Package ‘multinma’

June 30, 2020

Title Bayesian Network Meta-Analysis of Individual and Aggregate Data

Version 0.1.3

Description Network meta-analysis and network meta-regression models for
aggregate data, individual patient data, and mixtures of both individual
and aggregate data using multilevel network meta-regression as described by
Phillippo et al. (2020) <doi:10.1111/rssa.12579>. Models are estimated in a
Bayesian framework using ‘Stan’.

License GPL-3

Encoding UTF-8

LazyData true

Biarch true

Depends R (>= 3.4.0)

Imports methods, stats, graphics, Rcpp (>= 0.12.0), rstan (>= 2.19.2),
rstantools (>= 2.0.0), Rdpack (>= 0.7), tidyverse, dplyr (>=
0.8.1), rlang, purrr, forcats, glue, randtoolbox, copula, tidyr
(>= 0.8.3), stringr, Matrix, igraph, ggplot, ggplot2, ggdens
(>= 2.1.1), truncdist, bayesplot

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
rstan (>= 2.18.1), StanHeaders (>= 2.18.0)

SystemRequirements GNU make

RoxygenNote 7.1.0

Suggests testthat (>= 2.1.0), knitr, rmarkdown, parallel, R.rsp,
rprojroot, loo (>= 2.0.0), logitnorm, crayon, tidygraph

RdMacros Rdpack

URL http://github.com/dmphillippo/multinma

BugReports http://github.com/dmphillippo/multinma/issues

VignetteBuilder knitr, R.rsp

NeedsCompilation yes

Author David M. Phillippo [aut, cre] (<https://orcid.org/0000-0003-2672-7841>)

Maintainer David M. Phillippo <david.phillippo@bristol.ac.uk>
R topics documented:

<table>
<thead>
<tr>
<th>Package/Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>multinma-package</td>
<td>3</td>
</tr>
<tr>
<td>.default</td>
<td>4</td>
</tr>
<tr>
<td>adapt_delta</td>
<td>5</td>
</tr>
<tr>
<td>add_integration</td>
<td>5</td>
</tr>
<tr>
<td>as.array.stan_nma</td>
<td>8</td>
</tr>
<tr>
<td>as.igraph.nma_data</td>
<td>9</td>
</tr>
<tr>
<td>as.stanfit</td>
<td>10</td>
</tr>
<tr>
<td>atrial_fibrillation</td>
<td>11</td>
</tr>
<tr>
<td>bcg_vaccine</td>
<td>12</td>
</tr>
<tr>
<td>blocker</td>
<td>12</td>
</tr>
<tr>
<td>combine_network</td>
<td>13</td>
</tr>
<tr>
<td>dgent</td>
<td>15</td>
</tr>
<tr>
<td>diabetes</td>
<td>16</td>
</tr>
<tr>
<td>dic</td>
<td>17</td>
</tr>
<tr>
<td>dietary_fat</td>
<td>19</td>
</tr>
<tr>
<td>distr</td>
<td>20</td>
</tr>
<tr>
<td>is_network_connected</td>
<td>21</td>
</tr>
<tr>
<td>loo.stan_nma</td>
<td>22</td>
</tr>
<tr>
<td>mcmc_array-class</td>
<td>22</td>
</tr>
<tr>
<td>nma</td>
<td>24</td>
</tr>
<tr>
<td>nma_data-class</td>
<td>29</td>
</tr>
<tr>
<td>nma_dic-class</td>
<td>30</td>
</tr>
<tr>
<td>nma_prior-class</td>
<td>30</td>
</tr>
<tr>
<td>nma_summary-class</td>
<td>31</td>
</tr>
<tr>
<td>pairs.stan_nma</td>
<td>31</td>
</tr>
<tr>
<td>parkinsons</td>
<td>33</td>
</tr>
<tr>
<td>plaque_psoriasis_ipd</td>
<td>34</td>
</tr>
<tr>
<td>plot.nma_data</td>
<td>35</td>
</tr>
<tr>
<td>plot.nma_dic</td>
<td>37</td>
</tr>
<tr>
<td>plot.nma_summary</td>
<td>40</td>
</tr>
<tr>
<td>plot_integration_error</td>
<td>42</td>
</tr>
<tr>
<td>plot_prior_posterior</td>
<td>45</td>
</tr>
<tr>
<td>posterior_ranks</td>
<td>47</td>
</tr>
<tr>
<td>predict.stan_nma</td>
<td>52</td>
</tr>
<tr>
<td>print.nma_data</td>
<td>57</td>
</tr>
<tr>
<td>print.nma_dic</td>
<td>57</td>
</tr>
<tr>
<td>print.nma_summary</td>
<td>58</td>
</tr>
<tr>
<td>print.stan_nma</td>
<td>59</td>
</tr>
<tr>
<td>priors</td>
<td>59</td>
</tr>
<tr>
<td>qberm</td>
<td>61</td>
</tr>
<tr>
<td>qgamma</td>
<td>61</td>
</tr>
<tr>
<td>qlogitnorm</td>
<td>62</td>
</tr>
</tbody>
</table>
Description

An R package for performing network meta-analysis and network meta-regression with aggregate data, individual patient data, or mixtures of both.

Details

Network meta-analysis (NMA) combines (aggregate) data from multiple studies on multiple treatments in order to produce consistent estimates of relative treatment effects between each pair of treatments in the network (Dias et al. 2011).

Network meta-regression (NMR) extends NMA to include covariates, allowing adjustment for differences in effect-modifying variables between studies (Dias et al. 2011). NMR is typically performed using aggregate data (AgD), which lacks power and is prone to ecological bias. NMR with individual patient data (IPD) is the gold standard, if data are available.

Multilevel network meta-regression (ML-NMR) allows IPD and AgD to be incorporated together in a network meta-regression (Phillippo et al. 2020; Phillippo 2019). As in IPD NMR, an individual-level regression model is defined. AgD studies are then fitted by integrating the individual-level model over the respective covariate distributions. This correctly links the two levels of the model (instead of “plugging in” mean covariate values), avoiding aggregation bias. Population-adjusted treatment effects (Phillippo et al. 2016) can be produced for any study population in the network, or for an external target population.

Models are estimated in a Bayesian framework using Stan (Carpenter et al. 2017). Quasi-Monte Carlo numerical integration based on Sobol’ sequences is used for the integration in ML-NMR models, with a Gaussian copula to account for correlations between covariates (Phillippo et al. 2020; Phillippo 2019).
References

.default

Set default values

Description

The `.default()` function is used internally to mark certain values as default, so that the user may be notified when default values are being used. For example, choosing a default reference treatment for a network, or using default prior distributions. The function `.is_default()` checks whether an argument/object is set to a default value. Neither of these functions are intended to be called by the user.

Usage

```
.default(x = list())

.is_default(x)
```

Arguments

- `x` An object
adapt_delta

Value

For `.default()`, an identical object with additional attribute `.default`. For `.is_default()`, a logical value (TRUE or FALSE).

adapt_delta

Target average acceptance probability

Description

The Stan control argument `adapt_delta` sets the target average acceptance probability for the No-U-Turn Sampler (NUTS) used by Stan.

Details

The default value of `adapt_delta` used by `nma()` is 0.8 for fixed effect models, and 0.95 for random effects models.

You should not need to change `adapt_delta` unless you see a warning message about divergent transitions. Increasing `adapt_delta` from the default to a value closer to 1 means that Stan will use a smaller step size, making sampling slower but more robust, and resulting in fewer divergent transitions.

For more details see the Stan documentation available from https://mc-stan.org/users/documentation/.

add_integration

Add numerical integration points to aggregate data

Description

The `add_integration()` generic creates numerical integration points using a Gaussian copula approach, as described in Phillippo et al. (2020). Methods are available for networks stored in `nma_data` objects, and for data frames. The function `unnest_integration()` unnests integration points stored in a data frame, to aid plotting or other exploration.

Usage

```
add_integration(x, ...)

## Default S3 method:
add_integration(x, ...)

## S3 method for class 'data.frame'
add_integration(x, ..., cor = NULL, n_int = 1000L, int_args = list())

## S3 method for class 'nma_data'
add_integration(x, ..., cor = NULL, n_int = 1000L, int_args = list())

unnest_integration(data)
```
Arguments

- **x**: An `nma_data` object, as created by the `set_*()` functions or `combine_network()`, or data frame
- **...**: Distributions for covariates, see "Details"
- **cor**: Correlation matrix to use for generating the integration points. By default, this takes a weighted correlation matrix from all IPD studies. Rows and columns should match the order of covariates specified in
- **n_int**: Number of integration points to generate, default 1000
- **int_args**: A named list of arguments to pass to `sobol()`
- **data**: Data frame with nested integration points, stored in list columns as .int_<variable name>

Details

The arguments passed to ... specify distributions for the covariates. Argument names specify the name of the covariate, which should match a covariate name in the IPD (if IPD are present). The required marginal distribution is then specified using the function `distr()`.

Value

For the `nma_data` method, an object of class `nma_data`. For the `data.frame` method, the input data frame is returned (as a tibble) with an added column for each covariate (prefixed with ".int_"), containing the numerical integration points nested as length-n_int vectors within each row. For `unnest_integration()`, a data frame with integration points unnested.

References

Examples

```r
## Plaque psoriasis ML-NMR - network setup and adding integration points
# Set up plaque psoriasis network combining IPD and AgD
library(dplyr)
pso_ipd <- filter(plaque_psoriasis_ipd, studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))

pso_agd <- filter(plaque_psoriasis_agd, studyc == "FIXTURE")

head(pso_ipd)
head(pso_agd)

pso_ipd <- pso_ipd %>%
  mutate(# Variable transformations
         bsa = bsa / 100,
         prevsys = as.numeric(prevsys),
```
psa = as.numeric(psa),
weight = weight / 10,
durnpso = durnpso / 10,
Treatment classes
trtclass = case_when(trtn == 1 ~ "Placebo",
 trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
 trtn == 4 ~ "TNFa blocker"),
Check complete cases for covariates of interest
complete = complete.cases(durnpso, prevsys, bsa, weight, psa)
)

pso_agd <- pso_agd %>%
 mutate(
 # Variable transformations
 bsa_mean = bsa_mean / 100,
 bsa_sd = bsa_sd / 100,
 prevsys = prevsys / 100,
 psa = psa / 100,
 weight_mean = weight_mean / 10,
 weight_sd = weight_sd / 10,
 durnpso_mean = durnpso_mean / 10,
 durnpso_sd = durnpso_sd / 10,
 # Treatment classes
 trtclass = case_when(trtn == 1 ~ "Placebo",
 trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
 trtn == 4 ~ "TNFa blocker")
)

Exclude small number of individuals with missing covariates
pso_ipd <- filter(pso_ipd, complete)
pso_net <- combine_network(
 set_ipd(pso_ipd,
 study = studyc,
 trt = trtc,
 r = pasi75,
 trt_class = trtclass),
 set_agd_arm(pso_agd,
 study = studyc,
 trt = trtc,
 r = pasi75_r,
 n = pasi75_n,
 trt_class = trtclass)
)

Print network details
pso_net

Add integration points to the network
pso_net <- add_integration(pso_net,
 durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
 prevsys = distr(qbern, prob = prevsys),
 bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
psa = distr(qbern, prob = psa),
n_int = 1000)

Adding integration points to a data frame, e.g. for prediction
Define a data frame of covariate summaries
new_agd_int <- data.frame(
 bsa_mean = 0.6,
 bsa_sd = 0.3,
 prevsys = 0.1,
 psa = 0.2,
 weight_mean = 10,
 weight_sd = 1,
 durnpso_mean = 3,
 durnpso_sd = 1)

Adding integration points, using the weighted average correlation matrix
computed for the plaque psoriasis network
new_agd_int <- add_integration(new_agd_int,
 durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
 prevsys = distr(qbern, prob = prevsys),
 bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
 weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
 psa = distr(qbern, prob = psa),
 cor = pso_net$int_cor,
 n_int = 1000)

new_agd_int

as.array.stan_nma

Convert samples into arrays, matrices, or data frames

Description
Samples (post warm-up) from a stan_nma model object can be coerced into an array, matrix, or data frame.

Usage
S3 method for class 'stan_nma'
as.array(x, ..., pars, include = TRUE)

S3 method for class 'stan_nma'
as.data.frame(x, ..., pars, include = TRUE)

S3 method for class 'stan_nma'
as.matrix(x, ..., pars, include = TRUE)
as.igraph.nma_data

Convert networks to graph objects

Description

The method as.igraph() converts nma_data objects into the form used by the igraph package. The method as_tbl_graph() converts nma_data objects into the form used by the ggraph and tidygraph packages.

Usage

S3 method for class 'nma_data'
as.igraph(x, ..., collapse = TRUE)

S3 method for class 'nma_data'
as_tbl_graph(x, ...)

Arguments

- **x**: An nma_data object to convert
- **...**: Additional arguments
- **collapse**: Logical, collapse edges over studies? Default TRUE, only one edge is produced for each comparison (by IPD or AgD study type) with a .nstudy attribute giving the number of studies making that comparison. If FALSE, repeated edges are added for each study making the comparison.
Value

An igraph object for `as.igraph()`, a tbl_graph object for `as_tbl_graph()`.

Examples

```r
# Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
  study = studyn,       # Study
  trt = trtc,           # Treatment
  r = r,                # Rate
  n = n,                # Sample size
  trt_ref = "No intervention")

# Print details
smk_net

# Convert to igraph object
igraph::as.igraph(smk_net) # Edges combined by default
igraph::as.igraph(smk_net, collapse = FALSE) # Without combining edges

# Convert to tbl_graph object
tidygraph::as_tbl_graph(smk_net) # Edges combined by default
tidygraph::as_tbl_graph(smk_net, collapse = FALSE) # Without combining edges
```

Description

Attempt to turn an object into a `stanfit` object.

