Package ‘munsellinterpol’

July 20, 2019

Type Package

Title Interpolate Munsell Renotation Data from Hue/Chroma to CIE/RGB

Version 2.5-1

Encoding UTF-8

Date 2019-07-20

Description Methods for interpolating data in the Munsell color system following the ASTM D-1535 standard. Hues and chromas with decimal values can be interpolated and converted to/from the Munsell color system and CIE xyY, CIE XYZ, CIE Lab, CIE Luv, or RGB. Includes ISCC-NBS color block lookup. Based on the work by Paul Centore, “The Munsell and Kubelka-Munk Toolbox”.

License GPL (>= 3)

LazyLoad yes

LazyData yes

Depends R (>= 3.2.0)

Imports rootSolve, spacesRGB, spacesXYZ

Suggests microbenchmark, mgcv, knitr, rmarkdown, flextable

Author Jose Gama [aut, trl].
Paul Centore [aut, cph],
Glenn Davis [aut, cre]

Maintainer Glenn Davis <gdavis@gluonics.com>

Repository CRAN

NeedsCompilation no

VignetteBuilder knitr

BuildVignettes yes

Date/Publication 2019-07-20 04:30:05 UTC
Description

CentroidsISCCNBS is a table with the centroids of the revised ISCC-NBS Color-Name Blocks.

Format

This data.frame has 267 rows and these columns:

- **Number** ISCC-NBS number (an integer from 1 to 267)
- **Name** ISCC-NBS name
- **MunsellSpec** Munsell specification of the centroid of the block a (character string)
Details
The earliest paper I am aware of is by Nickerson, et. al. in 1941. After the big Munsell renotation in 1943, the name blocks were revised in 1955. When the central colors were recomputed in Kelly (1958), they were called the "Central Colors", though the text makes it clear that most are truly centroids, which were computed from the centroid of an "elementary shape", which is a "sector of a right cylindrical annulus". For the "peripheral blocks" of high chroma, the centroids were "estimated graphically by plotting the MacAdam limits". In Kelly (1965) these were called "centroid colors", and that is the name we will use here.

Contributor
Glenn Davis

References

Examples
print(CentroidsISCCNBS[1:5,])

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>MunsellSpec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vivid pink</td>
<td>1.5R 7/13</td>
</tr>
<tr>
<td>2</td>
<td>strong pink</td>
<td>1.5R 7.5/9.1</td>
</tr>
<tr>
<td>3</td>
<td>deep pink</td>
<td>1.9R 6.0/11.1</td>
</tr>
<tr>
<td>4</td>
<td>light pink</td>
<td>2.5R 8.6/5.2</td>
</tr>
<tr>
<td>5</td>
<td>moderate pink</td>
<td>2.5R 7.2/5.2</td>
</tr>
</tbody>
</table>

ColorBlockFromMunsell
Get ISCC-NBS Number and ISCC-NBS Name from Munsell Hue, Value, and Chroma
Description

Get ISCC-NBS Number and ISCC-NBS Name from Munsell Hue, Value, and Chroma.

Usage

colorBlockFromMunsell(MunsellSpec)

Arguments

MunsellSpec a numeric Nx3 matrix or a vector that can be converted to such a matrix. Each row has Munsell HVC, where H is Hue Number, and V and C are the standard Munsell Value and Chroma. The Hue is automatically wrapped to the interval (0,100]. MunsellSpec can also be a character N-vector with standard Munsell notation; it is converted to an Nx3 matrix.

Details

The ISCC-NBS System is a partition of Munsell Color Solid into 267 color blocks. Each block is a disjoint union of elementary blocks, where an elementary block is defined by its minimum and maximum limits in Hue, Value, and Chroma. Some blocks are non-convex. The peripheral blocks, of which there are 120, have arbitrary large chroma and are considered semi-infinite for this function; there is no consideration of the MacAdam limits. For each query vector HVC, the function searches a private data.frame with 932 elementary blocks, for the one elementary block that contains it.

Value

A data.frame with N rows and these columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVC</td>
<td>the input Nx3 matrix, or such a matrix converted from Munsell notation</td>
</tr>
<tr>
<td>Number</td>
<td>the corresponding ISCC-NBS color number - an integer from 1 to 267</td>
</tr>
<tr>
<td>Name</td>
<td>the corresponding ISCC-NBS color name - a character string</td>
</tr>
<tr>
<td>Centroid</td>
<td>the centroid of the block in Munsell Notation - a character string; see CentroidsISCCNBS</td>
</tr>
</tbody>
</table>

The rownames are set to the input MunsellSpec.

History

The Munsell Book of Color was published in 1929. The first ISCC-NBS partition, in 1939, had 319 blocks and names (including 5 neutrals). There were no block numbers. The aimpoints of the Munsell samples were thoroughly revised in 1943. The ISCC-NBS partition was revised in 1955, and this is the version used here.

Future Work

It might be useful to compute the distance from the query point to the boundary of the containing color block.
Author(s)

Glenn Davis

References

See Also

CentroidsISCCNBS

Examples

ColorBlockFromMunsell(c("3R 8/3", "7.4YR 3/4"))

HVC.H HVC.V HVC.C Number Name Centroid
3R 8/3 3.0 8.0 3.0 4 light pink 2.5R 8.6/5.2
7.4YR 3/4 17.4 3.0 4.0 58 moderate brown 5.5YR 3.5/3.9

ColorlabFormatToMunsellSpec

Convert Colorlab Munsell Format to Munsell HVC

Description

Convert Colorlab Munsell Format to Munsell HVC

Usage

ColorlabFormatToMunsellSpec(HVCH)

Arguments

HVCH a numeric Nx4 matrix, or a vector that can be converted to such a matrix, by row. Each row of the matrix contains an HVCH vector.
Details

Colorlab Munsell format uses 4 numbers.

