (PISA) as provided by the Organization for Economic Co-operation and Development (OECD). See http://www.pisa.oecd.org/ for more information including the code book.

Format

a data frame with 66,548 observations of 65 variables.

Details

Note that missing values have been imputed using the http://cran.r-project.org/web/packages/mice/index.html package. Details on the specific procedure are in the pisa.impute function in the pisa package.

Source

Organization for Economic Co-operation and Development

References

Multiple covariate balance assessment plot.

Description

A graphic based upon `cv.bal.psa` function in the PSAgraphics package. This graphic plots the effect sizes for multiple covariates before and after propensity score adjustment.

Usage

```r
## S3 method for class 'covariate.balance'
plot(x, plot.strata = FALSE,
     order = c("unadjusted", "adjusted"), strata.size = 3,
     strata.legend.guide = "none", point.size = 3, point.alpha = 1,
     line.color = "black", line.alpha = 0.2, legend.position = c(0.8, 0.2),
     ...)
```

Arguments

- `x` results of `covariate.balance`.
- `plot.strata` whether individual strata should be plotted.
- `order` how to order the y-axis. Possible values are adjusted, unadjusted, or NULL (don’t reorder).
- `strata.size` text size for strata if plotted.
- `strata.legend.guide` guide for legend placement for strata.
- `point.size` size of the overall effect size points.
- `point.alpha` transparency level of the overall effect size points.
- `line.color` the color of the line connecting the overall effect size points.
- `line.alpha` transparency level of the line connecting the overall effect size points.
- `legend.position` where to position the legend.
- `...` currently unused.

Value

a ggplot2 with an attribute, `effects`, that is the data frame used to create the plot.
Description

The plot created uses the ggplot2 framework. As such, additional modifications can be made. This plot is an extension of the circ.psa function in the PSAgraphics package for multilevel models.

Usage

```r
## S3 method for class 'mlpsa'
plot(x, ratio = c(1, 2), plotExtra = NULL, ...)
```

Arguments

- **x**: the results of `mlpsa`.
- **ratio**: the ratio of the size of the distribution plots (left and bottom) to the circular plot.
- **plotExtra**: a plot to place in the lower left corner.
- **...**: parameters passed to `mlpsa.circ.plot` and `mlpsa.distribution.plot`

Examples

```r
## Not run:
require(multilevelPSA)
require(party)
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c("CNT", "PUBPRIV", pisa.psa.cols)], formula=PUBPRIV ~ ., level2="CNT")
student.party = getStrata(mlctree, pisana, level2="CNT")
student.party$mathscore = apply(student.party[,paste0("PV", 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore,
treatment=student.party$PUBPRIV,
strata=student.party$strata,
level2=student.party$CNT, minN=5)
plot(results.psa.math)

## End(Not run)
```
plot.psrang

Plots densities and ranges for the propensity scores.

Description

Plots densities and ranges for the propensity scores.

Usage

```r
## S3 method for class 'psrange'
plot(x, xlab = NULL, ylab = NULL,
    labels = c("Comparison", "Treatment"), text.ratio.size = 4,
    text.ncontrol.size = 3, point.size = 1, point.alpha = 0.6,
    line.width = 6, density.alpha = 0.2, rect.color = "green",
    rect.alpha = 0.2, ...) 
```

Arguments

- `x`: the result of `psrange`.
- `xlab`: label for x-axis.
- `ylab`: label for y-axis.
- `labels`: labels for the comparison and treatment legend.
- `text.ratio.size`: size of the text for the ratio.
- `text.ncontrol.size`: size of the text for the number of control units.
- `point.size`: size of the points for the minimum and maximum ranges for each model.
- `point.alpha`: the alpha (transparency) level for the points.
- `line.width`: the width of the line between the median of the minimum and maximum ranges.
- `density.alpha`: the alpha (transparency) level of the density curves.
- `rect.color`: the color of the rectangle surrounding the range of minimum and maximum ranges.
- `rect.alpha`: the alpha (transparency) level of the rectangle.
- `...`: currently unused.

Value

- a ggplot2 object
print.covariate.balance

Prints the overall effects before and after propensity score adjustment.

Description

Prints the overall effects before and after propensity score adjustment.

Usage

```r
## S3 method for class 'covariate.balance'
print(x, ...)
```

Arguments

- `x`: results of `covariate.balance`.
- `...`: unused.

print.mlpsa

Prints basic information about a `mlpsa` class.

Description

Prints basic information about a `mlpsa` class.

Usage

```r
## S3 method for class 'mlpsa'
print(x, ...)
```

Arguments

- `x`: the `mlpsa` class.
- `...`: unused.
print.psrange

Prints information about a psrange result.

Description

Prints information about a psrange result.

Usage

```r
## S3 method for class 'psrange'
print(x, ...)  # S3 method for class 'psrange'
```

Arguments

- `x`: psrange to print info about.
- `...`: currently unused

print.xmlpsa

Prints the results of mlpsa and xtable.mlpsa.

Description

Print method for `xtable.mlpsa`.

Usage

```r
## S3 method for class 'xmlpsa'
print(x, tabular.environment = "longtable", floating = FALSE, ...)
```

Arguments

- `x`: result of `xtable.mlpsa`
- `tabular.environment`: see `print.xtable`.
- `floating`: see `print.xtable`.
- `...`: other parameters passed to `print.xtable`
psrange

Estimates models with increasing number of comparison subjects starting from 1:1 to using all available comparison group subjects.