Usage

```r
as.stanfit(x, ...)
```

```
## S3 method for class 'stan_nma'
as.stanfit(x, ...)

## Default S3 method:
as.stanfit(x, ...)
```

Arguments

- `x` an object
- `...` additional arguments
Value

A \texttt{stanfit} object.

\texttt{atrial_fibrillation} \hspace{1cm} \textit{Stroke prevention in atrial fibrillation patients}

Description

Data frame containing the results of 26 trials comparing 17 treatments in 4 classes for the prevention of stroke in patients with atrial fibrillation (Cooper et al. 2009). The data are the corrected versions given by van Valkenhoef and Kuiper (2016).

Usage

\texttt{atrial_fibrillation}

Format

A data frame with 63 rows and 11 variables:

- \texttt{studyc} study name
- \texttt{studyn} numeric study ID
- \texttt{trtc} treatment name
- \texttt{trtn} numeric treatment code
- \texttt{trt_class} treatment class
- \texttt{r} number of events
- \texttt{n} sample size
- \texttt{E} person-years at risk
- \texttt{stroke} proportion of individuals with prior stroke
- \texttt{year} year of study publication
- \texttt{followup} mean length of follow-up (years)

References

bgc_vaccine

BCG vaccination

Description

Data frame containing the results of 13 trials comparing BCG vaccination to no vaccination for preventing tuberculosis (TB) (Dias et al. 2011; Berkey et al. 1995). The numbers of individuals diagnosed with TB in each arm during the study follow-up period are recorded. The absolute degrees latitude at which the study was conducted are also recorded.

Usage

bgc_vaccine

Format

A data frame with 26 rows and 6 variables:

- **studyn** numeric study ID
- **trtn** numeric treatment code
- **trtc** treatment name
- **latitude** absolute degrees latitude
- **r** number diagnosed with TB
- **n** sample size

References

blocker

Beta blockers to prevent mortality after MI

Description

Data frame containing the number of deaths in 22 trials comparing beta blockers vs. control for preventing mortality after myocardial infarction (Carlin 1992; Dias et al. 2011).

Usage

blocker
Format

A data frame with 44 rows and 5 variables:

- **studyn**: numeric study ID
- **trtn**: numeric treatment code
- **trtc**: treatment name
- **r**: total number of events
- **n**: total number of individuals

References

Description

Multiple data sources created using `set_ipd()`, `set_agd_arm()`, or `set_agd_contrast()` can be combined into a single network for analysis.

Usage

```r
combine_network(..., trt_ref)
```

Arguments

- `...`: multiple data sources, as defined using the `set_*` functions
- `trt_ref`: reference treatment for the entire network, as a string (or coerced as such) referring to the levels of the treatment factor variable

Value

An object of class `nma_data`

See Also

- `set_ipd()`, `set_agd_arm()`, and `set_agd_contrast()` for defining different data sources.
- `print.nma_data()` for the print method displaying details of the network, and `plot.nma_data()` for network plots.
Examples

```r
## Parkinson's - combining contrast- and arm-based data
studies <- parkinsons$studyn
(parkinsons_arm <- parkinsons[studies %in% 1:3, ])
(parkinsons_contr <- parkinsons[studies %in% 4:7, ])

park_arm_net <- set_agd_arm(parkinsons_arm,
    study = studyn,
    trt = trtn,
    y = y,
    se = se,
    sample_size = n)

park_contr_net <- set_agd_contrast(parkinsons_contr,
    study = studyn,
    trt = trtn,
    y = diff,
    se = se_diff,
    sample_size = n)

park_net <- combine_network(park_arm_net, park_contr_net)

# Print network details
park_net

# Plot network
plot(park_net, weight_edges = TRUE, weight_nodes = TRUE)

## Plaque Psoriasis - combining IPD and AgD in a network
# Set up plaque psoriasis network combining IPD and AgD
library(dplyr)
pso_ipd <- filter(plaque_psoriasis_ipd,
    studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))

pso_agd <- filter(plaque_psoriasis_agd,
    studyc == "FIXTURE")

head(pso_ipd)
head(pso_agd)

pso_ipd <- pso_ipd %>%
    mutate(# Variable transformations
        bsa = bsa / 100,
        prevsys = as.numeric(prevsys),
        psa = as.numeric(psa),
        weight = weight / 10,
        durnpso = durnpso / 10,
        # Treatment classes
        trtclass = case_when(trtn == 1 ~ "Placebo",
            trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
            trtn == 4 ~ "TNFa blocker"),
        # Check complete cases for covariates of interest
        )
complete = complete.cases(durnpso, prevsys, bsa, weight, psa)
)

pso_agd <- pso_agd \%>%
  mutate(
    # Variable transformations
    bsa_mean = bsa_mean / 100,
    bsa_sd = bsa_sd / 100,
    prevsys = prevsys / 100,
    psa = psa / 100,
    weight_mean = weight_mean / 10,
    weight_sd = weight_sd / 10,
    durnpso_mean = durnpso_mean / 10,
    durnpso_sd = durnpso_sd / 10,
    # Treatment classes
    trtclass = case_when(trtn == 1 ~ "Placebo",
                        trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
                        trtn == 4 ~ "TNF\textalpha blocker")
  )

# Exclude small number of individuals with missing covariates
pso_ipd <- filter(pso_ipd, complete)

pso_net <- combine_network(
  set_ipd(pso_ipd, study = studyc, trt = trtc, r = pasi75, trt_class = trtclass),
  set_agd_arm(pso_agd, study = studyc, trt = trtc, r = pasi75_r, n = pasi75_n, trt_class = trtclass)
)

# Print network details
pso_net

# Plot network
plot(pso_net, weight_nodes = TRUE, weight_edges = TRUE, show_trt_class = TRUE)

---

dgent

**Generalised Student’s t distribution (with location and scale)**

**Description**

Density, distribution, and quantile function for the generalised t distribution with degrees of freedom df, shifted by location and scaled by scale.
Usage

dgent(x, df, location = 0, scale = 1)
pgent(q, df, location = 0, scale = 1)
qgent(p, df, location = 0, scale = 1)

Arguments

x, q
Vector of quantiles

df
Degrees of freedom, greater than zero

location
Location parameter

scale
Scale parameter, greater than zero

p
Vector of probabilities

Value

dgent() gives the density, pgent() gives the distribution function, qgent() gives the quantile function.

---

diabetes

Incidence of diabetes in trials of antihypertensive drugs

Description

Data frame containing the number of new cases of diabetes in 22 trials of 6 antihypertensive drugs
(Elliott and Meyer 2007; Dias et al. 2011). The trial duration (in years) is also recorded.

Usage

diabetes

Format

A data frame with 48 rows and 7 variables:

studyn numeric study ID
studyc study name
trtn numeric treatment code
trtc treatment name
r total number of events
n total number of individuals
time trial follow-up (years)
dic

References
generalised linear modelling framework for pair-wise and network meta-analysis of randomised


dic Deviance Information Criterion (DIC)

Description
Calculate the DIC for a model fitted using the rma() function.

Usage
dic(x, ...)

Arguments
x A fitted model object, inheriting class stan_nma
... Other arguments (not used)

Value
A nma_dic object.

See Also
print.nma_dic() for printing details, plot.nma_dic() for producing plots of residual deviance
contributions.

Examples
## Smoking cessation
# Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
                      study = studyn,
                      trt = trtc,
                      r = r,
                      n = n,
                      trt_ref = "No intervention")

# Print details
smk_net

# Fitting a fixed effect model
smk_fit_FE <- nma(smk_net,
  trt_effects = "fixed",
  prior_intercept = normal(scale = 100),
  prior_trt = normal(scale = 100))

smk_fit_FE

# Fitting a random effects model
smk_fit_RE <- nma(smk_net,
  trt_effects = "random",
  prior_intercept = normal(scale = 100),
  prior_trt = normal(scale = 100),
  prior_het = normal(scale = 5))

smk_fit_RE

# Compare DIC of FE and RE models
(smk_dic_FE <- dic(smk_fit_FE))
(smk_dic_RE <- dic(smk_fit_RE)) # substantially better fit

# Plot residual deviance contributions under RE model
plot(smk_dic_RE)

# Check for inconsistency using UME model

# Fitting an unrelated mean effects (inconsistency) model
smk_fit_RE_UME <- nma(smk_net,
  consistency = "ume",
  trt_effects = "random",
  prior_intercept = normal(scale = 100),
  prior_trt = normal(scale = 100),
  prior_het = normal(scale = 5))

smk_fit_RE_UME

# Compare DIC
smk_dic_RE
(smk_dic_RE_UME <- dic(smk_fit_RE_UME)) # no difference in fit

# Compare residual deviance contributions
plot(smk_dic_RE, smk_dic_RE_UME, show_uncertainty = FALSE)
dietary_fat

---

**dietary_fat**  
*Reduced dietary fat to prevent mortality*

**Description**

Data frame containing the number of deaths and person-years at risk in 10 trials comparing reduced fat diets vs. control (non-reduced fat diet) for preventing mortality (Hooper et al. 2000; Dias et al. 2011).

**Usage**

`dietary_fat`

**Format**

A data frame with 21 rows and 7 variables:

- `studyn` numeric study ID
- `studyc` study name
- `trtn` numeric treatment code
- `trtc` treatment name
- `r` number of events
- `n` number randomised
- `E` person-years at risk

**References**


distr

Specify a general marginal distribution

distr() is used within the function add_integration() to specify marginal distributions for the covariates, via a corresponding inverse CDF. It is also used in predict.stan_nma() to specify a distribution for the baseline response (intercept) when predicting absolute outcomes.

Usage
distr(qfun, ...)

Arguments
qfun an inverse CDF, either as a function name or a string
... parameters of the distribution as arguments to qfun, these will be quoted and evaluated later in the context of the aggregate data sources

Details
The function qfun should have a formal argument called p. This restriction serves as a crude check for inverse CDFs (e.g. an error will be given if dnorm is used instead of qnorm). If a user-written CDF is supplied, it must have an argument p which takes a vector of probabilities.

Value
An object of class distr.

See Also
add_integration() where distr() is used to specify marginal distributions for covariates to integrate over, and predict.stan_nma() where distr() is used to specify a distribution on the baseline response.

Examples
## Specifying marginal distributions for integration
df <- data.frame(x1_mean = 2, x1_sd = 0.5, x2 = 0.8)

# Distribution parameters are evaluated in the context of the data frame
add_integration(df,
    x1 = distr(qnorm, mean = x1_mean, sd = x1_sd),
    x2 = distr(qbern, prob = x2),
    cor = diag(2))
is_network_connected  

Check network connectedness

Description

Check whether a network is connected - whether there is a path of study evidence linking every pair of treatments in the network.

Usage

is_network_connected(network)

Arguments

network An nma_data object, as created by the functions set_*() or combine_network().

Details

Models will still run with disconnected networks. However, estimated relative effects between treatments across disconnected parts of the network will be entirely based on the prior distribution (typically very uncertain), as there is no information to update the prior distribution. Relative effects within each connected sub-network will be estimated as if each sub-network had been analysed separately.

Value

Logical TRUE or FALSE

Examples

## Smoking cessation
# Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
  study = studyn,
  trt = trtc,
  r = r,
  n = n,
  trt_ref = "No intervention")

# Print details
smk_net

is_network_connected(smk_net) # TRUE, network is connected

## A disconnected network
disc_net <- set_agd_arm(smoking[smoking$studyn %in% c(15, 21), ],
  study = studyn,
  trt = trtc,
r = r, n = n)
is_network_connected(disc_net)  # FALSE, network is disconnected
disc_net
plot(disc_net)

loo.stan_nma  Model comparison using the loo package

Description

The loo() and waic() functions from the loo package may be called directly on stan_nma and stan_mlnmr objects.

Usage

## S3 method for class 'stan_nma'
loo(x, ...)

## S3 method for class 'stan_nma'
waic(x, ...)

Arguments

x  An object of class stan_nma or stan_mlnmr
...
Further arguments to loo() or waic()

mcmc_array-class  Working with 3D MCMC arrays

Description

3D MCMC arrays (Iterations, Chains, Parameters) are produced by as.array() methods applied to stan_nma or nma_summary objects.

Usage

## S3 method for class 'mcmc_array'
summary(object, ..., probs = c(0.025, 0.25, 0.5, 0.75, 0.975))

## S3 method for class 'mcmc_array'
print(x, ...)

## S3 method for class 'mcmc_array'
names(x)

## S3 replacement method for class 'mcmc_array'
names(x) <- value
Arguments

... Further arguments passed to other methods
probs Numeric vector of quantiles of interest
x, object A 3D MCMC array of class mcmc_array
value Character vector of replacement parameter names

Value

The summary() method returns a nma_summary object, the print() method returns x invisibly. The names() method returns a character vector of parameter names, and names()<<- returns the object with updated parameter names.

Examples

## Smoking cessation
# Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
    study = studyn,
    trt = trtc,
    r = r,
    n = n,
    trt_ref = "No intervention")

# Print details
smk_net

# Fitting a random effects model
smk_fit_RE <- nma(smk_net,
    trt_effects = "random",
    prior_intercept = normal(scale = 100),
    prior_trt = normal(scale = 100),
    prior_het = normal(scale = 5))

smk_fit_RE

# Working with arrays of posterior draws (as mcmc_array objects) is convenient when transforming parameters

# Transforming log odds ratios to odds ratios
LOR_array <- as.array(relative_effects(smk_fit_RE))
OR_array <- exp(LOR_array)

# mcmc_array objects can be summarised to produce a nma_summary object
smk.OR_RE <- summary(OR_array)

# This can then be printed or plotted
nma

Network meta-analysis models

Description

The nma function fits network meta-analysis and (multilevel) network meta-regression models in Stan.

Usage

nma(
  network,
  consistency = c("consistency", "ume"),
  trt_effects = c("fixed", "random"),
  regression = NULL,
  class_interactions = c("common", "exchangeable", "independent"),
  likelihood = NULL,
  link = NULL,
  ...
  prior_intercept = .default(normal(scale = 100)),
  prior_trt = .default(normal(scale = 10)),
  prior_het = .default(half_normal(scale = 5)),
  prior_het_type = c("sd", "var", "prec"),
  prior_reg = .default(normal(scale = 10)),
  prior_aux = .default(),
  QR = FALSE,
  center = TRUE,
  adapt_delta = NULL,
  int_thin = max(network$n_int/%10, 1)
)

Arguments

network An nma_data object, as created by the functions set_*(), combine_network(), or add_integration()
consistency  Character string specifying the type of (in)consistency model to fit, currently either "consistency" or "ume"

trt_effects  Character string specifying either "fixed" or "random" effects

regression  A one-sided model formula, specifying the prognostic and effect-modifying terms for a regression model. Any references to treatment should use the .trt special variable, for example specifying effect modifier interactions as variable:.trt (see details).

class_interactions  Character string specifying whether effect modifier interactions are specified as "common", "exchangeable", or "independent".

likelihood  Character string specifying a likelihood, if unspecified will be inferred from the data

link  Character string specifying a link function, if unspecified will default to the canonical link

...  Further arguments passed to sampling(), such as iter, chains, cores, etc.

prior_intercept  Specification of prior distribution for the intercept

prior_trt  Specification of prior distribution for the treatment effects

prior_het  Specification of prior distribution for the heterogeneity (if trt_effects = "random")

prior_het_type  Character string specifying whether the prior distribution prior_het is placed on the heterogeneity standard deviation $\tau$ ("sd", the default), variance $\tau^2$ ("var"), or precision $1/\tau^2$ ("prec").

prior_reg  Specification of prior distribution for the regression coefficients (if regression formula specified)

prior_aux  Specification of prior distribution for the auxiliary parameter, if applicable

QR  Logical scalar (default FALSE), whether to apply a QR decomposition to the model design matrix

center  Logical scalar (default TRUE), whether to center the (numeric) regression terms about the overall means

adapt_delta  See adapt_delta for details

int_thin  A single integer value, the thinning factor for returning cumulative estimates of integration error

Details

When specifying a model formula in the regression argument, the usual formula syntax is available (as interpreted by model.matrix()). The only additional requirement here is that the special variable .trt should be used to refer to treatment. For example, effect modifier interactions should be specified as variable:.trt. Prognostic (main) effects and interactions can be included together compactly as variable*:.trt, which expands to variable + variable:.trt (plus .trt, which is already in the NMA model).

For the advanced user, the additional specials .study and .trtclass are also available, and refer to studies and (if specified) treatment classes respectively.
See \texttt{?priors} for details on prior specification. Default prior distributions are available, but may not be appropriate for the particular setting and will raise a warning if used. No attempt is made to tailor these defaults to the data provided. Please consider appropriate prior distributions for the particular setting, accounting for the scales of outcomes and covariates, etc. The function \texttt{plot\_prior\_posterior()} may be useful in examining the influence of the chosen prior distributions on the posterior distributions, and the \texttt{summary()} method for \texttt{nma\_prior} objects prints prior intervals.

### Value

\texttt{nma()} returns a \texttt{stan\_nma} object, \texttt{nma\_fit()} returns a \texttt{stanfit} object.

### Examples