1. Hue Step, in the interval (0,10], or 0 for neutrals
2. Munsell Value, in the interval (0,10]
3. Munsell Chroma, non-negative
4. Hue Index, an integer from 1 to 10, or 0 for neutrals

Value

an Nx3 matrix, with each row an HVC vector. Value and Chroma are simply copied unchanged. The complex part is conversion of Colorlab Hue Step and Hue Index to Hue Number. For neutrals, both Hue Step and Hue Index are ignored. Invalid input values, such as a Hue Index that is not an integer from 0 to 10 (except for neutrals), are converted to NAs. The rownames of the input are copied to the output, but if these are NULL, the rownames are set to the Munsell notations.

Author(s)

Jose Gama and Glenn Davis

References

See Also

MunsellSpecToColorlabFormat()

Examples

ColorlabFormatToMunsellSpec(c(3.2,3,2,1, 2,5.1,0,0, 2,5.1,0.1,0))
H V C
3.20B 3.00/2.00 63.2 3.0 2
N 5.10/ 0.0 5.1 0
<NA> NA NA NA

HVCfromMunsellName Convert Munsell Notation to numerical HVC

Description

Convert Munsell Notation to numerical HVC

Usage

HVCfromMunsellName(MunsellName)
MunsellHVC(MunsellName)
HueNumberFromString(HueString)
Arguments

- **MunsellName**: a character vector of length N > 0, where each string should be a valid Munsell notation, e.g. '2.3P 5/2.3', '9.2YR 3/6', 'N 2.3/', and 'N 4/0'. Whitespace is optional and ignored. It is OK for a neutral to end in either '/-' or '/0'.

- **HueString**: a character vector of length N > 0, where each string should be the initial hue part of a Munsell notation, e.g. '4.5GY', '2.5R', '10.3B', etc. Whitespace is optional and ignored. Neutrals, denoted by 'N', are invalid because the hue is undefined.

Value

- `HVCfromMunsellName()` returns a numeric Nx3 matrix with HVC in the rows. For neutral colors, both H and C are set to 0. If a string cannot be parsed, the entire row is set to NAs. The rownames are set to `MunsellName`.

- `MunsellHVC()` returns a character Nx3 matrix with HVC in the rows, and is there for backward compatibility with older versions of the package. For neutral colors, H is set to 'N' and C is set to '0'.

- `HueNumberFromString()` returns the hue number H (in (0,100]). If the string cannot be parsed, or the color is neutral, the output is set to NA.

For all functions the Hue Number is wrapped to (0,100].

Note

Ever since the *Munsell Book of Color* (1929), the Munsell hue circle has been divided into 10 *principal hues* or arcs. And each principal hue has been assigned a 10-point scale, with 5 at the midpoint of the arc. Moreover, the hue "origin" has been at '10RP'. So a 100-point scale (with no letters) for the entire hue circle is obvious and trivial to construct, but I have been unable to determine the first explicit mention of such a scale. The earliest I have have found is from *Nimeroff* (1968), Figures 20 and 21 on page 27.

There is a reference to *ASTM D 1535* in the References of *Nimeroff*, but it is not dated, and the 2 figures are not attributed to it. There was an *ASTM D 1535* in 1968 but I have not been able to locate it; it is possible that the 100-point scale first appeared in *ASTM D-1535* (1968), or even earlier in *ASTM D 1525-58T* (1958).

Interestingly, in the *Atlas of the Munsell Color System* (1915) there were only 5 principal hues, and each arc was assigned a 10-point scale. If the entire hue circle were assigned a scale, it would have been a 50-point scale.

Author(s)

Glenn Davis

References

Munsell Book of Color: defining, explaining, and illustrating the fundamental characteristics of color. Munsell Color Co. 1929.

See Also

MunsellNameFromHVC(), HueStringFromNumber()

Examples

HVCfromMunsellName(c("4.2P 2.9/3.8", "N 2.3/", "N 8.9/0"))
H V C
4.2P 2.9/3.8 84.2 2.9 3.8
N 2.3/ 0.0 2.3 0.0
N 8.9/0 0.0 8.9 0.0

HueNumberFromString(c('4B','4.6GY','10RP','N'))
[1] 64.0 34.6 100.0 NA

IsWithinMacAdamLimits

Test xyY Coordinates for being Inside the MacAdam Limits

Description

Test xyY Coordinates for being Inside the MacAdam Limits for Illuminants C and D65

Usage

IsWithinMacAdamLimits(xyY, Illuminant='C')

Arguments

xyY a numeric Nx3 matrix with CIE xyY coordinates in the rows, or a vector that can be converted to such a matrix, by row. The reference white is assummed to have Y=100.

Illuminant either 'C' or 'D65'. Partial matching is enabled, and is case-insensitive.

Details

The MacAdam Limit is the boundary of the optimal color solid (also called the Rösch Farbkörper), in XYZ coordinates. The optimal color solid is convex and depends on the illuminant. Points on the boundary of the solid are called optimal colors.

It is symmetric about the midpoint of the segment joining black and white (the 50% gray point). It can be expressed as a zonohedron - a convex polyhedron with a special form; for details on zonohedra, see Centore.

For each of the 2 illuminants, a zonohedron Z is pre-computed (and stored in sysdata.rda). The wavelengths used are 380 to 780 nm with 5nm step (81 wavelengths). Each zonohedron has
\(81 \times 80 = 6480 \) parallelogram faces, though some of them are coplanar. \(Z \) is expressed as the intersection of 6480 halfspaces. The plane equation of each parallelogram is pre-computed, but redundant ones are not removed (in this version).

