Package ‘multxpert’

October 2, 2019

Title Common Multiple Testing Procedures and Gatekeeping Procedures
Version 0.1.1
Date 2010-10-31
Author Alex Dmitrienko, Eric Nantz, and Gautier Paux, with contributions by Thomas Brechenmacher

Maintainer Eric Nantz <eric.nantz@gmail.com>
Depends R (>= 2.1.0), stats, mvtnorm (>= 0.9)
URL http://multxpert.com/wiki/MultXpert_package
LazyLoad yes
License GPL-2
Repository CRAN
Date/Publication 2019-10-02 15:54:00 UTC

R topics documented:

paradjp .. 2
parci .. 4
pargateadjp ... 6
pvaladjp ... 8
pvalci ... 10

Index 14
paradjp

Common parametric procedures: Adjusted \(p \)-values

Description

Computation of adjusted \(p \)-values for commonly used parametric multiple testing procedures (single-step and step-down Dunnett procedures).

Usage

\texttt{paradjp(stat,n,proc)}

Arguments

\begin{description}
\item[\texttt{stat}] Vector of test statistics.
\item[\texttt{n}] Common sample size in each treatment group.
\item[\texttt{proc}] Vector of character strings containing the procedure name. This vector should include any of the following: "Single-step Dunnett", "Step-down Dunnett".
\end{description}

Details

This function computes adjusted \(p \)-values for the single-step Dunnett procedure (Dunnett, 1955) and step-down Dunnett procedure (Naik, 1975; Marcus, Peritz and Gabriel, 1976) in one-sided hypothesis testing problems with a balanced one-way layout and equally weighted null hypotheses. For more information on the algorithms used in the function, see Dmitrienko et al. (2009, Section 2.7).

Value

A list with the following components:

\begin{description}
\item[\texttt{proc}] Name of procedure used.
\item[\texttt{result}] A data frame with columns for the test statistics, one-sided raw \(p \)-values, and one-sided adjusted \(p \)-values for the specified procedure.
\end{description}

Source

\url{http://multxpert.com/wiki/MultXpert_package}

References

See Also

pvaladjp

Examples

Consider a clinical trial conducted to evaluate the effect of three # doses of a treatment compared to a placebo with respect to a normally # distributed endpoint

Three null hypotheses of no effect are tested in the trial: # Null hypothesis H1: No difference between Dose 1 and Placebo # Null hypothesis H2: No difference between Dose 2 and Placebo # Null hypothesis H3: No difference between Dose 3 and Placebo

Treatment effect estimates (mean dose-placebo differences)
est<-c(2.3,2.5,1.9)

Pooled standard deviation
sd<-9.5

Study design is balanced with 180 patients per treatment arm
n<-180

Standard errors
stderr<-rep(sd*sqrt(2/n),3)

T-statistics associated with the three dose-placebo tests
stat<-est/stderror

Compute one-sided adjusted p-values for the single-step Dunnett procedure
paradjp(stat, n, proc="Single-step Dunnett")

Compute one-sided adjusted p-values for the single-step and # step-down Dunnett procedures
paradjp(stat, n, proc=c("Single-step Dunnett", "Step-down Dunnett"))
parci

Common parametric procedures: Simultaneous confidence intervals

Description

Computation of simultaneous confidence intervals for commonly used parametric multiple testing procedures (single-step and step-down Dunnett procedures).

Usage

parci(stat, n, est, stderr, covprob, proc)

Arguments

- **stat**: Vector of test statistics.
- **n**: Common sample size in each treatment group.
- **est**: Vector of point estimates.
- **stderr**: Vector of standard errors associated with the point estimates.
- **covprob**: Simultaneous coverage probability (default is 0.975).
- **proc**: Vector of character strings containing the procedure name. This vector should include any of the following: "Single-step Dunnett", "Step-down Dunnett".

Details

This function computes lower one-sided simultaneous confidence limits for the single-step Dunnett procedure (Dunnett, 1955) and step-down Dunnett procedure (Naik, 1975; Marcus, Peritz and Gabriel, 1976) in one-sided hypothesis testing problems with a balanced one-way layout and equally weighted null hypotheses.

The simultaneous confidence intervals are computed using the methods developed in Bofinger (1987) and Stefansson, Kim and Hsu (1988). For more information on the algorithms used in the function, see Dmitrienko et al. (2009, Section 2.7).

Value

A data frame result with columns for the test statistics, point estimates, standard errors, adjusted \(p \)-values, and lower simultaneous confidence limits for the specified procedure.