```r
Smoking cessation NMA
Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
 study = studyn,
 trt = trtc,
 r = r,
 n = n,
 trt_ref = "No intervention")

Print details
smk_net

Fitting a fixed effect model
smk_fit_FE <- nma(smk_net,
 trt_effects = "fixed",
 prior_intercept = normal(scale = 100),
 prior_trt = normal(scale = 100))

smk_fit_FE

Fitting a random effects model
smk_fit_RE <- nma(smk_net,
 trt_effects = "random",
 prior_intercept = normal(scale = 100),
 prior_trt = normal(scale = 100),
 prior_het = normal(scale = 5))

smk_fit_RE

Fitting an unrelated mean effects (inconsistency) model
smk_fit_RE_UME <- nma(smk_net,
 trt_effects = "random",
 prior_intercept = normal(scale = 100),
 prior_trt = normal(scale = 100),
 prior_het = normal(scale = 5))
```

consistency = "ume",
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = normal(scale = 5))

smk_fit_RE_UME

## Plaque psoriasis ML-NMR
# Set up plaque psoriasis network combining IPD and AgD
library(dplyr)
pso_ipd <- filter(plaque_psoriasis_ipd,
  studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))
pso_agd <- filter(plaque_psoriasis_agd,
  studyc == "FIXTURE")

head(pso_ipd)
head(pso_agd)

pso_ipd <- pso_ipd %>%
  mutate(# Variable transformations
    bsa = bsa / 100,
    prevsys = as.numeric(prevsys),
    psa = as.numeric(psa),
    weight = weight / 10,
    durnpso = durnpso / 10,
    # Treatment classes
    trtclass = case_when(trtn == 1 ~ "Placebo",
                        trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
                        trtn == 4 ~ "TNFa blocker"),
    # Check complete cases for covariates of interest
    complete = complete.cases(durnpso, prevsys, bsa, weight, psa))
pso_agd <- pso_agd %>%
  mutate(
    # Variable transformations
    bsa_mean = bsa_mean / 100,
    bsa_sd = bsa_sd / 100,
    prevsys = prevsys / 100,
    psa = psa / 100,
    weight_mean = weight_mean / 10,
    weight_sd = weight_sd / 10,
    durnpso_mean = durnpso_mean / 10,
    durnpso_sd = durnpso_sd / 10,
    # Treatment classes
    trtclass = case_when(trtn == 1 ~ "Placebo",
                        trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
                        trtn == 4 ~ "TNFa blocker")
  )
# Exclude small number of individuals with missing covariates
pso_ipd <- filter(pso_ipd, complete)

pso_net <- combine_network(
  set_ipd(pso_ipd,
    study = studyc,
    trt = trtc,
    r = pasi75,
    trt_class = trtclass),
  set_agd_arm(pso_agd,
    study = studyc,
    trt = trtc,
    r = pasi75_r,
    n = pasi75_n,
    trt_class = trtclass)
)

# Print network details
pso_net

# Add integration points to the network
pso_net <- add_integration(pso_net,
  durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
  prevsys = distr(qbern, prob = prevsys),
  bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
  weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
  psa = distr(qbern, prob = psa),
  n_int = 1000)

# Fitting a ML-NMR model.
# Specify a regression model to include effect modifier interactions for five
# covariates, along with main (prognostic) effects. We use a probit link and
# specify that the two-parameter Binomial approximation for the aggregate-level
# likelihood should be used. We set treatment-covariate interactions to be equal
# within each class. We narrow the possible range for random initial values with
# init_r = 0.1, since probit models in particular are often hard to initialise.
# Using the QR decomposition greatly improves sampling efficiency here, as is
# often the case for regression models.
pso_fit <- nma(pso_net,
  trt_effects = "fixed",
  link = "probit",
  likelihood = "bernoulli2",
  regression = -(durnpso + prevsys + bsa + weight + psa)*.trt,
  class_interactions = "common",
  prior_intercept = normal(scale = 10),
  prior_trt = normal(scale = 10),
  prior_reg = normal(scale = 10),
  init_r = 0.1,
  QR = TRUE)
The nma_data class contains the data for a NMA in a standard format, created using the functions `set_ipd()`, `set_agd_arm()`, `set_agd_contrast()`, or `combine_network()`. The sub-class `mlnmr_data` is created by the function `add_integration()`, and further contains numerical integration points for the aggregate data.

**Details**

Objects of class `nma_data` have the following components:

- **agd_arm** data from studies with aggregate data (arm format)
- **agd_contrast** data from studies with aggregate data (contrast format)
- **ipd** data from studies with individual patient data
- **treatments** treatment coding factor for entire network
- **classes** treatment class coding factor (same length as treatments for entire network)
- **studies** study coding factor for entire network
- **outcome** outcome type for each data source, named list

The `agd_arm`, `agd_contrast`, and `ipd` components are tibbles with the following columns:

- **.study** study (as factor)
- **.trt** treatment (as factor)
- **.trtclass** treatment class (as factor), if specified
- **.y** continuous outcome
- **.se** standard error (continuous)
- **.r** event count (discrete)
- **.n** event count denominator (discrete, `agd_arm` only)
- **.E** time at risk (discrete)
- **.surv** event/censoring time, of type `Surv` (time-to-event)
- **.sample_size** sample size (`agd_*` only)

... other columns (typically covariates) from the original data frame

Objects of class `mlnmr_data` additionally have components:

- **n_int** number of numerical integration points
- **int_names** names of covariates with numerical integration points
- **int_cor** correlation matrix for covariates used to generate numerical integration points

The `agd_arm` and `agd_contrast` tibbles have additional list columns with prefix `.int_`, one for each covariate, which contain the numerical integration points nested as length-n_int vectors within each row.
See Also

print.nma_dic() for the print method displaying details of the network, and plot.nma_dic() for network plots.

nma_dic-class

The nma_dic class

Description

The nma_dic class contains details of the Deviance Information Criterion (DIC), produced using the dic() function.

Details

Objects of class nma_dic have the following components:

- **dic**: The DIC value
- **pd**: The effective number of parameters
- **resdev**: The total residual deviance
- **pointwise**: A list of data frames containing the pointwise contributions for the IPD and AgD.
- **resdev_array**: A 3D MCMC array [Iterations, Chains, Parameters] of posterior residual deviance samples.

See Also

dic(), print.nma_dic(), plot.nma_dic().

nma_prior-class

The nma_prior class

Description

The nma_prior class is used to specify prior distributions.

Details

Objects of class nma_prior have the following components:

- **dist**: Distribution name
- **fun**: Name of constructor function, as string (e.g. "normal")
- **...**: Parameters of the distribution

The distribution parameters, specified as named components in . . . , match those in the constructor functions (see priors).
**nma_summary-class**

The **nma_summary** class contains posterior summary statistics of model parameters or other quantities of interest, and the draws used to obtain these statistics.

**Details**

Objects of class `nma_summary` have the following components:

- **summary** A data frame containing the computed summary statistics. If a regression model was fitted with effect modifier interactions with treatment, these summaries will be study-specific. In this case, the corresponding study population is indicated in a column named `.study`.

- **sims** A 3D array [Iteration, Chain, Parameter] of MCMC simulations

- **studies** (Optional) A data frame containing study information, printed along with the corresponding summary statistics if `summary` contains a `.study` column. Should have a matching `.study` column.

The following attributes may also be set:

- **xlab** Label for x axis in plots, usually either "Treatment" or "Contrast".

- **ylab** Label for y axis in plots, usually used for the scale e.g. "log Odds Ratio".

The subclass **nma_rank_probs** is used by the function `posterior_rank_probs()`, and contains posterior rank probabilities. This subclass does not have a `sims` component, as the rank probabilities are themselves posterior summaries of the ranks (i.e. they do not have a posterior distribution). The posterior ranks from which the rank probabilities are calculated may be obtained from `posterior_ranks()`.

**pairs.stan_nma**

*Matrix of plots for a stan_nma object*

**Description**

A `pairs()` method for `stan_nma` objects, which calls `bayesplot::mcmc_pairs()` on the underlying stanfit object.

**Usage**

```r
S3 method for class 'stan_nma'
pairs(x, ..., pars, include = TRUE)
```
Arguments

- **x**: An object of class `stan_nma`
- **...**: Other arguments passed to `bayesplot::mcmc_pairs()`
- **pars**: Optional character vector of parameter names to include in output. If not specified, all parameters are used.
- **include**: Logical, are parameters in `pars` to be included (TRUE, default) or excluded (FALSE)?

Value

A grid of ggplot objects produced by `bayesplot::mcmc_pairs()`.

Examples

```r
Not run:
Parkinson's mean off time reduction
park_net <- set_agd_arm(parkinsons, study = studyn, trt = trtn, y = y, se = se, sample_size = n)

Fitting a RE model
park_fit_RE <- nma(park_net, trt_effects = "random", prior_intercept = normal(scale = 100), prior_trt = normal(scale = 100), prior_het = half_normal(scale = 5))

We see a small number of divergent transition errors
These do not go away entirely when adapt_delta is increased

Try to diagnose with a pairs plot
pairs(park_fit_RE, pars = c("mu[4]", "d[3]", "delta[4: 3]", "tau"))

Transforming tau onto log scale
pairs(park_fit_RE, pars = c("mu[4]", "d[3]", "delta[4: 3]", "tau"), transformations = list(tau = "log"))

The divergent transitions occur in the upper tail of the heterogeneity standard deviation. In this case, with only a small number of studies, there is not very much information to estimate the heterogeneity standard deviation and the prior distribution may be too heavy-tailed. We could consider a more informative prior distribution for the heterogeneity variance to aid estimation.