Description

Estimates models with increasing number of comparison subjects starting from 1:1 to using all available comparison group subjects.

Usage

psrange(df, treatvar, formula, nsteps = 10, nboot = 10, samples, type = c("logistic", "ctree"), ...)

Arguments

df data frame with variables to pass to glm
treatvar vector representing treatment placement. Should be coded as 0s (for control) and 1s (for treatment).
formula formula for logistic regression model
nsteps number of steps to estimate from 1:1 to using all control records.
nboot number of models to execute for each step.
samples the sample sizes to draw from control group for each step.
type either logistic for Logistic regression (using glm function) or ctree for Conditional Inference Trees (using the ctree function).
... other parameters passed to glm.

Value

a class of psrange that contains a summary data frame, a details data frame, and a list of each individual result from glm.

summary.mlpsa

Provides a summary of a mlpsa class.

Description

Provides a summary of a mlpsa class.

Usage

S3 method for class 'mlpsa'
summary(object, overall.label = "Overall", ...)

Arguments

object the mlpsa object.
overall.label the label to place in the strata column for the overall results.
... unused.

summary.psrange Prints the summary results of psrange.

Description

Prints the summary results of psrange.

Usage

S3 method for class 'psrange'
summary(object, ...)

Arguments

object psrange to print summary of.
... currently unused.

tree.plot Heat map representing variables used in a conditional inference tree across level 2 variables.

Description

This figure provides a summary of the covariates used within each level two cluster along with their relative importance. Covariates are listed on the y-axis and level two clusters along the x-axis. Cells that are shaded indicate that that covariate was present in the conditional. The shade of the color represents the highest level within the tree that covariate appeared. That is, the darkest color, or depth 1, corresponds to the covariate used at the root of the tree, or the first split.

Usage

tree.plot(x, colNames, level2Col, colLabels = NULL, color.high = "azure", color.low = "steelblue", color.na = "white", ...)
Arguments

x the results of \texttt{mlpsa.ctree}
colNames the columns to include in the graphic
level2Col the name of the level 2 column.
collLabels column labels to use. This is a data frame with two columns, the first column should match the values in \texttt{trees} and the second column the description that will be used for labeling the variables.
color.high color for variables with less relative importance as determined by occurring later in the tree (further from the root split).
color.low color for variables with greater relative importance as determined by occurring sooner in the tree (closer to the root split).
color.na color for variables that do not occur in the tree.
... currently unused.

Value

a ggplot2 expression

See Also

\texttt{plot.mlpsa}

Examples

\begin{verbatim}
Not run:
require(party)
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('Var CNT', 'Var PUBPRIV', pisa.psa.cols)], formula=PUBPRIV ~ ., level2='Var CNT')
ststudent.party = getStrata(mlctree, pisana, level2='Var CNT')
tree.plot(mlctree, level2Col=pisana$CNT)
End(Not run)
\end{verbatim}

\texttt{xtable.mlpsa} \hspace{1cm} Prints the results of \texttt{mlpsa} as a LaTeX table.

Description

This function implements the \texttt{xtable} method for \texttt{mlpsa}.

Usage

\begin{verbatim}
S3 method for class 'mlpsa'
xtable(x, caption, label, align, digits = 2, display = NULL,
auto = FALSE, include.note = TRUE, ...)
\end{verbatim}
Arguments

\begin{verbatim}
x results of mlpsa
caption passed through to xtable.
label passed through to xtable.
align Not used.
digits number of digits to print.
display passed through to xtable.
auto passed through to xtable.
include.note include a table note indicating how many rows were removed due to insufficient data within a strata.
... other parameters passed to summary.mlpsa
\end{verbatim}
Index

* analysis
 multilevelPSA-package, 2
* datasets
 pisa.colnames, 18
 pisa.countries, 18
 pisa.psa.cols, 19
 pisana, 19
* graphics
 multilevelPSA-package, 2
* multilevel
 multilevelPSA-package, 2
* propensity
 multilevelPSA-package, 2
* psa
 multilevelPSA-package, 2
* score
 multilevelPSA-package, 2

align.plots, 3
as.data.frame.covariate.balance, 4
covariate.balance, 4, 4, 20, 23
covariateBalance, 5
cv.bal.psa, 5, 20
cv.trans.psa, 6
difftable.plot, 7
geom_smooth, 9
getPropensityScores, 7
getStrata, 8, 15
is.mlpsa, 8
loess.plot, 9
lsos, 10

missing.plot, 11
mlpsa, 3, 7, 11, 13, 16, 17, 21, 24, 27, 28
mlpsa.circ.plot, 13, 21
mlpsa.ctree, 2, 8, 12, 14, 27

mlpsa.difference.plot, 15
mlpsa.distribution.plot, 17, 21
mlpsa.logistic, 2, 7, 12, 17
multilevelPSA (multilevelPSA-package), 2
multilevelPSA-package, 2

pisa.colnames, 18
pisa.countries, 18
pisa.psa.cols, 19
pisana, 18, 19
plot.covariate.balance, 20
plot.mlpsa, 3, 21
plot.psrange, 22
print.covariate.balance, 23
print.mlpsa, 23
print.psrange, 24
print.xmlpsa, 24
print.xtable, 24
psrange, 25

stat_smooth, 9
stepAIC, 18
summary.mlpsa, 25, 28
summary.psrange, 26

tree.plot, 15, 26
xtable, 27, 28
xtable.mlpsa, 24, 27