For testing a query point \(xY \), a pseudo-distance metric \(\delta \) is used. Let the zonohedron \(Z \) be the intersection of the halfspaces \((h_i, x \) \() \leq b_i \) \(i = 1, \ldots, n \) where each \(h_i \) is a unit vector. The point \(xY \) is converted to \(XYZ \), and \(\delta(XYZ) \) is computed as: \(\delta(XYZ) := \max \left(\langle h_i, XYZ \rangle - b_i \right) \) where the maximum is taken over all \(i = 1, \ldots, n \). This calculation can be optimized; because the zonohedron is centrally symmetric, only half of the planes actually have to be stored, and this cuts the memory and processing time in half. It is clear that \(XYZ \) is within the zonohedron iff \(\delta(XYZ) \leq 0 \), and that \(XYZ \) is on the boundary iff \(\delta(XYZ) = 0 \). This pseudo-distance is part of the returned \texttt{data.frame}.

An interesting fact is that if \(\delta(XYZ) > 0 \), then \(\delta(XYZ) \leq \text{dist}(XYZ, Z) \), with equality iff the segment from \(XY \) to the point \(z \) on the boundary of \(Z \) closest to \(XYZ \) is normal to one of the faces of \(Z \) that contains \(z \). This is why we call \(\delta \) a pseudo-distance. Another interesting fact is that if \(\delta(XYZ) \leq 0 \), then \(\delta(XYZ) = -\min \left(\Psi_Z(u) - \langle u, XYZ \rangle \right) \), where the minimum is taken over all unit vectors \(u \) and where \(\Psi_Z \) is the support function of \(Z \).

\section*{Value}

A \texttt{data.frame} with \(N \) rows and these columns:

- \texttt{within} a logical which is \texttt{TRUE} iff the corresponding row in \(xY \) is inside the optimal color solid for the illuminant. If a point is exactly on the boundary (unlikely), \(\text{within} = \text{TRUE} \). Explicitly, \(\text{within} = (\delta \leq 0) \).
- \texttt{delta} the pseudo-distance \(\delta \) discussed in Details

The row names of the output value are set equal to the row names of \(xY \).

\section*{Author(s)}

Glenn Davis and Jose Gama

\section*{References}

\section*{Examples}

\begin{verbatim}
IsWithinMacAdamLimits(c(0.6,0.3,10, 0.6,0.3,20, 0.6,0.3,30, 0.6,0.3,40), 'C')
within delta
1 TRUE -1.941841
2 TRUE -1.332442
3 FALSE 3.513491
\end{verbatim}
LabtoMunsell

Convert CIE Lab coordinates into a Munsell specification

Description

LabtoMunsell converts CIE Lab coordinates to a Munsell specification, by interpolating over the extrapolated Munsell renotation data.

Usage

LabtoMunsell(Lab, white=c(95.047,100,108.883), adapt='Bradford', ...)

Arguments

Lab
CIE Lab coordinates An Nx3 matrix, or a vector that can be converted to such a matrix. Each row of the matrix has Lab.

white
XYZ for the source white. The default is Illuminant=D65, 2 observer

adapt
method for chromatic adaptation, see CAT() for valid values. Also see Details.

...
other parameters passed to XYZtoMunsell()

Details

The conversion is done in 3 steps.

• Lab → XYZ using XYZfromLab() with the given white.
• XYZ is then adapted from the given white to Illuminant C using the given adapt method.
• XYZ → HVC using XYZtoMunsell().

Value

An Nx3 matrix with the Munsell HVC coordinates in each row. The rownames are set to those of Lab.

Author(s)

Jose Gama and Glenn Davis

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

See Also

CAT(), XYZfromLab(), XYZtoMunsell()
LuvtoMunsell

Examples

LuvtoMunsell(c(74.613450, -20.4, 10.1))

LuvtoMunsell Convert CIE Luv coordinates into a Munsell specification

Description

LuvtoMunsell Converts CIE Luv coordinates into a Munsell specification, by interpolating over
the extrapolated Munsell renotation data

Usage

LuvtoMunsell(Luv, white=c(95.047,100,108.883), adapt='Bradford', ...)

Arguments

Luv CIE Luv coordinates An Nx3 matrix, or a vector that can be converted to such a
matrix. Each row of the matrix has Luv.
white XYZ for the reference white. The default is Illuminant=D65, 2 observer
adapt method for chromatic adaptation, see Details
... other parameters passed to XYZtoMunsell()

Details

The conversion is done in 3 steps.

• Luv → XYZ using XYZfromLuv() with the given white.
• XYZ is then adapted from the given white to Illuminant C using the given chromatic adap-
tation method, see CAT().
• XYZ → HVC using XYZtoMunsell()

Value

An Nx3 matrix with the Munsell HVC coordinates in each row. The rownames are set to those of
Luv.

Author(s)

Jose Gama and Glenn Davis

References

net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html
The Munsell HVC to xy 3D Lookup Table

Description

This is the discrete data for the Munsell Renotation System, which is often considered to be the most perceptually uniform color atlas. It was created by the NBS and OSA from "3,000,000 color judgments" by 40 observers.

Format

A data frame with 4995 observations of the following 6 variables.

- \(H \) the Munsell Hue. Each \(H \) is a multiple of 2.5 and in the interval \((0,100]\).
- \(V \) the Munsell Value. Each \(V \) is an integer from 1 to 10, or one of 0.2, 0.4, 0.6, 0.8
- \(C \) the Munsell Chroma. Each \(C \) is a positive even integer.
- \(x \) the x chromaticity coordinate, for Illuminant C.
- \(y \) the y chromaticity coordinate, for Illuminant C.
- \(\text{real} \) a logical value. If true then \(x,y \) were published, otherwise they have been extrapolated.

Note that the luminance factor \(Y \) is *not* here, since \(Y \) is a simple function of \(V \), see \(YfromV() \).