Source

http://multxpert.com/wiki/MultXpert_package
References

See Also

parci

Examples

Consider a clinical trial conducted to evaluate the effect of three doses of a treatment compared to a placebo with respect to a normally distributed endpoint
Three null hypotheses of no effect are tested in the trial:
Null hypothesis H1: No difference between Dose 1 and Placebo
Null hypothesis H2: No difference between Dose 2 and Placebo
Null hypothesis H3: No difference between Dose 3 and Placebo

Treatment effect estimates (mean dose-placebo differences)
est<-c(2.3,2.5,1.9)

Pooled standard deviation
sd<-9.5

Study design is balanced with 180 patients per treatment arm
n<-180

Standard errors
stderr<-rep(sd*sqrt(2/n),3)
pargateadjp

Multistage parallel gatekeeping procedures: Adjusted \(p \)-values

Description

Computation of adjusted \(p \)-values for multistage parallel gatekeeping procedures.

Usage

pargateadjp(gateproc, independence, alpha, printDecisionRules)

Arguments

gateproc List of gatekeeping procedure parameters in each family of null hypotheses, including the family label, vector of raw \(p \)-values, procedure name and procedure parameter (pargateadjp function supports truncated and regular versions of the Bonferroni, Holm, Hommel, Hochberg and fallback procedures).

independence Boolean indicator (TRUE, Independence condition is imposed (i.e., inferences in earlier families are independent of inferences in later families); FALSE, Independence condition is not imposed).

alpha Global family-wise error rate (default is 0.05). Note that this argument is not needed if the function is called to compute adjusted \(p \)-values, i.e., if printDecisionRules=FALSE.

printDecisionRules Boolean indicator for printing the decision rules for the gatekeeping procedure (default is FALSE).

Details

This function computes adjusted \(p \)-values and generates decision rules for multistage parallel gatekeeping procedures in hypothesis testing problems with multiple families of null hypotheses (null hypotheses are assumed to be equally weighted within each family) based on the methodology presented in Dmitrienko, Tamhane and Wiens (2008) and Dmitrienko, Kordzakhia and Tamhane (2011). For more information on parallel gatekeeping procedures (computation of adjusted \(p \)-values, independence condition, etc), see Dmitrienko and Tamhane (2009, Section 5.4).
Value

A data frame result with columns for the family labels, procedures, procedure parameters (truncation parameters), raw p-values, and adjusted p-values.

Source

http://multxpert.com/wiki/MultXpert_package

References

Examples

Consider a clinical trial with two families of null hypotheses

Family 1: Primary null hypotheses (one-sided p-values)
H1 (Endpoint 1), p1=0.0082
H2 (Endpoint 2), p2=0.0174

Family 2: Secondary null hypotheses (one-sided p-values)
H3 (Endpoint 3), p3=0.0042
H4 (Endpoint 4), p4=0.0180

Define family label and raw p-values in Family 1
label1<="Primary endpoints"
rawp1<-c(0.0082,0.0174)

Define family label and raw p-values in Family 2
label2<="Secondary endpoints"
rawp2<-c(0.0042,0.0180)

Independence condition is imposed (Families 1 and 2 are tested sequentially from first to last and thus adjusted p-values # in Family 1 do not depend on inferences in Family 2)
ind<TRUE

Define a two-stage parallel gatekeeping procedure which utilizes the truncated Holm procedure in Family 1 (truncation parameter=0.5) and regular Holm procedure in Family 2 (truncation parameter=1)
Create a list of gatekeeping procedure parameters
family1<-list(label=label1, rawp=rawp1, proc="Holm", procpar=0.5)
family2<-list(label=label2, rawp=rawp2, proc="Holm", procpar=1)
gateproc<-list(family1,family2)

Compute adjusted p-values
pargateadjp(gateproc, independence)

Generate decision rules using a one-sided alpha=0.025
pargateadjp(gateproc, independence, alpha=0.025, printDecisionRules=TRUE)

pvaladjp

Common p-value-based procedures: Adjusted p-values

Description

Computation of adjusted \(p \)-values for commonly used multiple testing procedures based on univariate \(p \)-values (Bonferroni, Holm, Hommel, Hochberg, fixed-sequence and fallback procedures).

Usage

```r
pvaladjp(rawp, weight, alpha, proc, printDecisionRules)
```

Arguments

- `rawp` Vector of raw \(p \)-values.
- `weight` Vector of hypothesis weights whose sum is equal to 1 (default is a vector of equal weights).
- `alpha` Familywise error rate (default is 0.05). Note that this argument is not needed if the function is called to compute adjusted \(p \)-values, i.e., if `printDecisionRules=FALSE`.
- `proc` Vector of character strings containing the procedure name. This vector should include any of the following: "Bonferroni", "Holm", "Hommel", "Hochberg", "Fixed-sequence", "Fallback".
- `printDecisionRules` Boolean indicator for printing the decision rules for each of the procedures specified in "proc" (default is FALSE).

Details

This function computes adjusted \(p \)-values and generates decision rules for the Bonferroni, Holm (Holm, 1979), Hommel (Hommel, 1988), Hochberg (Hochberg, 1988), fixed-sequence (Westfall and Krishen, 2001) and fallback (Wiens, 2003; Wiens and Dmitrienko, 2005) procedures.

