Package ‘multipanelfigure’

March 4, 2020

Type Package

Title Infrastructure to Assemble Multi-Panel Figures (from Grobs)

Version 2.1.2

Date 2020-03-04

Author Johannes Graumann [cre, aut],
Richard Cotton [ctb]

Maintainer Johannes Graumann <johannes.graumann@mpi-bn.mpg.de>

Description Tools to create a layout for figures made of multiple panels, and
to fill the panels with base, 'lattice', 'ggplot2' and 'ComplexHeatmap'
plots, grobs, as well as content from all image formats supported by
'ImageMagick' (accessed through 'magick').

biocViews

Imports assertive.base (>= 0.0-7), assertive.files (>= 0.0-2),
assertive.numbers (>= 0.0-2), assertive.properties (>= 0.0-4),
assertive.types (>= 0.0-3), ggplot2 (>= 2.2.1), grid,
gridGraphics (>= 0.3-0), gtable (>= 0.2.0), magick (>= 1.9),
magrittr (>= 1.5), stats, stringi (>= 1.2.3), utils

Suggests ComplexHeatmap (>= 1.17.1), grDevices, lattice (>= 0.20-35),
roxygen2 (>= 6.0.1), VennDiagram (>= 1.6.20), knitr, rmarkdown,
markdown

License GPL (>= 3)

RoxygenNote 7.0.2

LazyData TRUE

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2020-03-04 16:10:03 UTC
assert_is_multipanelfigure

Check that the input is a multipanelfigure

Description

Checks that the input is of class multipanelfigure and has the appropriate attributes.

Usage

assert_is_multipanelfigure(x)

Arguments

x Object to check.

References

Graumann, J., and Cotton, R.J. (2018). multipanelfigure: Simple Assembly of Multiple Plots and Images into a Compound Figure. Journal of Statistical Software 84. doi: 10.18637/jss.v084.c03
Mass spectrometry intensities by stem cell type and organelle

Description

This data was used to create Supplementary Figure 4e of Billing 2016 (see references).

Format

A data frame with 81 rows and the following columns:

- **GeneName** A factor with three levels naming genes that have interesting properties.
- **Intensity** A numeric vector of positive intensities of proteins corresponding to the genes as determined by mass spectrometry.
- **StemCellType** A factor with three levels indicating the type of stem cell experimented on. "ESC" means embryonic stem cell; "ESC-MSC" means mesenchymal stem cell derived from an embryonic stem cell; "BM-MSC" means mesenchymal stem cell derived from bone marrow.
- **Organelle** The region of the cell experimented on. "CH" means chromatin, "Cyt" means cytosol, "Nuc" means nucleus.
- **Replicate** An integer specifying the experimental replicate.
- **Experiment** The interaction of StemCellType, Organelle and Replicate.

Details

A data frame of genes corresponding to protein intensities as measured by mass spectrometry proteomics experiments on embryonic and mesenchymal stem cells.

References

Article text available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746666

Supplementary figures available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746666/bin/srep21507-s1.pdf

See Also

billing2016_suppfig4g

Examples

```r
ggplot2::ggplot(billing2016_suppfig4e, ggplot2::aes(Experiment, Intensity)) +
  ggplot2::geom_bar(stat = "identity") +
  ggplot2::geom_vline(xintercept = seq(3.5, 24.5, 3), linetype = "dotted") +
  ggplot2::facet_wrap(~ GeneName) +
  ggplot2::xlab(NULL) +
  ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45, hjust = 1, size = 4))
```
Mass spectrometry intensities by stem cell type

Description
This data was used to create Supplementary Figure 4g of Billing 2016 (see references).

Format
A matrix with 13 rows and 9 columns. Rows represent genes, columns represent experiments and are split by:

1. The type of stem cell experimented on. "ESC" means embryonic stem cell; "ESC-MSC" means mesenchymal stem cell derived from an embryonic stem cell; "BM-MSC" means mesenchymal stem cell derived from bone marrow.
2. The experimental replicate.

Values in the matrix are intensities of proteins corresponding to the genes, as measured by mass spectrometry.

Details
A matrix of log base 10 protein intensities as measured by mass spectrometry proteomics experiments on embryonic and mesenchymal stem cells.