Details

All the \((x,y)\) data here comes from the file \(\text{all.dat} \) downloaded from Rochester Institute of Technology, see Source. The file \(\text{real.dat} \) is a subset, and contains the \((x,y)\) published in Newhall, et. al. (1943). These rows have \(\text{real}=\text{TRUE} \) and are only for Value \(\geq 1 \). There are 2734 of these. Similarly, for Value<1 (very dark colors), \((x,y)\) data from the paper Judd et. al. (1956) also have \(\text{real}=\text{TRUE} \). There are 355 of these.
So \(\text{all.dat} \) has 4995 colors, of which 2734+355=3089 are "real" colors, and the remaining 1906 are extrapolated. I am confident that the extrapolation was done by Schleter et. al. (1958) at the NBS, and put online by the Rochester Institute of Technology. For more details, and the abstract of the 1958 article, see the \textit{munsellinterpol User Guide}.

Note

For the purpose of this package, I have found that the extrapolated \((x,y)\) for \(V \geq 1 \) work well. But for \(V < 1 \) they did not work so well, and I was able to get better results with my own extrapolation. Moreover, to get reliable results in this package for high Chroma, it was necessary to extrapolate past the data in \(\text{all.dat} \).
MunsellNameFromHVC

Author(s)
Glenn Davis

Source

References

See Also
YfromV()

Examples
str(Munsell2xy)

'data.frame': 4995 obs. of 6 variables:
$ H : num 32.5 35 37.5 37.5 40 40 42.5 42.5 45 45 ...
$ V : num 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 ...
$ C : num 2 2 2 4 2 4 2 4 2 4 ...
$ x : num 0.713 0.449 0.262 -0.078 0.185 -0.257 0.144 -0.235 0.117 -0.209 ...
$ y : num 1.414 1.145 0.837 2.16 0.676 ...
$ real: logi FALSE FALSE FALSE FALSE TRUE FALSE ...

MunsellNameFromHVC Convert Munsell Numeric to Munsell String Notation

Description
Convert Munsell Numeric to Munsell String Notation

Usage
MunsellNameFromHVC(HVC, format='g', digits=2)

HueStringFromNumber(Hue, format='g', digits=2)
Arguments

HVC a numeric Nx3 matrix or a vector that can be converted to such a matrix. Each row has an HVC vector, where H is Hue Number, and V and C are the standard Munsell Value and Chroma. The Hue is automatically wrapped to the interval (0,100].

Hue a numeric vector of Hue Numbers, which are automatically wrapped to the interval (0,100].

format determines the meaning of the argument digits, and usually equal to 'g' or 'f' though other options are available, see formatC() for details. When format='f' trailing 0s might be displayed.

digits when format='g' the number of significant digits, and when format='f' the number of digits displayed after the decimal point. Both format and digits are passed as arguments to formatC().

Value

Both functions return a character vector of length N. MunsellNameFromHVC() returns the full notation. HueStringFromNumber() returns just initial the hue part; which is useful for labeling plots.

Note

If format='f', then Chroma is first rounded to to the given digits. Chromas close to 0 may then become 0 and be displayed as a neutral, see Examples. The width argument of formatC() is always set to 1, to suppress leading spaces.

Author(s)

Glenn Davis

References

See Also

formatC(), HVCfromMunsellName(), HueNumberFromString()

Examples

MunsellNameFromHVC(c(39,5.1,7.3, 0,5.1234,0.003))
[1] "9GY 5.1/7.3" "10RP 5.1/0.003"

MunsellNameFromHVC(c(39,5.1,7.34, 0,5.1234,0.003), format='f')
[1] "9.00GY 5.10/7.34" "N 5.10/"

HueStringFromNumber(seq(2.5, 100, by=2.5)) # make nice labels for a plot
[1] "2.5R" "SR" "7.5R" "10R" "2.5YR" "5YR" "7.5YR" "10YR" "2.5Y"
[10] "5Y" "7.5Y" "10Y" "2.5GY" "5GY" "7.5GY" "10GY" "2.5G" "5G"
MunsellSpecToColorlabFormat

Convert Munsell Specification to Colorlab Format

Description

Convert Munsell Specification to Colorlab Format

Usage

```r
MunsellSpecToColorlabFormat(MunsellSpec)
```

Arguments

- **MunsellSpec**

a numeric Nx3 matrix, or a vector that can be converted to such a matrix, by row. Each row of the matrix contains an HVC vector. H is automatically wrapped to the interval (0,100].

MunsellSpec can also be a character vector with Munsell Notation; which is converted to an Nx3 matrix using `HVCfromMunsellName()`.

Details

Colorlab Munsell format uses 4 numbers.

1. Hue Step, in the interval (0,10], or 0 for neutrals. In Colorlab documentation it is called the *hue shade*. It is also the Hue Number H mod 10 (unless H is an exact multiple of 10).
2. Munsell Value, in the interval [0,10]
3. Munsell Chroma, non-negative
4. Hue Index, an integer from 1 to 10, or 0 for neutrals. This index defines the *principal hue*, see Details.

Value

an Nx4 matrix, with rows as described in Details. Value and Chroma are simply copied unchanged. The complex part is conversion of Hue Number to Colorlab Hue Step and Hue Index. If Chroma is 0, both the Hue Step and Hue Index are set to 0. Invalid input values are converted to NAs.

If the input is a character vector, the rownames of the returned matrix are set to that vector.
Note

The Colorlab format is closer to the Munsell Book of Color (1929) than HVC. In the book the hue circle is divided into 10 principal hues - 5 simple and 5 compound. The 10 hue labels are: R, YR, Y, GY, G, BG, B, PB, P (simple are 1 letter and compound are 2 letters). In Colorlab these labels are replaced by the Hue Index. WARNING: In the Munsell System, see Cleland, there is a different Hue Index - R is 1, YR is 2, ..., P is 10. The Colorlab index has a different origin, and goes around the circle in a different direction!

Each one of these major hues corresponds to an arc on the circle, with a 10-point hue scale. The midpoint of the arc has hue step = 5. Fortunately this 10-point hue scale is exactly the same as the Colorlab Hue Step.

