Package ‘mumm’

August 15, 2018

Type Package
Title Multiplicative Mixed Models using the Template Model Builder
Version 0.2.1
Date 2018-08-14
Maintainer Sofie Poedenphant <sofp@dtu.dk>
License GPL (>= 2)
Imports TMB, Rcpp, Matrix, stringr, methods
Depends lme4
LinkingTo TMB, RcppEigen, Rcpp
LazyData TRUE
RoxygenNote 6.1.0
URL http://github.com/sofpj/mumm
BugReports http://github.com/sofpj/mumm/issues
Encoding UTF-8
Suggests knitr
Repository CRAN
NeedsCompilation yes
Author Sofie Poedenphant [aut, cre],
Per Bruun Brockhoff [aut]
Date/Publication 2018-08-15 11:00:03 UTC
R topics documented:

- `confint.mumm` ... 2
- `lrt` ... 3
- `mumm` ... 4
- `ranef.mumm` ... 6

Index ... 8

**confint.mumm
Confidence Intervals for Model Parameters**

Description

Computes confidence intervals for the fixed effect parameters and the variance components for an object of class `mumm`.

Usage

```r
# S3 method for class 'mumm'
confint(object, parm = "all", level = 0.95, ...)
```

Arguments

- `object` an object of class `mumm`.
- `parm` a vector of parameter names or a matrix, where the rows specify linear combinations of the model parameters. If missing, confidence intervals will be computed for all of the fixed effect parameters and all of the variance components.
- `level` the confidence level.
- `...` Currently not used.

Details

The confidence intervals are computed by the profile likelihood method.

Value

A matrix with the first column showing the lower confidence limit and the second column showing the upper limit for each parameter or linear combination of parameters.

Examples

```r
set.seed(100)
sigma_e <- 1.5
sigma_a <- 0.8
sigma_b <- 0.5
sigma_d <- 0.7
nu <- c(8.2, 6.2, 2.3, 10.4, 7.5, 1.9)
```
nA <- 15
nP <- 6
nR <- 5

a <- rnorm(nA, mean = 0, sd = sigma_a)
b <- rnorm(nA, mean = 0, sd = sigma_b)
d <- rnorm(nA*nP, mean = 0, sd = sigma_d)
e <- rnorm(nA*nP*nR, mean = 0, sd = sigma_e)

Assessor <- factor(rep(seq(1,nA),each = (nP*nR)))
Product <- factor(rep(rep(seq(1,nP),each = nR), nA))
AssessorProduct <- (Assessor:Product)

sim_data <- data.frame(y, Assessor, Product)

fit <- mumm(y ~ 1 + Product + (1|Assessor) + (1|Assessor:Product) + mp(Assessor,Product) ,data = sim_data)

confint(fit, parm = c('Product3', 'mp Assessor:Product'), level = 0.90)

lrt

Likelihood Ratio Test

Description

A function to perform a likelihood ratio test for testing two nested models against each other.

Usage

lrt(fit1, fit2)

Arguments

fit1
a fitted model object of class `mumm`.

fit2
a fitted model object of class `mumm`, `lm` or `merMod`.

Details

Performs the likelihood ratio test for testing two nested models against each other. The model in `fit2` should be nested within the model in `fit1`.

Value

A matrix with the likelihood ratio test statistic and the corresponding p-value.
Examples

```r
set.seed(100)
sigma_e <- 1.5
sigma_a <- 0.8
sigma_b <- 0.5
sigma_d <- 0.7
nu <- c(8.2, 6.2, 2.3, 10.4, 7.5, 1.9)
nA <- 15
nP <- 6
nR <- 5
a <- rnorm(nA, mean = 0, sd = sigma_a)
b <- rnorm(nA, mean = 0, sd = sigma_b)
d <- rnorm(nA*nP, mean = 0, sd = sigma_d)
e <- rnorm(nA*nP*nR, mean = 0, sd = sigma_e)
Assessor <- factor(rep(seq(1, nA), each = (nP*nR)))
Product <- factor(rep(rep(seq(1, nP), each = nR), nA))
AssessorProduct <- (Assessor:Product)

sim_data <- data.frame(y, Assessor, Product)

fit <- mumm(y ~ 1 + Product + (1|Assessor) + (1|Assessor:Product) + mp(Assessor,Product) ,data = sim_data)

fit2 <- mumm(y ~ 1 + Product + (1|Assessor) + mp(Assessor,Product) ,data = sim_data)

lrt(fit, fit2)
```

mumm

Fit Multiplicative Mixed Models with TMB

Description

Fit a multiplicative mixed-effects model to data with use of the Template Model Builder.