End(Not run)
```
**Mean off-time reduction in Parkinson’s disease**

### Description
Data frame containing the mean off-time reduction in patients given dopamine agonists as adjunct therapy in Parkinson’s disease, from 7 trials comparing four active drugs and placebo (Dias et al. 2011).

### Usage
```
parkinsons
```

### Format
A data frame with 15 rows and 7 variables:

- **studyn**: numeric study ID
- **trtn**: numeric treatment code (placebo = 1)
- **y**: mean off-time reduction
- **se**: standard error
- **n**: sample size
- **diff**: mean difference vs. treatment in reference arm
- **se_diff**: standard error of mean difference, see details

### Details
This dataset may be analysed using either an arm-based likelihood using `y` and `se`, or a contrast-based likelihood using `diff` and `se_diff` (or a combination of the two across different studies).

The contrast-based data is formatted as described in `set_agd_contrast()`. That is, for the chosen reference arm in each study, the mean difference `diff` is set to `NA`, and `se_diff` is set to the standard error `se` of the outcome on the reference arm.

### References
**Description**

Two data frames, `plaque_psoriasis_ipd` and `plaque_psoriasis_agd`, containing (simulated) individual patient data from four studies and aggregate data from five studies (Phillippo 2019). Outcomes are binary success/failure to achieve 75%, 90%, or 100% reduction in symptoms on the Psoriasis Area and Severity Index (PASI) scale.

**Usage**

`plaque_psoriasis_ipd`

`plaque_psoriasis_agd`

**Format**

The individual patient data are contained in a data frame `plaque_psoriasis_ipd` with 4118 rows, one per individual, and 16 variables:

- `studyc`: study name
- `trtc_long`: treatment name (long format)
- `trtc`: treatment name
- `trtn`: numeric treatment code
- `pasi75`: binary PASI 75 outcome
- `pasi90`: binary PASI 90 outcome
- `pasi100`: binary PASI 100 outcome
- `age`: age (years)
- `bmi`: body mass index (BMI)
- `pasi_w0`: PASI score at week 0
- `male`: male sex (TRUE or FALSE)
- `bsa`: body surface area (percent)
- `weight`: weight (kilograms)
- `durnpso`: duration of psoriasis (years)
- `prevsys`: previous systemic treatment (TRUE or FALSE)
- `psa`: psoriatic arthritis (TRUE or FALSE)

The aggregate data are contained in a data frame `plaque_psoriasis_agd` with 15 rows, one per study arm, and 26 variables:

- `studyc`: study name
- `trtc_long`: treatment name (long format)
plot.nma_data

### treatment name

### numeric treatment code

- **pasi75_r, pasi75_n** PASI 75 outcome count and denominator
- **pasi90_r, pasi90_n** PASI 75 outcome count and denominator
- **pasi100_r, pasi100_n** PASI 75 outcome count and denominator
- **sample_size_w0** sample size at week zero
- **age_mean, age_sd** mean and standard deviation of age (years)
- **bmi_mean, bmi_sd** mean and standard deviation of BMI
- **pasi_w0_mean, pasi_w0_sd** mean and standard deviation of PASI score at week 0
- **male** percentage of males
- **bsa_mean, bsa_sd** mean and standard deviation of body surface area (percent)
- **weight_mean, weight_sd** mean and standard deviation of weight (kilograms)
- **durnpso_mean, durnpso_sd** mean and standard deviation of duration of psoriasis (years)
- **prevsys** percentage of individuals with previous systemic treatment
- **psa** percentage of individuals with psoriatic arthritis

An object of class `data.frame` with 15 rows and 26 columns.

### References


---

### plot.nma_data

#### Network plots

#### Description

Create a network plot from a nma_data network object.

#### Usage

```r
S3 method for class 'nma_data'
plot(
 x,
 ...,
 layout,
 circular,
 weight_edges = TRUE,
 weight_nodes = FALSE,
 show_trt_class = FALSE
)
```
Arguments

- **x**: A `nma_data` object to plot
- **...**: Additional arguments passed to `ggraph()` and on to the layout function
- **layout**: The type of layout to create. Any layout accepted by `ggraph()` may be used, including all of the layout functions provided by igraph.
- **circular**: Whether to use a circular representation. See `ggraph()`.
- **weight_edges**: Weight edges by the number of studies? Default is TRUE.
- **weight_nodes**: Weight nodes by the total sample size? Default is FALSE.
- **show_trt_class**: Colour treatment nodes by class, if `trt_class` is set? Default is FALSE.

Details

The default is equivalent to `layout = "linear"` and `circular = TRUE`, which places the treatment nodes on a circle in the order defined by the treatment factor variable. An alternative layout which may give good results for simple networks is "sugiyama", which attempts to minimise the number of edge crossings.

`weight_nodes = TRUE` requires that sample sizes have been specified for any aggregate data in the network, using the `sample_size` option of `set_agd_*()`.

Value

A `ggplot` object, as produced by `ggraph()`.

Examples

```r
Stroke prevention in atrial fibrillation
Setting up the network
af_net <- set_agd_arm(atrial_fibrillation,
 study = studyc,
 trt = trtc,
 r = r,
 n = n,
 trt_class = trt_class)
af_net

Basic plot
plot(af_net)

Turn off weighting edges by number of studies
plot(af_net, weight_edges = FALSE)

Turn on weighting nodes by sample size
plot(af_net, weight_nodes = TRUE)

Colour treatment nodes by class
plot(af_net, weight_nodes = TRUE, show_trt_class = TRUE)

Output may be customised using standard ggplot commands
```
For example, to display the legends below the plot:
```
plot(af_net, weight_nodes = TRUE, show_trt_class = TRUE) +
 ggplot2::theme(legend.position = "bottom", legend.box = "vertical")
```

# Choosing a different ggraph layout
```
plot(af_net, weight_nodes = TRUE, show_trt_class = TRUE, layout = "star")
```

---

**Description**

The `plot()` method for `nma_dic` objects produced by `dic()` produces several useful diagnostic plots for checking model fit and model comparison. Further detail on these plots and their interpretation is given by Dias et al. (2011).

**Usage**

```r
S3 method for class 'nma_dic'
plot(
 x,
 y,
 ...,
 show_uncertainty = TRUE,
 stat = "pointinterval",
 orientation = c("vertical", "horizontal", "x", "y")
)
```

**Arguments**

- `x` A `nma_dic` object
- `y` (Optional) A second `nma_dic` object, to produce "dev-dev" plots for model comparison.
- `...` Additional arguments passed on to other methods
- `show_uncertainty` Logical, show uncertainty with a ggdist plot stat? Default TRUE.
- `stat` Character string specifying the ggdist plot stat to use if `show_uncertainty = TRUE`, default "pointinterval". If `y` is provided, currently only "pointinterval" is supported.
- `orientation` Whether the ggdist geom is drawn horizontally ("horizontal") or vertically ("vertical"). Only used for residual deviance plots, default "vertical".
Details

When a single `nma_dic` object is given, a plot of the residual deviance contribution for each data point is produced. For a good fitting model, each data point is expected to have a residual deviance of 1; larger values indicate data points that are fit poorly by the model.

When two `nma_dic` objects are given, a "dev-dev" plot comparing the residual deviance contributions under each model is produced. Data points with residual deviance contributions lying on the line of equality are fit equally well under either model. Data points lying below the line of equality indicate better fit under the second model (y); conversely, data points lying above the line of equality indicate better fit under the first model (x). A common use case is to compare a standard consistency model (fitted using `nma()` with `consistency = "consistency"`) with an unrelated mean effects (UME) inconsistency model (fitted using `nma()` with `consistency = "ume"`), to check for potential inconsistency.

See Dias et al. (2011) for further details.

Value

A `ggplot` object.

References


Examples

```r
Smoking cessation
Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
 study = studyn,
 trt = trtc,
 r = r,
 n = n,
 trt_ref = "No intervention")

Print details
smk_net

Fitting a fixed effect model
smk_fit_FE <- nma(smk_net,
 trt_effects = "fixed",
 prior_intercept = normal(scale = 100),
 prior_trt = normal(scale = 100))

smk_fit_FE
```
# Fitting a random effects model

```r
smk_fit_RE <- nma(smk_net,
 trt_effects = "random",
 prior_intercept = normal(scale = 100),
 prior_trt = normal(scale = 100),
 prior_het = normal(scale = 5))
```

```
smk_fit_RE
```

# Compare DIC of FE and RE models

```r
(smk_dic_FE <- dic(smk_fit_FE))
(smk_dic_RE <- dic(smk_fit_RE)) # substantially better fit
```

# Plot residual deviance contributions under RE model

```
plot(smk_dic_RE)
```

# Changing the plot stat used

```
plot(smk_dic_RE, stat = "interval", orientation = "horizontal")
```

# Further customisation is possible using ggplot commands

# For example, highlighting data points with residual deviance above a certain threshold

```
plot(smk_dic_RE) +
 ggplot2::aes(colour = ifelse(..y.. > 1.5, "darkorange", "black")) +
 ggplot2::scale_colour_identity()
```

# Or by posterior probability, for example here a central probability of 0.6
# corresponds to a lower tail probability of (1 - 0.6)/2 = 0.2

```
plot(smk_dic_RE, .width = c(0.6, 0.95)) +
 ggplot2::aes(colour = ifelse(..ymin.. > 1, "darkorange", "black")) +
 ggplot2::scale_colour_identity()
```

# Check for inconsistency using UME model

# Fitting an unrelated mean effects (inconsistency) model

```
smk_fit_RE_UME <- nma(smk_net,
 consistency = "ume",
 trt_effects = "random",
 prior_intercept = normal(scale = 100),
 prior_trt = normal(scale = 100),
 prior_het = normal(scale = 5))
```

```
smk_fit_RE_UME
```

# Compare DIC

```
smk_dic_RE
(smk_dic_RE_UME <- dic(smk_fit_RE_UME)) # no difference in fit
```

plot.nma_summary

Plots of summary results

Description

The `plot` method for `nma_summary` objects is used to produce plots of parameter estimates (when called on a `stan_nma` object or its summary), relative effects (when called on the output of `relative_effects()`), absolute predictions (when called on the output of `predict.stan_nma()`), posterior ranks and rank probabilities (when called on the output of `posterior_ranks()` or `posterior_rank_probs()`).

Usage

```r
S3 method for class 'nma_summary'
plot(
 x,
 ...,
 stat = "pointinterval",
 orientation = c("horizontal", "vertical", "y", "x"),
 ref_line = NA_real_
)

S3 method for class 'nma_parameter_summary'
plot(
 x,
 ...,
 stat = "pointinterval",
 orientation = c("horizontal", "vertical", "y", "x"),
 ref_line = NA_real_
)

S3 method for class 'nma_rank_probs'
plot(x, ...)
```
Arguments

- `x`: A `nma_summary` object
- `...`: Additional arguments passed on to the underlying `ggdist` plot stat, see Details
- `stat`: Character string specifying the `ggdist` plot stat to use, default "pointinterval"
- `orientation`: Whether the `ggdist` geom is drawn horizontally ("horizontal") or vertically ("vertical"), default "horizontal"
- `ref_line`: Numeric vector of positions for reference lines, by default no reference lines are drawn

Details

Plotting is handled by `ggplot2` and the stats and geoms provided in the `ggdist` package. As a result, the output is very flexible. Any plotting stats provided by `ggdist` may be used, via the argument `stat`. The default uses `ggdist::stat_pointinterval()`, to produce medians and 95% Credible Intervals with 66% inner bands. Additional arguments in `...` are passed to the `ggdist` stat, to customise the output. For example, to produce means and Credible Intervals, specify `point_interval = mean_qi`. To produce an 80% Credible Interval with no inner band, specify `width = c(0, 0.8)`. Alternative stats can be specified to produce different summaries. For example, specify `stat = "[half]eye"` to produce (half) eye plots, or `stat = "histinterval"` to produce histograms with intervals.

A full list of options and examples is found in the `ggdist` vignette `vignette("slabinterval", package = "ggdist")`. A `ggplot` object is returned which can be further modified through the usual `ggplot2` functions to add further aesthetics, geoms, themes, etc.

Value

A `ggplot` object.

Examples

```r
Smoking cessation
Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
 study = studyn,
 trt = trtc,
 r = r,
 n = n,
 trt_ref = "No intervention")

Print details
smk_net

Fitting a random effects model
smk_fit_RE <- nma(smk_net,
```

```r
```
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = normal(scale = 5))

smk_fit_RE

# Produce relative effects
smk_releff_RE <- relative_effects(smk_fit_RE)
plot(smk_releff_RE, ref_line = 0)

# Customise plot options
plot(smk_releff_RE, ref_line = 0, stat = "halfeye")

# Further customisation is possible with ggplot commands
plot(smk_releff_RE, ref_line = 0, stat = "halfeye", slab_alpha = 0.6) +
  ggplot2::aes(slab_fill = ifelse(..x.. < 0, "darkred", "grey60"))

# Produce posterior ranks
smk_rank_RE <- posterior_ranks(smk_fit_RE, lower_better = FALSE)
plot(smk_rank_RE)

# Produce rank probabilities
smk_rankprob_RE <- posterior_rank_probs(smk_fit_RE, lower_better = FALSE)
plot(smk_rankprob_RE)

# Produce cumulative rank probabilities
smk_cumrankprob_RE <- posterior_rank_probs(smk_fit_RE, lower_better = FALSE,
cumulative = TRUE)
plot(smk_cumrankprob_RE)

# Further customisation is possible with ggplot commands
plot(smk_cumrankprob_RE) +
  ggplot2::facet_null() +
  ggplot2::aes(colour = Treatment)

---

**plot_integration_error**

*Plot numerical integration error*

**Description**

For ML-NMR models, plot the estimated numerical integration error over the entire posterior distribution, as the number of integration points increases. See (Phillippo et al. 2020; Phillippo 2019) for details.
Usage

```r
plot_integration_error(
 x,
 ..., stat = "violin",
 orientation = c("vertical", "horizontal", "x", "y"),
 show_expected_rate = TRUE
)
```

Arguments

- `x`: An object of type `stan_mlnmr`
- `...`: Additional arguments passed to the `ggdist` plot stat.
- `stat`: Character string specifying the `ggdist` plot stat used to summarise the integration error over the posterior. Default is "violin", which is equivalent to "eye" with some cosmetic tweaks.
- `orientation`: Whether the `ggdist` geom is drawn horizontally ("horizontal") or vertically ("vertical"). Default "vertical"
- `show_expected_rate`: Logical, show typical convergence rate $1/N$? Default TRUE.

Details

The total number of integration points is set by the `n_int` argument to `add_integration()`, and the intervals at which integration error is estimated are set by the `int_thin` argument to `nma()`. The typical convergence rate of Quasi-Monte Carlo integration (as used here) is $1/N$, which by default is displayed on the plot output.

The integration error at each thinning interval $N_{\text{thin}}$ is estimated for each point in the posterior distribution by subtracting the final estimate (using all `n_int` points) from the estimate using only the first $N_{\text{thin}}$ points.

Value

A `ggplot` object.

Examples

