Package ‘multistateutils’

December 15, 2019

Type Package
Title Utility Functions for Parametric Multi-State Models
Version 1.2.4
Date 2019-12-14
Author Stuart Lacy
Maintainer Stuart Lacy <stuart.lacy@gmail.com>
Description Provides functions for working with multi-state modelling, such as efficient simulation routines for estimating transition probabilities and length of stay. It is designed as an extension to multi-state modelling capabilities provided with the 'flexsurv' package (see Jackson (2016) <doi:10.18637/jss.v070.i08>).
License GPL (>= 3)
Imports data.table, dplyr, magrittr, networkD3, tidyr
Suggests covr, knitr, flexsurv, mstate, microbenchmark, rmarkdown, testthat
URL https://github.com/stulacy/multistateutils
BugReports https://github.com/stulacy/multistateutils/issues
LinkingTo Rcpp
RoxygenNote 7.0.2
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-12-15 16:50:07 UTC

R topics documented:

cohort_simulation .. 2
length_of_stay ... 3
msprep2 ... 5
multistateutils ... 7
plot_predicted_pathway .. 7
predict_transitions .. 8
cohort_simulation

Index

cohort_simulation Runs a cohort discrete event simulation

Description

Runs a cohort discrete event simulation

Usage

cohort_simulation(
 models,
 newdata,
 trans_mat,
 start_time = 0,
 start_state = 1,
 time_limit = NULL,
 tcovs = NULL,
 M = 1000,
 ci = FALSE,
 ci_margin = 0.95,
 agelimit = FALSE,
 agecol = "age",
 agescale = 365.25
)

Arguments

models List of flexsurvreg objects.
newdata Data frame with covariates of individual to simulate times for. Must contain all fields required by models.
trans_mat Transition matrix, such as that used in mstate.
start_time Entry times of individuals specified in newdata. Can either be a single time that everyone enters at, or have as many values as rows in newdata. Defaults to everyone starting at time 0.
start_state The starting state of the individuals specified in newdata. States can be represented by an integer (the row/column number of the state in trans_mat), or as a string giving the name of the state in trans_mat. Can either be a single value when everyone starts in the same state, or have as many values as rows in newdata. Defaults to everyone starting in state 1.
time_limit The maximum time to run the simulation for. If not provided then the simulation runs until all the individuals have obtained a sink state.
tcovs As in flexsurv::pmatrix.simfs, this is the names of covariates that need to be incremented by the simulation clock at each transition, such as age when modelled as age at state entry.
length_of_stay

M

Number of times to run the simulations in order to obtain confidence interval estimates.

ci

Whether to calculate confidence intervals. See `flexsurv::pmatrix.simfs` for details.

ci_margin

Confidence interval range to use if `ci` is set to `TRUE`.

agelimit

Whether to automatically assign people to an 'early death' state. This is useful as otherwise individuals can be assigned unrealistic time-to-events due to the nature of sampling times from a random number distribution. If this value is `FALSE` then no limit is applied, otherwise provide the time-limit to be used. This limit must be in the same time-scale as the time-to-event models.

agecol

The name of the column in `newdata` that holds an individual's age.

agescale

Any multiplication to be applied to the age covariate to put it onto the same time-scale as the simulation. This is often useful as time-to-event may be measured on a day-based time-scale while age is typically measured in years.

Value

A data frame with state entry times for each individual.

Examples

```r
library(multistateutils)
library(mstate)
library(flexsurv)

# Convert data to long
data(ebmt3)
tmat <- trans.illdeath()
long <- msprep(time=c(NA, 'prtime', 'rfstime'),
               status=c(NA, 'prstat', 'rfsstat'),
               data=ebmt3,
               trans=tmat,
               keep=c('age', 'dissub'))

# Fit parametric models
models <- lapply(1:3, function(i) {
    flexsurvreg(Surv(time, status) ~ age + dissub, data=long, dist='weibull')
})

sim <- cohort_simulation(models, ebmt3, tmat)
```

length_of_stay

Estimates length of stay

Description

Estimates length of stay in each state of an individual’s passage through a multi-state model by discrete event simulation.
Usage

`length_of_stay(
models,
newdata,
trans_mat,
times,
start_state = 1,
tcovs = NULL,
N = 1e+05,
M = 1000,
ci = FALSE,
ci_margin = 0.95,
agelimit = FALSE,
agecol = "age",
agescale = 365.25
)`

Arguments

`models` List of `flexsurvreg` objects.

`newdata` Data frame with covariates of individual to simulate times for. Must contain all fields required by models.

`trans_mat` Transition matrix, such as that used in `mstate`.

`times` Times at which to estimate length of stay.

`start_state` Starting state. Either number or character name in `trans_mat`.

`tcovs` As in `flexsurv::pmatrix.simfs`, this is the names of covariates that need to be incremented by the simulation clock at each transition, such as age when modelled as age at state entry.

`N` Number of times to repeat the individual.

`M` Number of times to run the simulations in order to obtain confidence interval estimates.

`ci` Whether to calculate confidence intervals. See `flexsurv::pmatrix.simfs` for details.

`ci_margin` Confidence interval range to use if `ci` is set to TRUE.

`agelimit` Whether to automatically assign people to an ‘early death’ state. This is useful as otherwise individuals can be assigned unrealistic time-to-events due to the nature of sampling times from a random number distribution. If this value is FALSE then no limit is applied, otherwise provide the time-limit to be used. This limit must be in the same time-scale as the time-to-event models.

`agecol` The name of the column in `newdata` that holds an individual’s age.