Author(s)

Jose Gama and Glenn Davis

References

Cleland, T. M. A Practical description of the Munsell Color System with Suggestions for its Use. (1921)

See Also

HVCfromMunsellName(), ColorlabFormatToMunsellSpec()

Examples

MunsellSpecToColorlabFormat(c(100,5,5, 10,3,4, 90,4,3, 77,1,2, 66,2,0, 0,1,2))
HN V C HI
10.00RP 5.00/5.00 10 5 5 8
10.00R 3.00/4.00 10 3 4 7
10.00P 4.00/3.00 10 4 3 9
7.00PB 1.00/2.00 7 1 2 10
N 2.00/ 0 2 0 0
10.00RP 1.00/2.00 10 1 2 8

MunsellToLab

Convert a Munsell specification to CIE Lab coordinates

Description

MunsellToLab Converts a Munsell specification to CIE Lab coordinates, by interpolating over the extrapolated Munsell renotation data

Usage

MunsellToLab(MunsellSpec, white=c(95.047,100,108.883), adapt='Bradford', ...)
Arguments

MunsellSpec a numeric Nx3 matrix with HVC values in the rows, or a vector that can be converted to such a matrix, by row.
MunsellSpec can also be a character vector with Munsell Notations, which is converted to an Nx3 matrix using HVCfromMunsellName()
white XYZ for the destination white. The default is Illuminant=D65, 2 observer
adapt method for chromatic adaptation, see CAT() for valid values. Also see Details.
... other parameters passed to MunsellToXYZ()

Details

The conversion is done in 3 steps.

- HVC → XYZ using MunsellToXYZ()
- XYZ is adapted from Illuminant C to the given white using adaptXYZ() and the given chromatic adaptation method
- XYZ → Lab using LabfromXYZ() with the given white

Value

An Nx3 matrix with the Lab coordinates in each row. The rownames are copied from input to output.

Author(s)

Jose Gama and Glenn Davis

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

See Also

LabtoMunsell(), MunsellToXYZ(), LabfromXYZ(), adaptXYZ(), CAT()

Examples

MunsellToLab('7.6P 8.9/2.2')
MunsellToLuv

Convert a Munsell specification to CIE Luv coordinates

Description

MunsellToLuv converts a Munsell specification to CIE Luv coordinates, by interpolating over the extrapolated Munsell renotation data.

Usage

MunsellToLuv(MunsellSpec, white=c(95.047,100,108.883), adapt='Bradford', ...)

Arguments

MunsellSpec
a numeric Nx3 matrix with HVC values in the rows, or a vector that can be converted to such a matrix, by row. MunsellSpec can also be a character vector with Munsell Notations, which is converted to an Nx3 matrix using HVCfromMunsellName()

white
XYZ for the destination white. The default is Illuminant=D65, 2 observer

adapt
method for chromatic adaptation, see CAT() for valid values. Also see Details.

...
other parameters passed to MunsellToXYZ()

Details

The conversion is done in 3 steps.

• HVC → XYZ using MunsellToXYZ()
• XYZ is adapted from Illuminant C to the given white using the given chromatic adaptation method
• XYZ → Luv using LuvfromXYZ() with the given white

Value

An Nx3 matrix with the Luv coordinates in each row. The rownames are copied from input to output.

Author(s)

Jose Gama and Glenn Davis

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html
MunsellToRGB

See Also

LuvtoMunsell(), MunsellToXYZ(), CAT(), LuvfromXYZ()

Examples

MunsellToLuv('7.6P 8.9/2.2')

MunsellToRGB

Convert a Munsell specification to RGB coordinates

Description

MunsellToRGB Converts a Munsell specification to RGB coordinates, by interpolating over the extrapolated Munsell renotation data

Usage

MunsellToRGB(MunsellSpec, space='sRGB', maxSignal=255, adapt='Bradford', ...)

Arguments

MunsellSpec a numeric Nx3 matrix with HVC values in the rows, or a vector that can be converted to such a matrix, by row. MunsellSpec can also be a character vector with Munsell Notations, which is converted to an Nx3 matrix using HVCfromMunsellName().

space the name of an installed RGB space. Spaces 'sRGB' and 'AdobeRGB' are pre-installed, and others can be installed with installRGB().

maxSignal maximum of the non-linear signal RGB; Other popular values are 1, 1023, and 65535

adapt method for chromatic adaptation, see CAT() for valid values. Also see Details.

... other parameters passed to MunsellToxyY()

Details

The conversion is done in these steps.

- HVC → xyY using MunsellToxyY(). This xyY is for Illuminant C.
- xyY is adapted from Illuminant C to the white-point of the RGB space using adaptxyY() and the given chromatic adaptation method
- xyY → XYZ using XYZfromxyY()
- XYZ → RGB using RGBfromXYZ() with the given space and maxSignal
MunsellTosRGB

Convert a Munsell specification to sRGB coordinates

Description

MunsellTosRGB Converts a Munsell specification to non-linear sRGB coordinates, by interpolating over the extrapolated Munsell renotation data

Usage

MunsellTosRGB(MunsellSpec, maxSignal=255, ...)
MunsellToRGB

Arguments

- `MunsellSpec` a numeric Nx3 matrix with HVC values in the rows, or a vector that can be converted to such a matrix, by row. `MunsellSpec` can also be a character vector with Munsell Notations, which is converted to an Nx3 matrix using `HVCfromMunsellName()`.
- `maxSignal` maximum of signal sRGB; Other popular values are 1, 1023, and 65535
- ... other parameters passed to `MunsellToxyY()`

Details

The conversion is done in these steps.