```r
Plaque psoriasis ML-NMR
Set up plaque psoriasis network combining IPD and AgD
library(dplyr)
pso_ipd <- filter(plaque_psoriasis_ipd, studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))
pso_agd <- filter(plaque_psoriasis_agd, studyc == "FIXTURE")

head(pso_ipd)
head(pso_agd)
```
```r
psp_ipd <- pso_ipd %>%
 mutate(# Variable transformations
 bsa = bsa / 100,
 prevsys = as.numeric(prevsys),
 psa = as.numeric(psa),
 weight = weight / 10,
 durnpso = durnpso / 10,
 # Treatment classes
 trtclass = case_when(trtn == 1 ~ "Placebo",
 trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
 trtn == 4 ~ "TNF\alpha blocker"),
 # Check complete cases for covariates of interest
 complete = complete.cases(durnpso, prevsys, bsa, weight, psa))

psp_agd <- pso_agd %>%
 mutate(
 # Variable transformations
 bsa_mean = bsa_mean / 100,
 bsa_sd = bsa_sd / 100,
 prevsys = prevsys / 100,
 psa = psa / 100,
 weight_mean = weight_mean / 10,
 weight_sd = weight_sd / 10,
 durnpso_mean = durnpso_mean / 10,
 durnpso_sd = durnpso_sd / 10,
 # Treatment classes
 trtclass = case_when(trtn == 1 ~ "Placebo",
 trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
 trtn == 4 ~ "TNF\alpha blocker"))

Exclude small number of individuals with missing covariates
psp_ipd <- filter(psp_ipd, complete)

psp_net <- combine_network(
 set_ipd(pso_ipd,
 study = studyc,
 trt = trtc,
 r = pasi75,
 trt_class = trtclass),
 set_agd_arm(pso_agd,
 study = studyc,
 trt = trtc,
 r = pasi75_r,
 n = pasi75_n,
 trt_class = trtclass))

Print network details
psp_net
```

# Add integration points to the network
pso_net <- add_integration(pso_net,
    durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
    prevsys = distr(qbern, prob = prevsys),
    bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
    weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
    psa = distr(qbern, prob = psa),
    n_int = 1000)

# Fitting a ML-NMR model.  
# Specify a regression model to include effect modifier interactions for five  
# covariates, along with main (prognostic) effects. We use a probit link and  
# specify that the two-parameter Binomial approximation for the aggregate-level  
# likelihood should be used. We set treatment-covariate interactions to be equal  
# within each class. We narrow the possible range for random initial values with  
# init_r = 0.1, since probit models in particular are often hard to initialise.  
# Using the QR decomposition greatly improves sampling efficiency here, as is  
# often the case for regression models.
pso_fit <- nma(pso_net,
    trt_effects = "fixed",
    link = "probit",
    likelihood = "bernoulli2",
    regression = ~(durnpso + prevsys + bsa + weight + psa)*.trt,
    class_interactions = "common",
    prior_intercept = normal(scale = 10),
    prior_trt = normal(scale = 10),
    prior_reg = normal(scale = 10),
    init_r = 0.1,
    QR = TRUE)

# Plot numerical integration error
plot_integration_error(pso_fit)

---

**plot_prior_posterior**  
*Plot prior vs posterior distribution*

### Description

Produce plots comparing the prior and posterior distributions of model parameters.

### Usage

```r
plot_prior_posterior(
x,
 ...
 prior = NULL,
)```

arguments

Arguments

x A stan_nma object

... Additional arguments passed on to methods

prior Character vector selecting the prior and posterior distribution(s) to plot. May include "intercept", "trt", "het", "reg", or "aux", as appropriate.

post_args List of arguments passed on to ggplot2::geom_histogram to control plot output for the posterior distribution

prior_args List of arguments passed on to ggplot2::geom_path to control plot output for the prior distribution. Additionally, n controls the number of points the density curve is evaluated at (default 500), and p_limits controls the endpoints of the curve as quantiles (default c(.001,.999)).

overlay String, should prior or posterior be shown on top? Default "prior".

ref_line Numeric vector of positions for reference lines, by default no reference lines are drawn

Details

Prior distributions are displayed as lines, posterior distributions are displayed as histograms.

Value

A ggplot object.

Examples

Smoking cessation NMA
Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
 study = studyn,
 trt = trtc,
 r = r,
 n = n,
 trt_ref = "No intervention")

Print details
smk_net

Fitting a random effects model
smk_fit_RE <- nma(smk_net,
posterior_ranks

trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = normal(scale = 5))

smk_fit_RE

Plot prior vs. posterior, by default all parameters are plotted
plot_prior_posterior(smk_fit_RE)

Plot prior vs. posterior for heterogeneity SD only
plot_prior_posterior(smk_fit_RE, prior = "het")

Customise plot
plot_prior_posterior(smk_fit_RE, prior = "het",
 prior_args = list(colour = "darkred", size = 2),
 post_args = list(alpha = 0.6))

posterior_ranks Treatment rankings and rank probabilities

Description

Produce posterior treatment rankings and rank probabilities from a fitted NMA model. When a meta-regression is fitted with effect modifier interactions with treatment, these will differ by study population.

Usage

posterior_ranks(
 x,
 newdata = NULL,
 study = NULL,
 lower_better = TRUE,
 probs = c(0.025, 0.25, 0.5, 0.75, 0.975),
 summary = TRUE
)

posterior_rank_probs(
 x,
 newdata = NULL,
 study = NULL,
 lower_better = TRUE,
 cumulative = FALSE
)
Arguments

- **x**: A `stan_nma` object created by `nma()`.
- **newdata**: Only used if a regression model is fitted. A data frame of study details, one row per study, giving the covariate values at which to produce relative effects. Column names must match variables in the regression model. If `NULL`, relative effects are produced for all studies in the network.
- **study**: Column of `newdata` which specifies study names, otherwise studies will be labelled by row number.
- **lower_better**: Logical, are lower treatment effects better (`TRUE`; default) or higher better (`FALSE`)? See details.
- **probs**: Numeric vector of quantiles of interest to present in computed summary, default `c(0.025, 0.25, 0.5, 0.75, 0.975)`.
- **summary**: Logical, calculate posterior summaries? Default `TRUE`.
- **cumulative**: Logical, return cumulative rank probabilities? Default `FALSE`, return posterior probabilities of each treatment having a given rank. If `TRUE`, cumulative posterior rank probabilities are returned for each treatment having a given rank or better.

Details

The function `posterior_ranks()` produces posterior rankings, which have a distribution (e.g. mean/median rank and 95% Credible Interval). The function `posterior_rank_probs()` produces rank probabilities, which give the posterior probabilities of being ranked first, second, etc. out of all treatments.

The argument `lower_better` specifies whether lower treatment effects or higher treatment effects are preferred. For example, with a negative binary outcome lower (more negative) log odds ratios are preferred, so `lower_better = TRUE`. Conversely, for example, if treatments aim to increase the rate of a positive outcome then `lower_better = FALSE`.

Value

- A `nma_summary` object if `summary = TRUE`, otherwise a list containing a 3D MCMC array of samples and (for regression models) a data frame of study information.

See Also

- `plot.nma_summary()` for plotting the ranks and rank probabilities.

Examples

```r
## Smoking cessation
# Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
    study = studyn,
    trt = trtc,
```

Print details
smk_net

Fitting a random effects model
smk_fit_RE <- nma(smk_net,
 trt_effects = "random",
 prior_intercept = normal(scale = 100),
 prior_trt = normal(scale = 100),
 prior_het = normal(scale = 5))

smk_fit_RE

Produce posterior ranks
smk_rank_RE <- posterior_ranks(smk_fit_RE, lower_better = FALSE)

smk_rank_RE

Produce rank probabilities
smk_rankprob_RE <- posterior_rank_probs(smk_fit_RE, lower_better = FALSE)

smk_rankprob_RE

Produce cumulative rank probabilities
smk_cumrankprob_RE <- posterior_rank_probs(smk_fit_RE, lower_better = FALSE, cumulative = TRUE)

smk_cumrankprob_RE

Further customisation is possible with ggplot commands
plot(smk_cumrankprob_RE) +
 ggplot2::facet_null() +
 ggplot2::aes(colour = Treatment)

Plaque psoriasis ML-NMR
Set up plaque psoriasis network combining IPD and AgD
library(dplyr)
pso_ipd <- filter(plaque_psoriasis_ipd, studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))
pso_agd <- filter(plaque_psoriasis_agd, studyc == "FIXTURE")

head(pso_ipd)
head(pso_agd)
posterior_ranks

```
psio_ipd <- psio_ipd %>%
  mutate(# Variable transformations
    bsa = bsa / 100,
    prevsys = as.numeric(prevsys),
    psa = as.numeric(psa),
    weight = weight / 10,
    durnpso = durnpso / 10,
    # Treatment classes
    trtclass = case_when(trtn == 1 ~ "Placebo",
                        trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
                        trtn == 4 ~ "TNFα blocker"),
    # Check complete cases for covariates of interest
    complete = complete.cases(durnpso, prevsys, bsa, weight, psa)
  )

psio_agd <- psio_agd %>%
  mutate(
    # Variable transformations
    bsa_mean = bsa_mean / 100,
    bsa_sd = bsa_sd / 100,
    prevsys = prevsys / 100,
    psa = psa / 100,
    weight_mean = weight_mean / 10,
    weight_sd = weight_sd / 10,
    durnpso_mean = durnpso_mean / 10,
    durnpso_sd = durnpso_sd / 10,
    # Treatment classes
    trtclass = case_when(trtn == 1 ~ "Placebo",
                        trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
                        trtn == 4 ~ "TNFα blocker")
  )

# Exclude small number of individuals with missing covariates
psio_ipd <- filter(psio_ipd, complete)

psio_net <- combine_network(
  set_ipd(psio_ipd,
    study = studyc,
    trt = trtc,
    r = pasi75,
    trt_class = trtclass),
  set_agd_arm(psio_agd,
    study = studyc,
    trt = trtc,
    r = pasi75_r,
    n = pasi75_n,
    trt_class = trtclass)
)

# Print network details
psio_net

# Add integration points to the network
```
pso_net <- add_integration(pso_net,
 durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
 prevsys = distr(qbern, prob = prevsys),
 bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
 weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
 psa = distr(qbern, prob = psa),
 n_int = 1000)

Fitting a ML-NMR model.
Specify a regression model to include effect modifier interactions for five
covariates, along with main (prognostic) effects. We use a probit link and
specify that the two-parameter Binomial approximation for the aggregate-level
likelihood should be used. We set treatment-covariate interactions to be equal
within each class. We narrow the possible range for random initial values with
init_r = 0.1, since probit models in particular are often hard to initialise.
Using the QR decomposition greatly improves sampling efficiency here, as is
often the case for regression models.
 pso_fit <- nma(pso_net,
 trt_effects = "fixed",
 link = "probit",
 likelihood = "bernoulli2",
 regression = ~(durnpso + prevsys + bsa + weight + psa)*.trt,
 class_interactions = "common",
 prior_intercept = normal(scale = 10),
 prior_trt = normal(scale = 10),
 prior_reg = normal(scale = 10),
 init_r = 0.1,
 QR = TRUE)

Produce population-adjusted rankings for all study populations in
the network

Ranks
 pso_rank <- posterior_ranks(pso_fit)
 pso_rank
 plot(pso_rank)

Rank probabilities
 pso_rankprobs <- posterior_rank_probs(pso_fit)
 pso_rankprobs
 plot(pso_rankprobs)

Cumulative rank probabilities
 pso_cumrankprobs <- posterior_rank_probs(pso_fit, cumulative = TRUE)
 pso_cumrankprobs
 plot(pso_cumrankprobs)

Produce population-adjusted rankings for a different target
population
 new_agd_means <- data.frame(
predict.stan_nma

Predictions of absolute effects from NMA models

Description

Obtain predictions of absolute effects from NMA models fitted with nma(). For example, if a model is fitted to binary data with a logit link, predicted outcome probabilities or log odds can be produced.

Usage

```r
# S3 method for class 'stan_nma'
predict(
  object,
  ...,
  baseline = NULL,
  newdata = NULL,
  study = NULL,
  trt_ref = NULL,
  type = c("link", "response"),
  level = c("aggregate", "individual"),
  probs = c(0.025, 0.25, 0.5, 0.75, 0.975),
  summary = TRUE
)
```

Arguments

- `object`: A stan_nma object created by nma().
- `...`: Additional arguments (not used).
- `baseline`: An optional distr() distribution for the baseline response (i.e. intercept) on the linear predictor scale, about which to produce absolute effects. For example, in a model with a logit link, this would be a distribution for the baseline log odds.
of an event. If NULL, predictions are produced using the baseline response for each study in the network with IPD or arm-based AgD.

newdata

Only required if a regression model is fitted and baseline is specified. A data frame of covariate details, for which to produce predictions. Column names must match variables in the regression model.

If type = "aggregate" this should either be a data frame with integration points as produced by `add_integration()` (one row per study), or a data frame with individual covariate values (one row per individual) which are summarised over.

If type = "individual" this should be a data frame of individual covariate values, one row per individual.