Usage

```r
mumm(formula, data, cor = TRUE, start = c(), control = list())
```

Arguments

- `formula`: a two-sided formula object describing the linear fixed-effects and random-effects part together with the multiplicative part. The response is on the left of a `~` operator and the terms which are separated by `+` operators are on the right. The random-effect terms are recognized by vertical bars `|`, separating an expression
for a model matrix and a grouping factor. The syntax for the multiplicative term is 'mp("random effect","fixed effect")'.

data a data frame containing the variables in the formula.

cor logical. If FALSE the random effect in the multiplicative term is assumed to be independent of the corresponding random main effect.

start a numeric vector of starting values for the parameters in the model.

control a list of control parameters passed on to the nlminb function used for the optimization.

Details

Fit a multiplicative mixed model via maximum likelihood with use of the Template Model Builder. A multiplicative mixed model is here considered as a model with a linear mixed model part and one multiplicative term. A multiplicative term is here defined as a product of a random effect and a fixed effect, i.e. a term that models a part of the interaction as a random coefficient model based on linear regression on a fixed main effect.

Value

An object of class mumm.

Examples

```r
set.seed(100)
sigma_e <- 1.5
sigma_a <- 0.8
sigma_b <- 0.5
sigma_d <- 0.7
nu <- c(8.2, 6.2, 2.3, 10.4, 7.5, 1.9)
na <- 15
nP <- 6
nr <- 5
a <- rnorm(na, mean = 0, sd = sigma_a)
b <- rnorm(na, mean = 0, sd = sigma_b)
d <- rnorm(na*nP, mean = 0, sd = sigma_d)
e <- rnorm(na*nP*nr, mean = 0, sd = sigma_e)
Assessor <- factor(rep(seq(1,na),each = (nP*nr)))
Product <- factor(rep(rep(seq(1,nP),each = nR), na))
AssessorProduct <- (Assessor:Product)
sim_data <- data.frame(y, Assessor, Product)
fit <- mumm(y ~ 1 + Product + (1|Assessor) + (1|Assessor:Product) +
            mp(Assessor,Product) ,data = sim_data)
```
Description

A function to extract the estimated random effects from a model object of class mumm.

Usage

```r
## S3 method for class 'mumm'
ranef(object, ...)
```

Arguments

- `object`: an object of class "mumm"
- `...`: Currently not used

Value

A named list with the estimated random effects, where each element in the list is a numeric vector consisting of the estimated random effect coefficients for a random factor in the model.

Examples

```r
set.seed(1)

sigma_e <- 1.5
sigma_a <- 0.8
sigma_b <- 0.5
sigma_d <- 0.7
nu <- c(8.2, 6.2, 2.3, 10.4, 7.5, 1.9)

nA <- 15
nP <- 6
nR <- 5

a <- rnorm(nA, mean = 0, sd = sigma_a)
b <- rnorm(nA, mean = 0, sd = sigma_b)
d <- rnorm(nA*nP, mean = 0, sd = sigma_d)
e <- rnorm(nA*nP*nR, mean = 0, sd = sigma_e)

Assessor <- factor(rep(seq(1,nA),each = (nP*nR)))
Product <- factor(rep(rep(seq(1,nP),each = nR), nA))
AssessorProduct <- (Assessor:Product)


sim_data <- data.frame(y, Assessor, Product)

fit <- mumm(y ~ 1 + Product + (1|Assessor) + (1|Assessor:Product) +
```
\texttt{ranef.mumm}

\begin{verbatim}
mp(\texttt{Assessor,Product}, data = \texttt{sim_data})

\texttt{ranef(fit)}
\end{verbatim}
Index

confint.mumm, 2
lrt, 3
mumm, 4
ranef.mumm, 6