- HVC → xyY using `MunsellToxyY()`. This xyY is for Illuminant C.
- xyY is adapted from Illuminant C to Illuminant D65 (from the sRGB standard) using `adaptxyY()` and the Bradford chromatic adaptation method (CAT)
- xyY → XYZ using `XYZfromxyY()`
- XYZ → sRGB using `RGBfromXYZ()` with the given `maxSignal`

Value

A `data.frame` with these columns

- `xyY` an Nx3 matrix with xyY values in the rows, that are adapted to Illuminant C. This is an intermediate result that is sometimes useful, e.g. it can be passed to `IsWithinMacAdamLimits()`.
- `RGB` an Nx3 matrix with non-linear signal sRGB values in the rows. All values are clamped to the appropriate cube, e.g. \([0, 255]^3\)
- `OutOfRange` logical vector, TRUE means the result was out of gamut (the cube) before clamping it

Note

The function `MunsellToRGB()` also performs this conversion. The only reason to use this one is that it takes a little less time, since the CAT (using the Bradford method) is precomputed.

Author(s)

Jose Gama and Glenn Davis

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

See Also

`MunsellToXYZ()`, `MunsellToRGB()`, `RGBfromXYZ()`, `XYZfromxyY()`, `CAT()`, `IsWithinMacAdamLimits()`
Examples

MunsellToxyY('7.6P 8.9/2.2')
SAMPLE_NAME xyY.x xyY.y xyY.Y RGB.R RGB.G RGB.B OutOfGamut
7.6P 8.9/2.2 7.6P 8.9/2.2 0.3109520 0.3068719 74.6134498 231.3575 221.1421 230.3501

MunsellToxyY

Convert a Munsell specification into xyY coordinates

Description

MunsellToxyY Converts a Munsell specification into xyY coordinates, by interpolating over the extrapolated Munsell renotation data

Usage

MunsellToxyY(MunsellSpec, xyC='NBS', hcinterp='bicubic', vinterp='cubic',
 YfromV='ASTM', warn=TRUE)

Arguments

MunsellSpec a numeric Nx3 matrix or a vector that can be converted to such a matrix. Each row has Munsell HVC, where H is Hue Number, and V and C are the standard Munsell Value and Chroma. The Hue is automatically wrapped to the interval (0,100]. MunsellSpec can also be a character N-vector with standard Munsell notation; it is converted to an Nx3 matrix.

xyC a numeric 2-vector with xy chromaticity of Illuminant C. It can also be one of the strings in the first column of this table; it is then replaced by the corresponding xy in the second column.

<table>
<thead>
<tr>
<th>xy white point</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>'NBS'</td>
<td>c(0.3101,0.3163)</td>
</tr>
<tr>
<td>'JOSA'</td>
<td>c(0.31012,0.31631)</td>
</tr>
<tr>
<td>'NTSC'</td>
<td>c(0.310,0.316)</td>
</tr>
<tr>
<td>'CIE'</td>
<td>c(0.31006,0.31616)</td>
</tr>
</tbody>
</table>

The default 'NBS' is probably what is intended by Newhall et. al. although no xy for C appears in that paper. This is the C used in the first computer program for conversion: Rheinboldt et al. (1960). The other options are provided so that a neutral Munsell chip has the xy that the user expects. Alternative values of xyC should not be too far from the above. If hcinterp is 'bicubic', this parameter only affects chips with Chroma < 4 (except Chroma=2). If hcinterp is 'bilinear', this parameter only affects chips with Chroma < 2.

hcinterp either 'bicubic' or 'bilinear' (partial matching enabled). In the bicubic case, for a general input point, the output value is interpolated using a 4x4 subgrid of the lookup table, and the interpolation function is class C^1 (except at
the neutrals). In the bilinear case, the interpolation uses a 2x2 subgrid, and the function is class C^0.

vinterp

either 'cubic' or 'linear' (partial matching enabled). In the cubic case, for a general input point, the output value is interpolated using 4 planes of constant Value, and the interpolation function is class C^1. In the linear case, the interpolation uses 2 planes and the function is class C^0.

YfromV

passed as the parameter which to the function YfromV(). See YfromV() for details. Option 'MGO' is not allowed because then $Y > 100$ when $V = 10$.

warn

if a chip cannot be mapped (usually because the Chroma is too large), its x and y are set to NA in the returned data.frame. Just before returning, if any rows have NA, and this argument is TRUE, then a warning is logged.

Details

In case hcinterp='bicubic' or vinterp='cubic' a Catmull-Rom spline is used; see the article Cubic Hermite spline. This spline has the nice property that it is local and requires at most 4 points. And if the knot spacing is uniform: 1) the resulting spline is C^1, 2) if the knots are on a line, the interpolated points are on the line too.

Value

a data.frame with these columns:

- **SAMPLE_NAME** the original MunsellSpec if that was a character vector. Or the Munsell notation string converted from HVC.
- **HVC** the input Nx3 matrix
- **xyY** the computed output matrix, with CIE xyY coordinates of MunsellSpec illuminated by Illuminant C. In case of error, x and y are set to NA.

Warning

Even when vinterp='cubic' the function HVC → xyY is not C^1 on the plane $V = 1$. This is because of a change in Value spacing: when $V \geq 1$ the Value spacing is 1, but when $V \leq 1$ the Value spacing is 0.2.

Note

When making plots in planes of constant Value, option hcinterp='bicubic' makes fairly smooth ovals, and hcinterp='bilinear' makes polygons. The ovals are smooth even when vinterp='linear', but the function is not class C^1 at the planes of integer Value. To get a fully C^1 function (except at the neutrals and on the plane $V = 1$), hcinterp and vinterp must be set to the defaults.

Author(s)

Jose Gama and Glenn Davis
Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html
http://www.rit.edu/science/pocs/renotation
http://www.rit-mcsl.org/MunsellRenotation/all.dat
http://www.rit-mcsl.org/MunsellRenotation/real.dat

References

National Television System Committee. [Report and Reports of Panel No. 11, 11-A, 12-19, with Some supplementary references cited in the Reports, and the Petition for adoption of transmission standards for color television before the Federal Communications Commission] (1953)

See Also

xyYtoMunsell()

Examples

MunsellToxyY('7.6P 8.9/2.2')
Convert a Munsell specification to CIE XYZ coordinates

Description

MunsellToXYZ Converts a Munsell specification to XYZ coordinates, by interpolating over the extrapolated Munsell renotation data

Usage

MunsellToXYZ(MunsellSpec, ...)