References

Article text available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746666
Supplementary figures available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746666/bin/srep21507-s1.pdf

See Also
billing2016_suppfig4e

Examples
```R
color_scale <- grDevices::cm.colors(25)
heatmap(
  billing2016_suppfig4g,
  margins = c(12, 5), col = color_scale,
  cexRow = 0.5, cexCol = 0.4)
```


capture_base_plot

Capture a base plot

Description

Capture a plot drawn using base graphics as a grid grob.

Usage

```
capture_base_plot(expr)
```

Arguments

- `expr` A expression that draws a plot using base graphics.

Value

An object of class gTree.

Note

A side effect of this function is that plots get drawn twice: once as a base plot, and secondly as a grid plot.

References

Graumann, J., and Cotton, R.J. (2018). multipanelfigure: Simple Assembly of Multiple Plots and Images into a Compound Figure. Journal of Statistical Software 84. doi: 10.18637/jss.v084.c03

See Also

`grid.echo`, `grid.grab`

Examples

```
p <- capture_base_plot(hist(rnorm(1000), seq(-4, 4, 0.2)))
ggrid::grid.draw(p)
# If the plot takes multiple lines to draw, then wrap the code in braces.
p2 <- capture_base_plot({
  par(las = 1)
  plot(1:5)
  title("One to five")
})
ggrid::grid.draw(p2)
```
Description
A convenience function adding graphical objects to a \texttt{gtable} constructed by \texttt{multi_panel_figure}.

Usage
\begin{verbatim}
fill_panel(
 figure,
 panel,
 row = "auto",
 column = "auto",
 label = NULL,
 label_just = c("right", "bottom"),
 panel_clip = c("on", "off", "inherit"),
 scaling = c("none", "stretch", "fit", "shrink"),
 allow_panel_overwriting = FALSE,
 verbose = TRUE,
 ...
)
\end{verbatim}

Arguments
\begin{itemize}
 \item \texttt{figure} Object of classes \texttt{multipanelfigure/gtable} as produced by \texttt{multi_panel_figure} and representing the figure the panel is to be placed in.
 \item \texttt{panel} Single \texttt{character} object representing URL or path to a bitmap image accessible by ImageMagick as used through \texttt{magick}, a \texttt{Heatmap} or \texttt{HeatmapList} object, a \texttt{ggplot} object, a \texttt{trellis.object}, a \texttt{gList} object or a \texttt{grob} object to be placed in a multipanel figure. See 'Details'.
 \item \texttt{row} \texttt{numeric} object of length 1 or a range, indicating the row indices the panel that is to be placed in the figure, or "auto" to automatically pick the row (see details). May be used to define panel spanning (if \texttt{length(row)} > 1; see examples).
 \item \texttt{column} \texttt{numeric} object of length 1 or a range, indicating the column indices of the panel that is to be placed in the figure, or "auto" to automatically pick the column (see details). May be used to define panel spanning (if \texttt{length(column)} > 1; see examples).
 \item \texttt{label} Single \texttt{character} object defining the panel label used for automated annotation.
 \item \texttt{label_just} Justification for the label within the interpanel spacing grob to the top-left of the panel content grob. Passed to \texttt{textGrob}.
 \item \texttt{panel_clip} Should the display of panel contents be clipped at the panel borders? See \texttt{viewport}.
\end{itemize}
fill_panel

scaling

Only used when importing image files. Either "none" to preserve the dimensions of an image, "stretch" to make it fit the panels, "fit" to shrink or enlarge it so that it fills one dimension of the panels while preserving the height to width ratio, or "shrink which does the same but won’t enlarge it.

allow_panel_overwriting

A logical value. If TRUE, overwriting panels is allowed, with a warning. Otherwise (the default) it will cause an error.

verbose

A logical value. Reduces verbosity if FALSE.

... Additional arguments. Used to deal with deprecated arguments top_panel, bottom_panel, left_panel and right_panel.

Details

Currently supported as panel-representing objects (panel) are

1. ComplexHeatmap Heatmap or HeatmapList objects.
2. ggplot2 ggplot objects.
3. grid grob, gList, and gTree objects.
4. lattice trellis.objects.
5. Single character objects representing URLs or paths to image formats accessible by ImageMagick as used through magick, which will be read and placed into panels as requested.