If NULL, predictions are produced for all studies with IPD and/or arm-based AgD in the network, depending on the value of type.

study

Column of newdata which specifies study names or IDs. When not specified: if newdata contains integration points produced by `add_integration()`, studies will be labelled sequentially by row; otherwise data will be assumed to come from a single study.

trt_ref

Treatment to which the baseline response distribution refers, if baseline is specified. By default, the baseline response distribution will refer to the network reference treatment. Coerced to character string.

type

Whether to produce predictions on the "link" scale (the default, e.g. log odds) or "response" scale (e.g. probabilities).

level

The level at which predictions are produced, either "aggregate" (the default), or "individual". If baseline is not specified, predictions are produced for all IPD studies in the network if type is "individual" or "aggregate", and for all arm-based AgD studies in the network if type is "aggregate".

probs

Numeric vector of quantiles of interest to present in computed summary, default c(0.025, 0.25, 0.5, 0.75, 0.975)

summary

Logical, calculate posterior summaries? Default TRUE.

Value

A `nma_summary` object if `summary = TRUE`, otherwise a list containing a 3D MCMC array of samples and (for regression models) a data frame of study information.

See Also

`plot.nma_summary()` for plotting the predictions.

Examples

```r
## Smoking cessation
# Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
            study = studyn,
            trt = trtc,
```
\(r = r, \)
\(n = n, \)
\(\text{trt_ref} = \text{"No intervention"} \)

Print details
smk_net

Fitting a random effects model
smk_fit_RE <- nma(smk_net,
 trt_effects = "random",
 prior_intercept = normal(scale = 100),
 prior_trt = normal(scale = 100),
 prior_het = normal(scale = 5))

smk_fit_RE

Predicted log odds of success in each study in the network
predict(smk_fit_RE)

Predicted probabilities of success in each study in the network
(smk_pred_RE <- predict(smk_fit_RE, type = "response"))
plot(smk_pred_RE, ref_line = c(0, 1))

Predicted probabilities in a population with a baseline log odds of
response on No Intervention given a Normal distribution with mean -2
and SD 0.15
predict(smk_fit_RE, baseline = distr(qnorm, mean = -2, sd = 0.15))

Plaque psoriasis ML-NMR
Set up plaque psoriasis network combining IPD and AgD
library(dplyr)
pso_ipd <- filter(plaque_psoriasis_ipd,
 studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))
pso_agd <- filter(plaque_psoriasis_agd,
 studyc == "FIXTURE")

head(pso_ipd)
head(pso_agd)

pso_ipd <- pso_ipd %>%
 mutate(# Variable transformations
 bsa = bsa / 100,
 prevsys = as.numeric(prevsys),
 psa = as.numeric(psa),
 weight = weight / 10,
 durnpso = durnpso / 10,
 # Treatment classes
 trtclass = case_when(trtn == 1 ~ "Placebo,"
```r
trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
trtn == 4 ~ "TNFα blocker"),
# Check complete cases for covariates of interest
complete = complete.cases(durnpso, prevsys, bsa, weight, psa)
)

pso_agd <- pso_agd %>%
  mutate(
    # Variable transformations
    bsa_mean = bsa_mean / 100,
    bsa_sd = bsa_sd / 100,
    prevsys = prevsys / 100,
    psa = psa / 100,
    weight_mean = weight_mean / 10,
    weight_sd = weight.sd / 10,
    durnpso_mean = durnpso_mean / 10,
    durnpso_sd = durnpso.sd / 10,
    # Treatment classes
    trtclass = case_when(trtn == 1 ~ "Placebo",
                         trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
                         trtn == 4 ~ "TNFα blocker")
  )

# Exclude small number of individuals with missing covariates
pso_ipd <- filter(pso_ipd, complete)

pso_net <- combine_network(
  set_ipd(pso_ipd,
    study = studyc,
    trt = trtc,
    r = pasi75,
    trt_class = trtclass),
  set_agd_arm(pso_agd,
    study = studyc,
    trt = trtc,
    r = pasi75_r,
    n = pasi75_n,
    trt_class = trtclass)
)

# Print network details
pso_net

# Add integration points to the network
pso_net <- add_integration(pso_net,
  durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
  prevsys = distr(qbern, prob = prevsys),
  bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
  weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
  psa = distr(qbern, prob = psa),
  n_int = 1000)
```
Fitting a ML-NMR model.
Specify a regression model to include effect modifier interactions for five
covariates, along with main (prognostic) effects. We use a probit link and
specify that the two-parameter Binomial approximation for the aggregate-level
likelihood should be used. We set treatment-covariate interactions to be equal
within each class. We narrow the possible range for random initial values with
init_r = 0.1, since probit models in particular are often hard to initialise.
Using the QR decomposition greatly improves sampling efficiency here, as is
often the case for regression models.

```r
pso_fit <- nma(pso_net,
  trt_effects = "fixed",
  link = "probit",
  likelihood = "bernoulli2",
  regression = ~(durnpso + prevsys + bsa + weight + psa)*.trt,
  class_interactions = "common",
  prior_intercept = normal(scale = 10),
  prior_trt = normal(scale = 10),
  prior_reg = normal(scale = 10),
  init_r = 0.1,
  QR = TRUE)
```

Predicted probabilities of response in each study in the network

```r
(pso_pred <- predict(pso_fit, type = "response"))
plot(pso_pred, ref_line = c(0, 1))
```

Predicted probabilities of response in a new target population, with means
and SDs or proportions given by

```r
new_agd_int <- data.frame(
  bsa_mean = 0.6,
  bsa_sd = 0.3,
  prevsys = 0.1,
  psa = 0.2,
  weight_mean = 10,
  weight_sd = 1,
  durnpso_mean = 3,
  durnpso_sd = 1)
```

We need to add integration points to this data frame of new data
We use the weighted mean correlation matrix computed from the IPD studies

```r
new_agd_int <- add_integration(new_agd_int,
  durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
  prevsys = distr(qbern, prob = prevsys),
  bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
  weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
  psa = distr(qbern, prob = psa),
  cor = pso_net$int_cor,
  n_int = 1000)
```

Predicted probabilities of achieving PASI 75 in this target population, given
a Normal(-1.75, 0.08^2) distribution on the baseline probit-probability of
response on Placebo (at the reference levels of the covariates), are given by
(pso_pred_new <- predict(pso_fit,
 type = "response",
 newdata = new_agd_int,
 baseline = distr(qnorm, -1.75, 0.08)))
plot(pso_pred_new, ref_line = c(0, 1))

print.nma_data

Print nma_data objects

Description

Print details of networks stored as `nma_data` objects, as created by `set_ipd()`, `set_agd_arm()`, `set_agd_contrast()`, or `combine_network()`.

Usage

```r
## S3 method for class 'nma_data'
print(x, ..., n = 10)
```

S3 method for class 'mlnmr_data'
print(x, ..., n = 10)

Arguments

- `x` : nma_data object
- `...` : other options (not used)
- `n` : number of studies of each type to print

print.nma_dic

Print DIC details

Description

Print details of DIC model fit statistics, computed by `dic()` function.

Usage

```r
## S3 method for class 'nma_dic'
print(x, digits = 1, ...)
```

Arguments

- `x` : An object of class nma_dic
- `digits` : An integer passed to `round()`
- `...` : Ignored
Value

x is returned invisibly.

print.nma_summary Methods for nma_summary objects

Description

The as.data.frame(), as_tibble(), and as.tibble() methods return the posterior summary statistics in a data frame or tibble. The as.matrix() method returns a matrix of posterior draws. The as.array() method returns a 3D array [Iteration, Chain, Parameter] of posterior draws (as class mcmc_array).

Usage

```r
## S3 method for class 'nma_summary'
print(x, ..., digits = 2, pars, include = TRUE)

## S3 method for class 'nma_summary'
as.data.frame(x, ...)

## S3 method for class 'nma_summary'
as.tibble(x, ...)

## S3 method for class 'nma_summary'
as_tibble(x, ...)

## S3 method for class 'nma_summary'
as.array(x, ...)

## S3 method for class 'nma_summary'
as.matrix(x, ...)

## S3 method for class 'nma_rank_probs'
as.array(x, ...)

## S3 method for class 'nma_rank_probs'
as.matrix(x, ...)
```

Arguments

- **x**: A nma_summary object
- **...**: Additional arguments passed on to other methods
- **digits**: Integer number of digits to display
- **pars**: Character vector of parameters to display in the printed summary
- **include**: Logical, are parameters named in pars included (TRUE) or excluded (FALSE)
Value

A data.frame for as.data.frame(), a tbl_df for as.tibble() and as_tibble(), a matrix for
as.matrix(), and an mcmc_array for as.array().

The print() method returns x invisibly.

See Also

plot.nma_summary()

print.stan_nma

Print stan_nma objects

Description

Print stan_nma objects

Usage

S3 method for class 'stan_nma'
print(x, ...)

Arguments

x A stan_nma object

... Further arguments passed to print.stanfit()

priors

Prior distributions

Description

These functions are used to specify prior distributions for the model parameters.

Usage

normal(location = 0, scale)

half_normal(scale)

log_normal(location, scale)

ciauchy(location = 0, scale)

half_cauchy(scale)
student_t(location = 0, scale, df)

half_student_t(scale, df)

exponential(scale = 1/rate, rate = 1/scale)

Arguments

- **location**: Prior location. Typically prior mean (see details).
- **scale**: Prior scale. Typically prior standard deviation (see details).
- **df**: Prior degrees of freedom.
- **rate**: Prior rate.

Details

The location and scale parameters are typically the prior mean and standard deviation, with the following exceptions:

- For the Cauchy distribution, location is the prior median and scale is the prior scale.
- For the log-Normal distribution, location and scale are the prior mean and standard deviation of the logarithm.

Compatibility with model parameters:

The following table summarises which prior distributions may be used with which model parameters. Essentially, priors that take only non-negative values (e.g., half-Normal) may only be used for non-negative parameters (heterogeneity SD/variance/precision, and any auxiliary parameter). If a real-valued prior distribution is specified for a non-negative parameter, it will be truncated at 0 to be non-negative.

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>Treatment effects</th>
<th>Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>half-Normal</td>
<td>-</td>
<td>-</td>
<td>yes</td>
</tr>
<tr>
<td>log-Normal</td>
<td>-</td>
<td>-</td>
<td>yes</td>
</tr>
<tr>
<td>Cauchy</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>half-Cauchy</td>
<td>-</td>
<td>-</td>
<td>yes</td>
</tr>
<tr>
<td>Student t</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>half-Student t</td>
<td>-</td>
<td>-</td>
<td>yes</td>
</tr>
<tr>
<td>Exponential</td>
<td>-</td>
<td>-</td>
<td>yes</td>
</tr>
</tbody>
</table>

Value

Object of class `nma_prior`.

See Also

- `summary.nma_prior()` for summarising details of prior distributions.
- `plot_prior_posterior()` for plots comparing the prior and posterior distributions of model parameters.
qbern
The Bernoulli Distribution

Description

The quantile function `qbern` for a Bernoulli distribution, with success probability `prob`. This is equivalent to `qbinom(p,1,prob)`.

Usage

```r
qbern(p, prob, lower.tail = TRUE, log.p = FALSE)
pbern(q, prob, lower.tail = TRUE, log.p = FALSE)
dbern(x, prob, log = FALSE)
```

Arguments

- `p` vector of probabilities
- `prob` probability of success
- `lower.tail, log.p, log` see `stats::Binomial`
- `x, q` vector of quantiles

qgamma
The Gamma distribution

Description

We provide convenient extensions of the [dpq]gamma functions, which allow the distribution to be specified in terms of its mean and standard deviation, instead of shape and rate/scale.

Usage

```r
qgamma(
p,  
shape,  
rate = 1,  
scale = 1/rate,  
lower.tail = TRUE,  
log.p = FALSE,  
mean,  
sd  
)
```
\texttt{dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE, mean, sd)}

\texttt{pgamma(}
\begin{verbatim}
q,
shape,
rate = 1,
scale = 1/rate,
lower.tail = TRUE,
log.p = FALSE,
mean,
sd
\end{verbatim}
\texttt{)}

\textbf{Arguments}

- \texttt{p} vector of probabilities
- \texttt{shape, rate, scale, log, lower.tail, log.p}

 see \texttt{stats::GammaDist}
- \texttt{mean, sd} mean and standard deviation, overriding shape and rate or scale if specified
- \texttt{x, q} vector of quantiles

\linebreak

\begin{tabular}{ll}
\textbf{qlogitnorm} & \textit{The logit Normal distribution} \\
\end{tabular}

\begin{description}
\item[Description] We provide convenient extensions of the [dpq]logitnorm functions in the package \texttt{logitnorm}, which allow the distribution to be specified in terms of its mean and standard deviation, instead of its logit-mean and logit-sd.
\item[Usage] \texttt{qlogitnorm(p, mu = 0, sigma = 1, \ldots, mean, sd)}
\texttt{dlogitnorm(x, mu = 0, sigma = 1, \ldots, mean, sd)}
\texttt{plogitnorm(q, mu = 0, sigma = 1, \ldots, mean, sd)}
\end{description}

\textbf{Arguments}

- \texttt{p, x} vector of quantiles
- \texttt{mu, sigma, \ldots} see \texttt{logitnorm}
- \texttt{mean, sd} mean and standard deviation, overriding mu and sigma if specified
- \texttt{q} vector of probabilities
relative_effects

Description

Generate (population-average) relative treatment effects. If a ML-NMR or meta-regression model was fitted, these are specific to each study population.