Arguments

MunsellSpec a numeric Nx3 matrix with HVC values in the rows, or a vector that can be converted to such a matrix, by row.
MunsellSpec can also be a character vector with Munsell Notations, which is converted to an Nx3 matrix using HVCfromMunsellName().

... other parameters passed to MunsellToxyY()

Details

This function calls MunsellToxyY() and XYZfromxyY().

Value

an Nx3 matrix with XYZ values in the rows. The rownames are copied from the input HVC matrix.
Exception: If the input matrix rownames are NULL, then the output rownames are the Munsell notation. Note that these XYZ values are for viewing under Illuminant C, with Y=100. There is no chromatic adaptation.

Author(s)

Jose Gama and Glenn Davis

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

See Also

MunsellToxyY(), XYZfromxyY()

Examples

MunsellToXYZ('7.6P 8.9/2.2')
NickersonColorDifference

Calculate the Nickerson Color Difference between two Colors

Description

Calculate the Nickerson Color Difference between two colors, given in Munsell coordinates; see Nickerson.

Usage

NickersonColorDifference(HVC0, HVC1, symmetric=TRUE)

Arguments

HVC0

a numeric Nx3 matrix with HVC values in the rows, or a vector that can be converted to such a matrix, by row. HVC0 can also be a numeric 3-vector with a single HVC, and it is then replicated to match the size of HVC1. HVC0 can also be a character N-vector with Munsell Notations, which is converted to an Nx3 matrix using HVCfromMunsellName().

HVC1

a numeric Nx3 matrix with HVC values in the rows, or a vector that can be converted to such a matrix, by row. HVC1 can also be a numeric 3-vector with a single HVC, and it is then replicated to match the size of HVC0. HVC1 can also be a character N-vector with Munsell Notations, which is converted to an Nx3 matrix using HVCfromMunsellName().

symmetric

if FALSE then use the original Nickerson difference formula, and if TRUE then use a symmetrized version; see Details.

Details

If $HVC0 = H_0, V_0, C_0$ and If $HVC1 = H_1, V_1, C_1$ then the original Nickerson formula is:

$$NCD(HVC0, HVC1) = 0.4C_0\Delta H + 6\Delta V + 3\Delta C$$

where $\Delta H = |H_0 - H_1|$ (on the circle), $\Delta V = |V_0 - V_1|$ and $\Delta C = |C_0 - C_1|$. Unfortunately, if HVC0 and HVC1 are swapped, the color difference is different. The first color is considered to be the reference color and the second one is the test color. The difference is not symmetric.

Another problem is that the difference is not continuous when the second color is a neutral gray, for rectangular coordinates on a plane of constant V.

Both of these problems are fixed with a slightly modified formula:

$$NCD(HVC0, HVC1) = 0.4 \min(C_0, C_1)\Delta H + 6\Delta V + 3\Delta C$$

For the first formula set symmetric=FALSE and for the second formula set symmetric=TRUE.

Value

A numeric N-vector with the pairwise differences, i.e. between row i of HVC0 and row i of HVC1.
plotLociHC

Author(s)
Jose Gama and Glenn Davis

References

See Also
LabtoMunsell(), MunsellToXYZ(), LabfromXYZ(), adaptXYZ(), CAT()

Examples
NickersonColorDifference('7.6P 8.9/2.2', '8P 8.2/3')

plotLociHC
Plot Curves of Constant Munsell Hue and Chroma

Description
Plot Curves of Constant Munsell Hue and Chroma

Usage
plotLociHC(value=5, hue=seq(2.5,100,by=2.5), chroma='auto', coords='xy',
main="Value %g/", est=FALSE, ...)

Arguments
value
a Munsell value for which the plot is created. It must be in the interval (0,10].
value can also be a numeric vector of such numbers, and then a separate plot
is made for each element of the vector.

hue
a numeric vector for which curves of contant Hue are plotted. Each of these
radial curves starts at Munsell Chroma = min(chroma,1) and extends to
max(chroma). hue can also be a character vector, which is then converted to
a numeric vector using HueNumberFromString().

chroma
a numeric vector for which ovoids of constant Chroma are plotted. Each of these
ovoids is closed; i.e. goes full circle from Hue=0 to Hue=100. If chroma='auto'
then a vector is chosen appropriate for the current value.

coords
either 'xy' or 'ab'. If coords='xy' then the plots are in the standard xy
chromaticity plane. If coords='ab' then the plots are in the ab chrominance
plane, from Lab. Even when it is 'ab', the interpolation of loci takes place in
'xy' before transformation to Lab.

main
a string used to set the main title of the plot. The optional placeholder '%g' is
replaced by the current value.
if TRUE, initial estimates for the iteration used in `xyYtoMunsell()` are plotted

... other arguments passed to the function `MunsellToxyY()`. This includes `hcinterp`, `vinterp`, and `xC`. However `warn=FALSE` is forced.

Details

The plot limits (`xlim` and `ylim`) are set to include all points where the Hue radials intersect the Chroma ovoids, plus the white point.

If `value` is one of 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 then published points from `real.dat` are plotted with filled black points (real points), and extrapolated points from `all.dat` are drawn with open circles (unreal points).

Value

`TRUE` for success and `FALSE` for failure.

Note

The option `hcinterp='bicubic'` makes fairly smooth ovoids, and `hcinterp='bilinear'` makes 40-sided polygons (when `coords='xy'`). Compare with the plots in Newhall et. al. (1943), Judd, et. al. (1956), and Judd, et. al. (1975) p. 263.

Author(s)

Glenn Davis

References

See Also

`MunsellToxyY()`, `HueNumberFromString()`
Description

This plot simulates a page from the Munsell Book of Color. The colors are best viewed on a display calibrated for the RGB space given as the second argument.