Native resolution is determined from attributes in the file. If the attributes are not present, then the DPI is determined by the the multipanelfigure.defaultdpi global option, or 300 if this has not been set.

lattice-generated trellis.objects are converted to grobs using grid.grabExpr(print(x)), as are Heatmap and HeatmapLists from ComplexHeatmap - the side effects of which with respect to plot formatting are not well studied.

If the row argument is "auto", then the first row with a free panel is used. If the column argument is "auto", then the first column in the row with a free panel is used.

Value

Returns the gtable object fed to it (figure) with the addition of the panel.

Author(s)

Johannes Graumann, Richard Cotton

References

Graumann, J., and Cotton, R.J. (2018). multipanelfigure: Simple Assembly of Multiple Plots and Images into a Compound Figure. Journal of Statistical Software 84. doi: 10.18637/jss.v084.c03

See Also

gtable, multi_panel_figure
Examples

Not testing - slow grid graphics makes CRAN timing excessive
Create the figure layout
(figure <- multi_panel_figure(
 width = c(30, 40, 60),
 height = c(40, 60, 60, 60),
 panel_label_type = "upper-roman")
)

Fill the top-left panel using a grob object directly
a_grob <- grid::linesGrob(arrow = grid::arrow())
figure %<>% fill_panel(a_grob)

Add a ggplot object directly to the top row, second column.
The panels are chosen automatically, but you can achieve the same effect
using column = 2
a_ggplot <- ggplot2::ggplot(mtcars, ggplot2::aes(disp, mpg)) +
 ggplot2::geom_point()
figure %<>% fill_panel(a_ggplot)

Bitmap images are added by passing the path to their file.
image_files <- system.file("extdata", package = "multipanelfigure")
 dir(full.names = TRUE) %>%
 setNames(basename(.))

Add the JPEG to the top row, third column
figure %<>% fill_panel(image_files["rhino.jpg"], column = 3)

Add the PNG to the second and third row, first and second column
figure %<>% fill_panel(
 image_files["Rlogo.png"],
 row = 2:3, column = 1:2)

Add the TIFF to the second row, third column
figure %<>% fill_panel(
 image_files["unicorn.svg"],
 row = 2, column = 3)

lattice/trellis plot objects are also added directly
Depth <- lattice::equal.count(quakes$depth, number=4, overlap=0.1)
a_lattice_plot <- lattice::xyplot(lat ~ long | Depth, data = quakes)
Add the lattice plot to the third row, third column
figure %<>% fill_panel(
 a_lattice_plot,
 row = 3, column = 3)

Incorporate a gList object (such as produced by VennDiagram)
if(requireNamespace("VennDiagram")) {
 a_venn_plot <- VennDiagram::draw.pairwise.venn(50, 30, 20, ind = FALSE)
 # Add the Venn diagram to the fourth row, firstd column
 figure %<>% fill_panel(
 a_venn_plot,
Incorporate a base plot figure
a_base_plot <- capture_base_plot(
 heatmap(
 cor(USJudgeRatings), Rowv = FALSE, symm = TRUE, col = topo.colors(16),
 distfun = function(c) as.dist(1 - c), keep.dendro = TRUE,
 cexRow = 0.5, cexCol = 0.5))
Add the heatmap to the fourth row, second column
figure %<>% fill_panel(
 a_base_plot,
 row = 4, column = 2)

Incorporate a ComplexHeatmap figure
require(ComplexHeatmap)
mat = matrix(rnorm(80, 2), 8, 10)
mat = rbind(mat, matrix(rnorm(40, -2), 4, 10))
rownames(mat) = letters[1:12]
colnames(mat) = letters[1:10]
ht = Heatmap(mat)
a_complex_heatmap <- ht + ht + ht
Add the ComplexHeatmap to the fourth row, third column
(figure %<>% fill_panel(
 a_complex_heatmap,
 row = 4, column = 3))

grob_dimensions Convenient Access to grob Dimensions

Description
Convenience functions extracting dimensions from grob objects.

Usage

figure_width(grob, unit_to = "mm")
figure_height(grob, unit_to = "mm")

Arguments

grob A grob object for which dimensions are to be retrieved.
unit_to A single character string representing a valid grid-unit.