`agescale` Any multiplication to be applied to the age covariate to put it onto the same time-scale as the simulation. This is often useful as time-to-event may be measured on a day-based time-scale while age is typically measured in years.
msprep2

Converts long state entry data into a format suitable for multi-state modelling

Description

This function performs the same role as msprep from the mstate package, except that it accepts long data (each row corresponds to a state entry) rather than the wide format used by msprep (each row represents an individual with state entry indicated in columns).

Usage

```r
msprep2(
    entry,
    tmat,
)```
censors = NULL,  
start_times = NULL,  
start_states = NULL,  
covars = NULL,  
idcol = "id"
)

Arguments

entry Long data frame of format id | state | time. State can either be character, with the same state names used in tmat, or integer where they refer to the rownumber of that state in tmat. Note that the state and time fields must be labelled this way.

entry Transition matrix in the standard format required by mssprep.

censors A long data frame with 2 columns, id and censor_time. Gives the last follow-up time for individuals that haven’t entered a sink state.

start_times A long data frame with 2 columns, id and start_time. Gives the time at which the patient entered the simulation. Defaults to 0.

start_states A long data frame with 2 columns, id and start_state. Gives the state the patient entered the simulation in. Defaults to 1.

covars Data frame where each row corresponds to an individual and details their covariate values. Must contain the id column specified in idcol alongside any covariate fields of interest.

idcol The column that indexes these patients, must be present in entry and censors, start_times, start_states, and covars if supplied.

Details

The long data format required by mssprep2 is a more natural way of organising state entry data than the wide format required by mssprep. An additional benefit of having the state entries organised in this fashion is that it allows for the situation where an individual enters the same state multiple times, which is not supported by mssprep.

Value

An object of class msdata, representing the transition data in long format.

Examples

library(multistateutils)
library(mstate)

tmat <- trans.illdeath()
entry <- data.frame(id=c(1, 2, 2),
                    state=c(2, 2, 3),
                    time=c(23, 35, 360))

msprep2(entry, tmat)
multistateutils package.

Description

Provides utility functions for already fitted parametric multi-state models, such as estimating transition probabilities and length of stay, as well as means of visualising these predictions.

plot_predicted_pathway

Displays the predicted flow for a given individual through the system

Description

Produces an interactive HTML widget that displays a Sankey diagram showing a predicted patient pathway through the multi-state model.

Usage

plot_predicted_pathway(
  models,
  trans_mat,
  newdata,
  times,
  starting_state = 1,
  tcovs = NULL
)

Arguments

models List of flexsurvreg objects.
trans_mat Transition matrix, such as that used in mstate.
newdata A data frame containing the attributes of the person to display the predicted state flow for. As the diagram can only be displayed for a single individual it will ignore any rows after the first.
times The time-points at which to estimate transition probabilities.
starting_state Starting state. Either number or character name in trans_mat.
tcovs As in flexsurv::pmatrix.simfs, this is the names of covariates that need to be incremented by the simulation clock at each transition, such as age when modelled as age at state entry.

Value

The HTML widget.
predict_transitions

Estimates transition probabilities

Description

Estimates transition probabilities of an individual’s passage through a multi-state model by discrete event simulation.

Usage

predict_transitions(
  models,
  newdata,
  trans_mat,
  times,
  start_times = 0,
  tcovs = NULL,
  N = 1e+05,
)
predict_transitions

M = 1000,
ci = FALSE,
ci_margin = 0.95,
agelimit = FALSE,
agecol = "age",
agescale = 365.25
)

Arguments

models        List of flexsurvreg objects.
newdata       Data frame with covariates of individual to simulate times for. Must contain all fields required by models.
trans_mat     Transition matrix, such as that used in mstate.
times         Times at which to estimate transition probabilities.
start_times   Conditional time for transition probability.
tcous         As in flexsurv::pmatrix.simfs, this is the names of covariates that need to be incremented by the simulation clock at each transition, such as age when modelled as age at state entry.
N             Number of times to repeat the individual
M             Number of times to run the simulations in order to obtain confidence interval estimates.
ci            Whether to calculate confidence intervals. See flexsurv::pmatrix.simfs for details.
ci_margin     Confidence interval range to use if ci is set to TRUE.
agelimit      Whether to automatically assign people to an 'early death' state. This is useful as otherwise individuals can be assigned unrealistic time-to-events due to the nature of sampling times from a random number distribution. If this value is FALSE then no limit is applied, otherwise provide the time-limit to be used. This limit must be in the same time-scale as the time-to-event models.
agecol        The name of the column in newdata that holds an individual's age.
agescale      Any multiplication to be applied to the age covariate to put it onto the same time-scale as the simulation. This is often useful as time-to-event may be measured on a day-based time-scale while age is typically measured in years.

Value

A data frame with estimates of transition probabilities.

Examples

library(multistateutils)
library(mstate)
library(flexsurv)
# Convert data to long
data(ebmt3)
tmat <- trans.illdeath()
long <- msprep(time=c(NA, 'prtime', 'rfstime'),
               status=c(NA, 'prstat', 'rfsstat'),
               data=ebmt3,
               trans=tmat,
               keep=c('age', 'dissub'))

# Fit parametric models
models <- lapply(1:3, function(i) {
  flexsurvreg(Surv(time, status) ~ age + dissub, data=long, dist='weibull')
})

# New individual to estimate transition probabilities for
newdata <- data.frame(age="20-40", dissub="AML")

# Estimate transition probabilities at 1 year
predict_transitions(models, newdata, tmat, times=365)

# Estimate transition probabilities at 1 year given they're alive after 6 months
predict_transitions(models, newdata, tmat, times=365, start_times = 365/2)
Index

cohort_simulation, 2
length_of_stay, 3
msprep2, 5
multistateutils, 7
plot_predicted_pathway, 7
predict_transitions, 8