The adjusted \(p \)-values are computed using the closure principle (Marcus, Peritz and Gabriel, 1976) in general hypothesis testing problems (equally or unequally weighted null hypotheses). The decision rules are generated only in hypothesis testing problems with equally weighted null hypotheses.
For more information on the algorithms used in the function, see Dmitrienko et al. (2009, Section 2.6).

Value

A data frame result with columns for the raw p-values, weights, and adjusted p-values for each of the procedures.

Source

http://multxpert.com/wiki/MultXpert_package

References

See Also

paradjp

Examples

Consider a clinical trial conducted to evaluate the effect of three
doses of a treatment compared to a placebo with respect to a normally
distributed endpoint

Three null hypotheses of no effect are tested in the trial:
Null hypothesis H1: No difference between Dose 1 and Placebo
Null hypothesis H2: No difference between Dose 2 and Placebo
Null hypothesis H3: No difference between Dose 3 and Placebo

Null hypotheses of no treatment effect are equally weighted
weight<-c(1/3,1/3,1/3)

Treatment effect estimates (mean dose-placebo differences)
est<-c(2.3,2.5,1.9)

Pooled standard deviation
sd<-9.5

Study design is balanced with 180 patients per treatment arm
n<-180

Standard errors
stderrc<-rep(sd*sqrt(2/n),3)

T-statistics associated with the three dose-placebo tests
stat<-est/stderror

Compute degrees of freedom
nu<-2*(n-1)

Compute raw one-sided p-values
rawp<-1-pt(stat,nu)

Compute adjusted p-values for the Bonferroni procedure
pvaladjp(rawp, weight, proc="Bonferroni")

Compute adjusted p-values for the Hommel and Fallback procedures
pvaladjp(rawp, weight, proc=c("Hommel", "Fallback"))

Generate decision rules for the Holm procedure
using a one-sided alpha=0.025
pvaladjp(rawp, weight, alpha=0.025, proc="Holm", printDecisionRules=TRUE)

pvalci

Common *p*-value-based procedures: Simultaneous confidence intervals

Description

Computation of simultaneous confidence intervals for selected multiple testing procedures based on univariate *p*-values (Bonferroni, Holm and fixed-sequence procedures).
Usage

`pvalci(rawp, est, stderror, weight, covprob, proc)

Arguments

- `rawp` Vector of raw p-values.
- `est` Vector of point estimates.
- `stderror` Vector of standard errors associated with the point estimates.
- `weight` Vector of hypothesis weights whose sum is equal to 1 (default is a vector of equal weights).
- `covprob` Simultaneous coverage probability (default is 0.975).
- `proc` Vector of character strings containing the procedure name. This vector should include any of the following: "Bonferroni", "Holm", "Fixed-sequence".

Details

This function computes one-sided simultaneous confidence limits for the Bonferroni, Holm (Holm, 1979) and fixed-sequence (Westfall and Krishen, 2001) procedures in in general one-sided hypothesis testing problems (equally or unequally weighted null hypotheses).

The simultaneous confidence intervals are computed using the methods developed in Hsu and Berger (1999), Strassburger and Bretz (2008) and Guilbaud (2008). For more information on the algorithms used in the function, see Dmitrienko et al. (2009, Section 2.6).

Value

A data frame `result` with columns for the raw p-values, point estimates, standard errors, weights, adjusted p-values, and simultaneous confidence limits for each of the procedures.

Source

http://multxpert.com/wiki/MultXpert_package

References

See Also

parci

Examples

Consider a clinical trial conducted to evaluate the effect of three
doses of a treatment compared to a placebo with respect to a normally
distributed endpoint

Three null hypotheses of no effect are tested in the trial:
Null hypothesis H1: No difference between Dose 1 and Placebo
Null hypothesis H2: No difference between Dose 2 and Placebo
Null hypothesis H3: No difference between Dose 3 and Placebo

Null hypotheses of no treatment effect are equally weighted
weight<-c(1/3,1/3,1/3)

Treatment effect estimates (mean dose-placebo differences)
est<-c(2.3,2.5,1.9)

Pooled standard deviation
sd<-9.5

Study design is balanced with 180 patients per treatment arm
n<-180

Standard errors
stderr<-rep(sd*sqrt(2/n),3)

T-statistics associated with the three dose-placebo tests
stat<-est/stderror

Compute degrees of freedom
nu<-2*(n-1)

Compute raw one-sided p-values
rawp<-1-pt(stat,nu)

Compute lower one-sided simultaneous confidence limits
for the Bonferroni procedure
pvalci(rawp,est,stderr,weight,covprob=0.975,proc="Bonferroni")

Compute lower one-sided simultaneous confidence limits
for the Holm and Fixed-sequence procedures
pvalci(rawp, est, stderr, weight, covprob=0.975, proc=c("Holm", "Fixed-sequence"))
Index

*Topic confidence limits
 parci, 4
 pvalci, 10

*Topic procedure
 parci, 4
 pvalci, 10

paradjp, 2, 9
parci, 4, 5, 12
pargateadjp, 6
pvaladjp, 3, 8
pvalci, 10