Value

Single numeric objects are returned.
Author(s)

Johannes Graumann

References

Graumann, J., and Cotton, R.J. (2018). multipanelfigure: Simple Assembly of Multiple Plots and Images into a Compound Figure. Journal of Statistical Software 84. doi: 10.18637/jss.v084.c03

See Also

multi_panel_figure, save_multi_panel_figure

Examples

Get dimensions of a grid grob
a_circle <- grid::circleGrob(x = 15, y = 30, r = 15, default.unit = "mm")
figure_height(a_circle)
figure_width(a_circle)

Use the unit_to arg to convert units
figure_height(a_circle, unit_to = "in")
figure_width(a_circle, unit_to = "cm")

Get dimensions of a multi-panel figure
figure <- multi_panel_figure(width = 55, height = 55, rows = 2, columns = 2)
figure_height(figure)
figure_width(figure)

ggsave defaults to measuring dimensions in inches
width <- figure_width(figure, unit_to = "in")
height <- figure_height(figure, unit_to = "in")
tmp_file <- tempfile(fileext = ".png")

Not testing due to use of external software
utils::browseURL(tmp_file)

Images

A TIFF photograph of Farouq the cat in a washing machine. CC-BY-SA 4.0 Richard Cotton, 2014.

Format

An image file.
Details

A JPEG photograph of a greater one-horned rhinoceros (Rhinoceros unicornis) taken in Kaziranga National Park, Assam, India. CC-BY-SA 4.0 Janette Cotton, 2016.

An SVG picture of a fat, pink winged unicorn. CC-BY-SA 4.0 Sara Lendal, 2016.

Examples

```r
figure <- multi_panel_figure(
  width = c(60, 40, 40), height = c(40, 40, 40)
)
image_files <- system.file("extdata", package = "multipanelfigure") %>%
  dir(full.names = TRUE) %>%
  setNames(basename(.))
figure %>%
  fill_panel(image_files["farouq.tiff"] %>%
  fill_panel(image_files["unicorn.svg"], column = 2:3) %>%
  fill_panel(image_files["rhino.jpg"], row = 2:3) %>%
  fill_panel(image_files["Rlogo.png"], column = 2:3, row = 2:3)
```

multipanelfigure-deprecated

Superceded objects in multipanelfigure

Description

Functions that are no longer used or have been superceded by functions with underscore-separated names.

Usage

```r
addPanel( figure, ... )
capturebaseplot( ... )
multipanelfigure( ... )
simplegrobheight( ... )
simplegrobwidth( ... )
```

Arguments

- `figure`: Object of classes `multipanelfigure/gtable` as produced by `multi_panel_figure` and representing the figure the panel is to be placed in.
- `...`: Arguments to functions you shouldn’t use.
Description

A convenience function building \texttt{gtable}-based infrastructure for the assembly of multipanel figures.

Usage

\begin{verbatim}
multi_panel_figure(
 width = "auto",
 columns = NULL,
 height = "auto",
 rows = NULL,
 row_spacing = NaN,
 column_spacing = NaN,
 unit = "mm",
 figure_name = "FigureX",
 panel_label_type = c("upper-alpha", "lower-alpha", "decimal", "upper-roman",
 "lower-roman", "upper-greek", "lower-greek", "none"),
 ...
)
\end{verbatim}

Arguments

\begin{itemize}
\item width \texttt{numeric} or \texttt{link(grid)}\{\texttt{unit}\} defining the width(s) of the resulting \texttt{gtable} if \texttt{length(width) == 1} or individual column widths. Units depends on \texttt{unit} if not provided as \texttt{unit} object. The default 'auto' sets the parameter to the width of the currently used device. See 'Details' for dependent and interfering parameters.
\item columns Single \texttt{numeric} defining the number of columns in the resulting \texttt{gtable}. See 'Details' for dependent and interfering parameters.
\item height \texttt{numeric} or \texttt{link(grid)}\{\texttt{unit}\} defining the height of the resulting \texttt{gtable} if \texttt{length(height) == 1} or individual row heights. Units depends on \texttt{unit} if not provided as \texttt{unit} object. The default 'auto' sets the parameter to the height of the currently used device. See 'Details' for dependent and interfering parameters.
\item rows Single \texttt{numeric} defining the number of rows in the resulting \texttt{gtable}. See 'Details' for dependent and interfering parameters.
\item row_spacing \texttt{numeric} or \texttt{# unit} defining the amount of white space automatically inserted between row panels. Defaults to 5 mm unless explicitly given, in which case the value may depend on the \texttt{unit} parameter. Recycled to the number of rows.
\item column_spacing \texttt{numeric} or \texttt{unit} defining the amount of white space automatically inserted between column panels. Defaults to 5 mm unless explicitly given, in which case the value may depends on the \texttt{unit} parameter. Recycled to the number of columns.
\end{itemize}
unit Single character object defining the unit of all dimensions defined. Must satisfy `grid:::valid.units`.