Usage

relative_effects(
 x,
 newdata = NULL,
 study = NULL,
 all_contrasts = FALSE,
 trt_ref = NULL,
 probs = c(0.025, 0.25, 0.5, 0.75, 0.975),
 summary = TRUE
)

Arguments

x
A stan_nma object created by nma()

newdata
Only used if a regression model is fitted. A data frame of study details, one row per study, giving the covariate values at which to produce relative effects. Column names must match variables in the regression model. If NULL, relative effects are produced for all studies in the network.

study
Column of newdata which specifies study names, otherwise studies will be labelled by row number.

all_contrasts
Logical, generate estimates for all contrasts (TRUE), or just the "basic" contrasts against the network reference treatment (FALSE)? Default FALSE.

trt_ref
Reference treatment to construct relative effects against, if all_contrasts = FALSE. By default, relative effects will be against the network reference treatment. Coerced to character string.

probs
Numeric vector of quantiles of interest to present in computed summary, default c(0.025, 0.25, 0.5, 0.75, 0.975)

summary
Logical, calculate posterior summaries? Default TRUE.

Value

A nma_summary object if summary = TRUE, otherwise a list containing a 3D MCMC array of samples and (for regression models) a data frame of study information.

See Also

plot.nma_summary() for plotting the relative effects.
Examples

Smoking cessation
Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
 study = studyn,
 trt = trtc,
 r = r,
 n = n,
 trt_ref = "No intervention")

Print details
smk_net

Fitting a random effects model
smk_fit_RE <- nma(smk_net,
 trt_effects = "random",
 prior_intercept = normal(scale = 100),
 prior_trt = normal(scale = 100),
 prior_het = normal(scale = 5))

smk_fit_RE

Produce relative effects
smk_releff_RE <- relative_effects(smk_fit_RE)
smk_releff_RE
plot(smk_releff_RE, ref_line = 0)

Relative effects for all pairwise comparisons
relative_effects(smk_fit_RE, all_contrasts = TRUE)

Relative effects against a different reference treatment
relative_effects(smk_fit_RE, trt_ref = "Self-help")

Transforming to odds ratios
We work with the array of relative effects samples
LOR_array <- as.array(smk_releff_RE)
OR_array <- exp(LOR_array)

mcmc_array objects can be summarised to produce a nma_summary object
smk_OR_RE <- summary(OR_array)

This can then be printed or plotted
smk_OR_RE
plot(smk_OR_RE, ref_line = 1)

Plaque psoriasis ML-NMR
library(dplyr)

pso_ipd <- filter(plaque_psoriasis_ipd, studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))

pso_agd <- filter(plaque_psoriasis_agd, studyc == "FIXTURE")

head(pso_ipd)
head(pso_agd)

pso_ipd <- pso_ipd %>%
mutate(# Variable transformations
 bsa = bsa / 100,
 prevsys = as.numeric(prevsys),
 psa = as.numeric(psa),
 weight = weight / 10,
 durnpso = durnpso / 10,
 # Treatment classes
 trtclass = case_when(trtn == 1 ~ "Placebo",
 trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
 trtn == 4 ~ "TNFa blocker"),
 # Check complete cases for covariates of interest
 complete = complete.cases(durnpso, prevsys, bsa, weight, psa)
)

pso_agd <- pso_agd %>%
mutate(# Variable transformations
 bsa_mean = bsa_mean / 100,
 bsa_sd = bsa_sd / 100,
 prevsys = prevsys / 100,
 psa = psa / 100,
 weight_mean = weight_mean / 10,
 weight_sd = weight_sd / 10,
 durnpso_mean = durnpso_mean / 10,
 durnpso_sd = durnpso_sd / 10,
 # Treatment classes
 trtclass = case_when(trtn == 1 ~ "Placebo",
 trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
 trtn == 4 ~ "TNFa blocker")
)

Exclude small number of individuals with missing covariates
pso_ipd <- filter(pso_ipd, complete)

pso_net <- combine_network(
 set_ipd(pso_ipd, study = studyc, trt = trtc, r = pasi75, trt_class = trtclass),
 set_agd_arm(pso_agd,)
)
Print network details
pso_net

Add integration points to the network
pso_net <- add_integration(pso_net,
 durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
 prevsys = distr(qbern, prob = prevsys),
 bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
 weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
 psa = distr(qbern, prob = psa),
 n_int = 1000)

Fitting a ML-NMR model.
Specify a regression model to include effect modifier interactions for five
covariates, along with main (prognostic) effects. We use a probit link and
specify that the two-parameter Binomial approximation for the aggregate-level
likelihood should be used. We set treatment-covariate interactions to be equal
within each class. We narrow the possible range for random initial values with
init_r = 0.1, since probit models in particular are often hard to initialise.
Using the QR decomposition greatly improves sampling efficiency here, as is
often the case for regression models.
pso_fit <- nma(pso_net,
 trt_effects = "fixed",
 link = "probit",
 likelihood = "bernoulli2",
 regression = -(durnpso + prevsys + bsa + weight + psa)*.trt,
 class_interactions = "common",
 prior_intercept = normal(scale = 10),
 prior_trt = normal(scale = 10),
 prior_reg = normal(scale = 10),
 init_r = 0.1,
 QR = TRUE)

Produce population-adjusted relative effects for all study populations in
the network
pso_releff <- relative_effects(pso_fit)
pso_releff
plot(pso_releff, ref_line = 0)

Produce population-adjusted relative effects for a different target
population
new_agd_means <- data.frame(
 bsa = 0.6,
RE_cor

prevsys = 0.1,
psa = 0.2,
weight = 10,
durnpso = 3)

relative_effects(pso_fit, newdata = new_agd_means)

RE_cor

Random effects structure

Description

Use **RE_cor** to generate the random effects correlation matrix, under the assumption of common heterogeneity variance (i.e. all within-study correlations are 0.5). Use **which_RE** to return a vector of IDs for the RE deltas (0 means no RE delta on this arm).

Usage

```r
RE_cor(study, trt, contrast, type = c("reftrt", "blshift"))
which_RE(study, trt, contrast, type = c("reftrt", "blshift"))
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>study</td>
<td>A vector of study IDs (integer, character, or factor)</td>
</tr>
<tr>
<td>trt</td>
<td>A factor vector of treatment codes (or coercible as such), with first level indicating the reference treatment</td>
</tr>
<tr>
<td>contrast</td>
<td>A logical vector, of the same length as study and trt, indicating whether the corresponding data are in contrast rather than arm format.</td>
</tr>
<tr>
<td>type</td>
<td>Character string, whether to generate RE structure under the "reference treatment" parameterisation, or the "baseline shift" parameterisation.</td>
</tr>
</tbody>
</table>

Value

For **RE_cor()**, a correlation matrix of dimension equal to the number of random effects deltas (excluding those that are set equal to zero).

For **which_RE()**, an integer vector of IDs indexing the rows and columns of the correlation matrix returned by **RE_cor()**.

Examples

```r
RE_cor(smoking$studyn, smoking$trtn, contrast = rep(FALSE, nrow(smoking)))
RE_cor(smoking$studyn, smoking$trtn, contrast = rep(FALSE, nrow(smoking)), type = "blshift")
which_RE(smoking$studyn, smoking$trtn, contrast = rep(FALSE, nrow(smoking)))
which_RE(smoking$studyn, smoking$trtn, contrast = rep(FALSE, nrow(smoking)), type = "blshift")
```
Set up arm-based aggregate data (AgD), such as event counts or mean outcomes on each arm. Multiple data sources may be combined once created using `combine_network()`.

Usage

```r
set_agd_arm(
  data,
  study,
  trt,
  y = NULL,
  se = NULL,
  r = NULL,
  n = NULL,
  E = NULL,
  sample_size = NULL,
  trt_ref = NULL,
  trt_class = NULL
)
```

Arguments

- `data` a data frame
- `study` column of data specifying the studies, coded using integers, strings, or factors
- `trt` column of data specifying treatments, coded using integers, strings, or factors
- `y` column of data specifying a continuous outcome
- `se` column of data specifying the standard error for a continuous outcome
- `r` column of data specifying a binary or Binomial outcome numerator
- `n` column of data specifying Binomial outcome numerator
- `E` column of data specifying the total time at risk for Poisson outcomes
- `sample_size` column of data specifying the sample size in each arm. Optional, see details.
- `trt_ref` reference treatment for the network, as a single integer, string, or factor. If not specified, a reasonable well-connected default will be chosen (see details).
- `trt_class` column of data specifying treatment classes, coded using integers, strings, or factors. By default, no classes are specified.
Details

By default, \texttt{trt_ref = NULL} and a network reference treatment will be chosen that attempts to maximise computational efficiency and stability. If an alternative reference treatment is chosen and the model runs slowly or has low effective sample size (ESS) this may be the cause - try letting the default reference treatment be used instead. Regardless of which treatment is used as the network reference at the model fitting stage, results can be transformed afterwards: see the \texttt{trt_ref} argument of \texttt{relative_effects()} and \texttt{predict.stan_nma()}.

The \texttt{sample_size} argument is optional, but when specified:

- Enables automatic centering of predictors (\texttt{center = TRUE}) in \texttt{nma()} when a regression model is given for a network combining IPD and AgD
- Enables production of study-specific relative effects, rank probabilities, etc. for studies in the network when a regression model is given
- Nodes in \texttt{plot.nma_data()} may be weighted by sample size

If a Binomial outcome is specified and \texttt{sample_size} is omitted, \text{n} will be used as the sample size by default.

Value

An object of class \texttt{nma_data}

See Also

\texttt{set_ipd()} for individual patient data, \texttt{set_agd_contrast()} for contrast-based aggregate data, and \texttt{combine_network()} for combining several data sources in one network.

\texttt{print.nma_data()} for the print method displaying details of the network, and \texttt{plot.nma_data()} for network plots.

Examples

Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
 study = studyn,
 trt = trtc,
 r = r,
 n = n,
 trt_ref = "No intervention")

Print details
smk_net

Plot network
plot(smk_net)
set_agd_contrast

Set up contrast-based aggregate data

Description

Set up a network containing contrast-based aggregate data (AgD), i.e. summaries of relative effects between treatments such as log Odds Ratios. Multiple data sources may be combined once created using `combine_network()`.

Usage

```r
set_agd_contrast(
  data,
  study,
  trt,
  y = NULL,
  se = NULL,
  sample_size = NULL,
  trt_ref = NULL,
  trt_class = NULL
)
```

Arguments

- `data`
a data frame
- `study`
column of data specifying the studies, coded using integers, strings, or factors
- `trt`
column of data specifying treatments, coded using integers, strings, or factors
- `y`
column of data specifying a continuous outcome
- `se`
column of data specifying the standard error for a continuous outcome
- `sample_size`
column of data giving the sample size in each arm. Optional, see details.
- `trt_ref`
reference treatment for the network, as a single integer, string, or factor. If not specified, a reasonable well-connected default will be chosen (see details).
- `trt_class`
column of data specifying treatment classes, coded using integers, strings, or factors. By default, no classes are specified.

Details

Each study should have a single reference/baseline treatment, against which relative effects in the other arm(s) are given. For the reference arm, include a data row with continuous outcome `y` equal to `NA`. If a study has three or more arms (so two or more relative effects), set the standard error `se` for the reference arm data row equal to the standard error of the mean outcome on the reference arm (this determines the covariance of the relative effects, when expressed as differences in mean outcomes between arms).

By default, `trt_ref = NULL` and a network reference treatment will be chosen that attempts to maximise computational efficiency and stability. If an alternative reference treatment is chosen...
and the model runs slowly or has low effective sample size (ESS) this may be the cause - try letting the default reference treatment be used instead. Regardless of which treatment is used as the network reference at the model fitting stage, results can be transformed afterwards: see the trt_ref argument of `relative_effects()` and `predict.stan_nma()`.

The `sample_size` argument is optional, but when specified:

- Enables automatic centering of predictors (center = TRUE) in `nma()` when a regression model is given for a network combining IPD and AgD
- Enables production of study-specific relative effects, rank probabilities, etc. for studies in the network when a regression model is given
- Nodes in `plot.nma_data()` may be weighted by sample size

Value

An object of class `nma_data`

See Also

`set_ipd()` for individual patient data, `set_agd_arm()` for arm-based aggregate data, and `combine_network()` for combining several data sources in one network.

`print.nma_data()` for the print method displaying details of the network, and `plot.nma_data()` for network plots.

Examples

```r
# Set up network of Parkinson's contrast data
data(parkinsons)
head(parkinsons)

park_net <- set_agd_contrast(parkinsons,
study = studyn,
trt = trtn,
y = diff,
se = se_diff,
sample_size = n)

# Print details
park_net

# Plot network
plot(park_net)
```

Description

Set up a network containing individual patient data (IPD). Multiple data sources may be combined once created using `combine_network()`.
Usage

```r
set_ipd(
  data,
  study,
  trt,
  y = NULL,
  r = NULL,
  E = NULL,
  trt_ref = NULL,
  trt_class = NULL
)
```

Arguments

data a data frame
study column of data specifying the studies, coded using integers, strings, or factors
trt column of data specifying treatments, coded using integers, strings, or factors
y column of data specifying a continuous outcome
r column of data specifying a binary outcome or Poisson outcome count
E column of data specifying the total time at risk for Poisson outcomes
trt_ref reference treatment for the network, as a single integer, string, or factor. If not specified, a reasonable well-connected default will be chosen (see details).
trt_class column of data specifying treatment classes, coded using integers, strings, or factors. By default, no classes are specified.

Details

By default, `trt_ref = NULL` and a network reference treatment will be chosen that attempts to maximise computational efficiency and stability. If an alternative reference treatment is chosen and the model runs slowly or has low effective sample size (ESS) this may be the cause - try letting the default reference treatment be used instead. Regardless of which treatment is used as the network reference at the model fitting stage, results can be transformed afterwards: see the `trt_ref` argument of `relative_effects()` and `predict.stan_nma()`.

Value

An object of class `nma_data`

See Also

`set_agd_arm()` for arm-based aggregate data, `set_agd_contrast()` for contrast-based aggregate data, and `combine_network()` for combining several data sources in one network.

`print.nma_data()` for the print method displaying details of the network, and `plot.nma_data()` for network plots.
Examples