figure_name Single character object defining the name of the resulting `gtable`.

panel_label_type A string specifying the marker style for the panel labels used for automated annotation. Defaults to uppercase Latin letters.

... Argument to accommodate deprecated arguments `widths` and `heights`.

Details

The `gtable` may be constructed in two ways:

1. Based on explicit width/height definitions for individual panels.
2. Based on total figure/gtable dimensions given by `width` and `height` together with the number of columns and rows requested.

The function automatically inserts whitespace of width `column_spacing` before column panels (and of height `row_spacing` before row panels), which has to be considered for the total dimensions of the resulting `gtable`. Width of the `gtable` in the former case, for example may be calculated

\[
W[\text{total}] = \text{sum}(width) + \text{length}(width) \times \text{column}_\text{spacing}
\]

while width of resulting panels in the latter table construction approach may be calculated

\[
W[\text{panel}] = (width - \text{columns} \times \text{column}_\text{spacing})/\text{columns}
\]

width, height, `column_spacing` and `row_spacing` may be defined numerically or as `unit` objects. Earlier implementations used parameters `widths` and `heights` as synonyms for `width` and `height` with length greater than one. These parameters have been deprecated. They continue to work, but produce a warning.

The two approaches to `gtable` construction require interdepending parameter sets:

Individual definition of panel dimensions: Requires `width` and `height` of lengths corresponding to the number of columns/rows requested. Excludes the use of `columns` and `rows`.

Definition of global gtable/figure dimensions: Requires `width`, `columns`, `height` and `rows` of length 1.

Value

Returns an object of class `multipanelfigure` as well as `gtable` object with the following additional attributes:

`multipanelfigure.panelsFree`: A logical matrix with the dimensions of the `gtable` indicating occupancy of the panels in the table.

`multipanelfigure.panellabelsfree`: A character vector indicative of the panel_labels still available.

`multipanelfigure.unit`: A single character object storing the corresponding value given during object creation.
Author(s)

Johannes Graumann

References

Graumann, J., and Cotton, R.J. (2018). multipanelfigure: Simple Assembly of Multiple Plots and Images into a Compound Figure. Journal of Statistical Software 84. doi: 10.18637/jss.v084.c03

See Also

fill_panel for more examples of filling panels
figure_width for inspecting figure dimensions
capture_base_plot for including plots created using base graphics
gtable for the underlying structure of a figure

Examples

```r
# Figure construction based on the dimensions of the current device
figure1 <- multi_panel_figure(
  columns = 2,
  rows = 2,
  figure_name = "figure1")

# With no panels, printing shows the layout
figure1

# Figure construction based on overall dimensions
figure2 <- multi_panel_figure(
  width = 100,
  columns = 4,
  height = 90,
  rows = 6,
  figure_name = "figure2")

# Still no panels ...
figure2

# Figure construction based on individual panel dimensions
(figure3 <- multi_panel_figure(
  width = c(40,30),
  height = c(40,60),
  row_spacing = c(5, 1),
  column_spacing = c(0, 10),
  figure_name = "figure3"))

# A more involved example including filling and printing to device ...
# Make a simple ggplot object to fill panels
ggp <- ggplot2::ggplot(mtcars, ggplot2::aes(x, y)) +   
ggplot2::geom_point()
# Fill panels
# ggplots and lattice plot objects are added directly
# The default position is the top-left panel
figure3 <- fill_panel(figure3, ggp)
```
print.multipanelfigure

Print a multi-panel figure

Description

Prints and object of class multipanelfigure.

Usage

S3 method for class 'multipanelfigure'
print(x, newpage = TRUE, ...)

Arguments

x An object of class multipanelfigure.
newpage Logical. If TRUE, a new device page is opened before drawing.
... Passed from other print methods.

Value

The input x is invisibly returned, but the method is mostly invoked for the side effect of printing the plot to the current device.

References

Graumann, J., and Cotton, R.J. (2018). multipanelfigure: Simple Assembly of Multiple Plots and Images into a Compound Figure. Journal of Statistical Software 84. doi: 10.18637/jss.v084.c03
Examples

```r
p <- lattice::xyplot(dist ~ speed, cars)
figure <- multi_panel_figure(
  width = 100, height = 100,
  rows = 1, columns = 1
)
# With no panels, printing shows the layout
print(figure)
figure <- fill_panel(figure, p)
# After a panel is added, printing shows the plot.
print(figure) # shows plot
```

Description

A convenience function wrapping `ggsave` from `ggplot2` for easy saving of `gtable` objects constructed by `multi_panel_figure` taking into account the table’s dimensions.

Usage

```r
save_multi_panel_figure(figure, filename, dpi = 300, ...)
```

Arguments

- `figure` Object of classes `multipanelfigure`/`gtable` as produced by `multi_panel_figure`.
- `filename` Single `character` object representing file name/path to create on disk.
- `dpi` Single `numeric` indicating the plot resolution. Applies only to raster output types.
- `...` Other arguments passed to `ggsave`.

Details

Plot dimensions are determined using `figure_height` and `figure_width`.

The Device type to use is guessed from the filename extension. Currently supported are "eps", "ps", "tex" (pictex), "pdf", "jpeg", "tiff", "png", "bmp", "svg" or "wmf" (windows only).

Author(s)

Johannes Graumann

References

Graumann, J., and Cotton, R.J. (2018). multipanelfigure: Simple Assembly of Multiple Plots and Images into a Compound Figure. Journal of Statistical Software 84. doi: 10.18637/jss.v084.c03
See Also
ggsave, figure_width, figure_height

Examples

```r
# Create the figure layout
(figure <- multi_panel_figure(
  width = c(30,40,60),
  height = c(40,60,60,60),
  panel_label_type = "upper-roman")

# Fill the top-left panel using a grob object directly
a_grob <- grid::linesGrob(arrow = grid::arrow())
figure %<>% fill_panel(a_grob)

## Not run:
# Save the figure
figure %>%
  save_multi_panel_figure(
    filename = paste0(
      tempfile(),
      ".png"))

## End(Not run)
```

```r
%>>% magrittr forward-pipe operator

Description

See %>>%.

%<>% magrittr compound assignment pipe operator

Description

See %<>%.
Index

*Topic **hplot**
  multi_panel_figure, 12
*Topic **utilities**
  multi_panel_figure, 12
%<>%, 17, 17
%>>, 17, 17

add_panel(fill_panel), 6
addPanel(fill_panel), 6
addpanel(fill_panel), 6
assert_is_multipanelfigure, 2

billing2016_suppfig4e, 3, 4
billing2016_suppfig4g, 3, 4

capture_base_plot, 5, 14
capturebaseplot(capture_base_plot), 5
character, 6, 7, 9, 13, 16

figure_height, 16, 17
figure_height(grob_dimensions), 9
figure_width, 14, 16, 17
figure_width(grob_dimensions), 9
fill_panel, 6, 14

ggplot, 6, 7
ggsave, 16, 17
gList, 6, 7
ggrid.echo, 5
ggrid.grab, 5
grob, 6, 7, 9
grob_dimensions, 9
gtable, 6, 7, 11–14, 16
gTree, 7

Heatmap, 6, 7
HeatmapList, 6, 7

images, 10

logical, 13

magick, 6, 7
matrix, 13
multi_panel_figure, 6, 7, 10, 11, 12, 16
multipanelfigure(multi_panel_figure), 12
multipanelfigure-deprecated, 11
numeric, 6, 9, 12, 16
print.multipanelfigure, 15

rhino (images), 10

save_multi_panel_figure, 10, 16
simple_grob_height(grob_dimensions), 9
simple_grob_width(grob_dimensions), 9
simplegrobheight(grob_dimensions), 9
simplegrobwidth(grob_dimensions), 9

textGrob, 6
trellis.object, 6, 7

unicorn (images), 10
unit, 9, 12, 13

vector, 13
viewport, 6