```r
# Set up network of plaque psoriasis IPD
head(plaque_psoriasis_ipd)

pso_net <- set_ipd(plaque_psoriasis_ipd,
    study = studyc,
    trt = trtc,
    r = pasi75)

# Print network details
pso_net

# Plot network
plot(pso_net)

# Setting a different reference treatment
set_ipd(plaque_psoriasis_ipd,
    study = studyc,
    trt = trtc,
    r = pasi75,
    trt_ref = "PBO")
```

smoking

Smoking cessation data

Description

Data frame containing the results of 24 trials of 4 smoking cessation treatments (Hasselblad 1998; Dias et al. 2011).

Usage

`smoking`

Format

A data frame with 50 rows and 5 variables:

- `studyn` numeric study ID
- `trtn` numeric treatment code
- `trtc` treatment name
- `r` total number of events
- `n` total number of individuals
References

The stan_nma class

Description

The `stan_nma` and `stan_mlnmr` classes contain the results from running a model with the function `nma()`.

Details

Objects of class `stan_nma` and `stan_mlnmr` have the following components:

- `network`: The network data from which the model was run (class `nma_data` for `stan_nma`, or class `mlnmr_data` for `stan_mlnmr`)
- `stanfit`: The `stanfit` object returned by calling `sampling()` for the model
- `trt_effects`: Whether fixed or random effects were used (character string)
- `consistency`: The consistency/inconsistency model used (character string)
- `regression`: The regression model used (formula)
- `class_interactions`: If treatment classes and a regression model are specified, the model used for interactions within each class (common, exchangeable, or independent)
- `xbar`: A named vector of values used for centering
- `likelihood`: The likelihood used (character string)
- `link`: The link function used (character string)
- `priors`: A list containing the priors used (as `nma_prior` objects)

The `stan_mlnmr` sub-class inherits from `stan_nma`, and differs only in the class of the `network` object.
statins

Statins for cholesterol lowering

Description

Data frame containing the results of 19 trials comparing statins to placebo or usual care (Dias et al. 2011). The number of deaths (all-cause mortality) are recorded. In some studies the aim was primary prevention (patients had no previous heart disease), and in others the aim was secondary prevention (patients had previous heart disease).

Usage

```r
statins
```

Format

A data frame with 38 rows and 7 variables:

- **studyn** numeric study ID
- **studyc** study name
- **trtn** numeric treatment code
- **trtc** treatment name
- **prevention** primary or secondary prevention study
- **r** number of deaths
- **n** sample size

References

summary.nma_prior

Summary of prior distributions

Description

Print a summary of prior distribution details.

Usage

```r
## S3 method for class 'nma_prior'
summary(object, ..., probs = c(0.5, 0.95), digits = 2, trunc = NULL)
```
Arguments

- **object**: Prior distribution as a nma_prior object
- **...**: Additional arguments, not used
- **probs**: Numeric vector of probabilities to calculate prior intervals
- **digits**: Number of digits to display
- **trunc**: Optional numeric vector of length 2, giving the truncation limits of the prior distribution. Useful if a real-valued prior is assigned to a positive-valued parameter, then `trunc = c(0,Inf)` will give the correct prior intervals. By default, truncation is not used.

Value

A data frame is returned invisibly, giving the prior intervals

Examples

```r
summary(normal(location = 0, scale = 1))
summary(half_normal(scale = 1))
summary(log_normal(location = -3.93, scale = 1.51))

# Truncation limits may be set, for example to restrict a prior to positive values
summary(normal(location = 0.5, scale = 1), trunc = c(0, Inf))
```

summary.stan_nma
Posterior summaries from stan_nma objects

Description

Posterior summaries of model parameters in stan_nma objects may be produced using the `summary()` method and plotted with the `plot()` method. NOTE: To produce relative effects, absolute predictions, or posterior ranks, see `relative_effects()`, `predict.stan_nma()`, `posterior_ranks()`, `posterior_rank_probs()`.

Usage

```r
## S3 method for class 'stan_nma'
summary(object, ..., pars, include, probs = c(0.025, 0.25, 0.5, 0.75, 0.975))

## S3 method for class 'stan_nma'
plot(
x, ...
pars, include,
stat = "pointinterval",
```
orientation = c("horizontal", "vertical", "y", "x"),
ref_line = NA_real_
)

Arguments

... Additional arguments passed on to other methods
pars, include See rstan::extract()
probs Numeric vector of specifying quantiles of interest, default c(0.025, 0.25, 0.5, 0.75, 0.975)
x, object A stan_nma object
stat Character string specifying the ggdist plot stat to use, default "pointinterval"
orientation Whether the ggdist geom is drawn horizontally ("horizontal") or vertically ("vertical"), default "horizontal"
ref_line Numeric vector of positions for reference lines, by default no reference lines are drawn
summary Logical, calculate posterior summaries? Default TRUE.

Details

The plot() method is a shortcut for plot(summary(stan_nma)). For details of plotting options, see plot.nma_summary().

Value

A nma_summary object

See Also

plot.nma_summary(), relative_effects(), predict.stan_nma(), posterior_ranks(), posterior_rank_probs()

Examples

Smoking cessation
Set up network of smoking cessation data
head(smoking)

smk_net <- set_agd_arm(smoking,
 study = studyn,
 trt = trtc,
 r = r,
 n = n,
 trt_ref = "No intervention")

Print details
smk_net

Fitting a random effects model
smk_fit_RE <- nma(smk_net,
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = normal(scale = 5))

smk_fit_RE

Summary and plot of all model parameters
summary(smk_fit_RE)
plot(smk_fit_RE)

Summary and plot of heterogeneity tau only
summary(smk_fit_RE, pars = "tau")
plot(smk_fit_RE, pars = "tau")

Customising plot output
plot(smk_fit_RE,
 pars = c("d", "tau"),
 stat = "halfeye",
 ref_line = 0)

theme_multinma

Plot theme for multinma plots

Description

A simple ggplot2 theme for plots in the multinma package.

Usage

theme_multinma(...)

Arguments

... Arguments passed to ggplot2::theme_light()

Value

A ggplot2 theme

See Also

ggplot2::theme(), ggplot2::theme_set()
thrombolytics

Examples

```r
library(ggplot2)
theme_set(theme_multinma())
```

| thrombolytics | Thrombolytic treatments data |

Description

Data frame containing the results of 50 trials of 8 thrombolytic drugs (streptokinase, SK; alteplase, t-PA; accelerated alteplase, Acc t-PA; streptokinase plus alteplase, SK+tPA; reteplase, r-PA; tenecteplase, TNK; urokinase, UK; anistreptilase, ASPAC) plus per-cutaneous transluminal coronary angioplasty (PTCA) (Boland et al. 2003; Lu and Ades 2006; Dias et al. 2011). The number of deaths in 30 or 35 days following acute myocardial infarction are recorded.

Usage

```r
thrombolytics
```

Format

A data frame with 50 rows and 5 variables:

studyn	numeric study ID
trtn	numeric treatment code
trtc	treatment name
r	total number of events
n	total number of individuals

References

transfusion

Granulocyte transfusion in patients with neutropenia or neutrophil dysfunction

Description

Data frame containing the number of deaths in 6 trials comparing transfusion of granulocytes (white blood cells) to control (Stanworth et al. 2005). Previously used to demonstrate informative prior distributions for the heterogeneity variance by Turner et al. (2012).

Usage

transfusion

Format

A data frame with 12 rows and 4 variables:

- **study** study name
- **trtc** treatment name
- **r** total number of deaths
- **n** total number of individuals

References

Index

* datasets
 atrial_fibrillation, 11
 bcg_vaccine, 12
 blocker, 12
 diabetes, 16
 dietary_fat, 19
 parkinsons, 33
 plaque_psoriasis_ipd, 34
 smoking, 73
 statins, 75
 thrombolytics, 79
 transfusion, 80
 .default, 4
 .is_default(.default), 4
 ?priors, 26
 adapt_delta, 5, 25
 add_integration, 5
 add_integration(), 20, 29, 43, 53
 as.array.nma_rank_probs
 (print.nma_summary), 58
 as.array.nma_summary
 (print.nma_summary), 58
 as.array.stan_nma, 8
 as.array.stanfit(), 9
 as.data.frame.nma_summary
 (print.nma_summary), 58
 as.data.frame.stan_nma
 (as.array.stan_nma), 8
 as.igraph.nma_data, 9
 as.matrix.nma_rank_probs
 (print.nma_summary), 58
 as.matrix.nma_summary
 (print.nma_summary), 58
 as.matrix.stan_nma (as.array.stan_nma), 8
 as.stanfit, 10
 as.tibble.nma_summary
 (print.nma_summary), 58
 as_tbl_graph.nma_data
 (as.igraph.nma_data), 9
 as_tibble.nma_summary
 (print.nma_summary), 58
 atrial_fibrillation, 11
 bayesplot, 9
 bayesplot::mcmc_pairs(), 31, 32
 bcg_vaccine, 12
 blocker, 12
 cauchy (priors), 59
 combine_network, 13
 combine_network(), 29, 57, 68–72
 dbern (qbern), 61
 dgamma (qgamma), 61
 dgent, 15
 diabetes, 16
 dic, 17
 dic(), 30, 37, 57
 dietary_fat, 19
 distr, 20, 20
 distr(), 6, 52
 dlogitnorm (qlogitnorm), 62
 exponential (priors), 59
 ggdist, 41
 ggdist::stat_pointinterval(), 41
 ggplot2, 41
 ggplot2::geom_histogram, 46
 ggplot2::geom_path, 46
 ggplot2::theme(), 78
 ggplot2::theme_light(), 78
 ggplot2::theme_set(), 78
 ggraph, 9
 ggraph(), 36
 half_cauchy (priors), 59
 half_normal (priors), 59

81
half_student_t (priors), 59
igraph, 9, 36
is_network_connected, 21
log_normal (priors), 59
logitnorm, 62
loo (loo.stan_nma), 22
loo(), 22
loo.stan_nma, 22
mcmc_array, 9, 58
mcmc_array (mcmc_array-class), 22
mlnmr_data, 74
mlnmr_data (mlnmr_data-class), 29
mlnmr_data-class (mlnmr_data-class), 29
model.matrix(), 25
multinma (multinma-package), 3
multinma-package, 3
names.mcmc_array (mcmc_array-class), 22
names<-.mcmc_array (mcmc_array-class), 22
nma, 24
nma(), 5, 17, 38, 43, 48, 52, 63, 69, 71, 74
nma_data, 6, 9, 13, 36, 57, 69, 71, 72, 74
nma_data (nma_data-class), 29
nma_data-class, 29
nma_dic, 17, 37, 57
nma_dic (nma_dic-class), 30
nma_dic-class, 30
nma_prior, 60, 74
nma_prior (nma_prior-class), 30
nma_prior-class, 30
nma_rank_probs (nma_summary-class), 31
nma_summary, 23, 48, 53, 63, 77
nma_summary (nma_summary-class), 31
nma_summary-class, 31
normal (priors), 59
pairs(), 31
pairs.stan_nma, 31
parkinsons, 33
pbern (pbern), 61
pgamma (pgamma), 61
pgent (pgent), 15
plaque_psoriasis (plaque_psoriasis_ipd), 34
plaque_psoriasis_agd (plaque_psoriasis_ipd), 34
plaque_psoriasis_ipd, 34
plogitnorm (qlogitnorm), 62
plot.mlnmr_data, 35
plot.mlnmr_data(), 13, 30, 69, 71, 72
plot.mlnmr_dic, 37
plot.mlnmr_dic(), 17, 30
plot.nma_parameter_summary (plot.nma_summary), 40
plot.nma_rank_probs (plot.nma_summary), 40
plot.nma_summary, 40
plot.nma_summary(), 48, 53, 59, 63, 77
plot.stan_nma (summary.stan_nma), 76
plot_integration_error, 42
plot_prior_posterior, 45
plot_prior_posterior(), 26, 60
posterior_rank_probs (posterior_ranks), 47
posterior_rank_probs(), 31, 40, 76, 77
posterior_ranks, 47
posterior_ranks(), 31, 40, 76, 77
predict.stan_nma, 52
predict.stan_nma(), 20, 40, 69, 71, 72, 76, 77
print.mcmc_array (mcmc_array-class), 22
print.mlnmr_data (print.nma_data), 57
print.nma_data, 57
print.nma_data(), 13, 30, 69, 71, 72
print.nma_dic, 57
print.nma_dic(), 17, 30
print.nma_summary, 58
print.stan_nma, 59
print.stanfit(), 59
priors, 30, 59
qbern, 61
qgamma, 61
pgent (pgent), 15
qlogitnorm, 62
RE_cor, 67
relative_effects, 63
relative_effects(), 40, 69, 71, 72, 76, 77
round(), 57
rstan::extract(), 77
sampling(), 25, 74
set_agd_arm, 68
set_agd_arm(), 13, 29, 57, 71, 72
set_agd_contrast, 70
set_agd_contrast(), 13, 29, 33, 57, 69, 72
set_ipd, 71
set_ipd(), 13, 29, 57, 69, 71
smoking, 73
sobol(), 6
stan_mlnmr, 22
stan_mlnmr (stan_nma-class), 74
stan_nma, 17, 22, 26, 59
stan_nma (stan_nma-class), 74
stan_nma-class, 74
stanfit, 10, 11, 26
statins, 75
stats::Binomial, 61
stats::GammaDist, 62
student_t (priors), 59
summary(), 26
summary.mcmc_array (mcmc_array-class), 22
summary.nma_prior, 75
summary.nma_prior(), 60
summary.stan_nma, 76
theme_multinma, 78
thrombolytics, 79
tibble, 6
tidygraph, 9
transfusion, 80
unnest_integration (add_integration), 5
waic (loo.stan_nma), 22
waic(), 22
which_RE (RE_cor), 67