Usage

plotPatchesH(hue, space='sRGB', adapt='Bradford', background='gray50',
 main="Hue %s (H=%g) [%s adapt=%s]", ...)

Arguments

- **hue**: a Munsell hue for which the plot is created. It is automatically wrapped to the interval (0,100]. It does not have to be a multiple of 2.5. hue can also be a numeric vector of such numbers, and then a separate plot is made for each element of the vector. hue can also be a character vector of Hue Names, which is then converted to a numeric vector using HueNumberFromString()
- **space**: the name of an installed RGB space. Spaces 'sRGB' and 'AdobeRGB' are pre-installed, and others can be installed with installRGB()
- **adapt**: method used to adapt xyY for Illuminant C to xyY for Illuminant D65. It is passed to MunsellToRGB()
- **background**: background color for the plot. It is passed to par() as argument bg.
- **main**: a string used to set the main title of the plot. The optional placeholder '%s' is replaced by the Hue Name, '%g' is replaced by the Hue Number, the next '%s' is replaced by space, and the last '%s' is replaced by adapt.
- **...**: other arguments passed to the function MunsellToRGB(). This includes hcinterp, vinterp, and xyC.

Details

The discrete Values are always the same: integers from 0 to 10. And so the plotting parameter ylim=c(0,11).

The discrete Chromas are contiguous even integers depending on the Hue, and determined as follows. For the closest discrete Hue in real.dat, the patches in real.dat are transformed to xyY using simple lookup. These are then tested against the MacAdam Limits for Illuminant C using IsWithinMacAdamLimits(). The patches outside the limits are discarded, and the maximum Chroma of the remaining patches, which is always an even integer, determines xlim.

Patches inside the MacAdam Limits can still be outside the RGB cube. Patches inside the cube are drawn in the usual way, and those outside are drawn in outline only, and with the clamped RGB coordinates printed inside.

Value

TRUE for success and FALSE for failure.
Author(s)
Glenn Davis

See Also
MunsellToRGB(), HueNumberFromString(), IsWithinMacAdamLimits(), installRGB()

RGBtoMunsell

Convert sRGB coordinates to a Munsell specification

Description
RGBtoMunsell Converts RGB coordinates to a Munsell specification, by interpolating over the extrapolated Munsell renotation data

Usage
RGBtoMunsell(RGB, space='sRGB', maxSignal=255, adapt='Bradford', ...)

Arguments
RGB a numeric Nx3 matrix with RGB coordinates in the rows, or a vector that can be converted to such a matrix, by row. These are non-linear display values, but they are not required to be integers.
space the name of an installed RGB space. Spaces 'sRGB' and 'AdobeRGB' are pre-installed, and others can be installed with installRGB().
maxSignal maximum value of RGB for display. Other popular values are 1, 1023, and 65535. Even when 1, they are still taken to be non-linear display values.
adapt method for chromatic adaptation, see CAT() for valid values. Also see Details.
... other parameters passed to XYZtoMunsell()

Details
The conversion is done in 3 steps.

- RGB → XYZ using XYZfromRGB() with the given space and maxSignal
- XYZ is adapted from the white-point of space to Illuminant C using the given chromatic adaptation method
- XYZ → HVC using XYZtoMunsell()

Value
a numeric Nx3 matrix with HVC coordinates in the rows. The rownames are copied from input to output.
In case of error, it returns NULL.
sRGBtoMunsell

Author(s)

Jose Gama and Glenn Davis

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

See Also

XYZfromRGB(), XYZtoMunsell(), CAT()

Examples

```r
RGBtoMunsell( c(255,45,67) )
## H V C
## 5.4R 5.5/18 5.401135 5.477315 18.01984

RGBtoMunsell( c(255,45,67), space='Adobe' )
## H V C
## 5.9R 6.2/22 5.924749 6.214155 21.83907
```

sRGBtoMunsell Convert sRGB coordinates to a Munsell specification

Description

Converts non-linear sRGB coordinates to a Munsell specification, by interpolating over the extrapolated Munsell renotation data

Usage

```r
sRGBtoMunsell( sRGB, maxSignal=255, ... )
```

Arguments

- `sRGB` a numeric Nx3 matrix with signal sRGB coordinates in the rows, or a vector that can be converted to such a matrix, by row. These are non-linear signal values, but they are not required to be integers.
- `maxSignal` maximum value of signal sRGB. Other popular values are 1, 1023, and 65535. Even when 1, they are still taken to be non-linear signal values.
- `...` other parameters passed to XYZtoMunsell()
Details

The conversion is done in 3 steps.

- sRGB → XYZ using \texttt{XYZfromRGB()} with the given \texttt{maxSignal}
- XYZ is adapted from Illuminant D65 (from the sRGB standard) to Illuminant C using the \textit{Bradford} chromatic adaptation method (CAT)
- XYZ → HVC using \texttt{XYZtoMunsell()}

Value

a numeric Nx3 matrix with HVC coordinates in the rows. The rownames are copied from input to output.

Note

The function \texttt{RGBtoMunsell()} also performs this conversion. The only reason to use this one is that it takes a little less time, since the CAT (using the \textit{Bradford} method) is precomputed.

Author(s)

Jose Gama and Glenn Davis

References

- Wikipedia. \texttt{sRGB}. \url{https://en.wikipedia.org/wiki/SRGB}
- Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox \url{http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html}

See Also

\texttt{XYZfromRGB()}, \texttt{CAT()}, \texttt{XYZtoMunsell()}, \texttt{RGBtoMunsell()}

Examples

```r
sRGBtoMunsell( c(255,45,67) )
  ## H   V    C
  ## 5.4R 5.5/18 5.401135 5.477315 18.01984

sRGBtoMunsell( c(1,0,1), maxSignal=1 )
  ## H   V    C
  ## 8P  6/26 87.98251 5.981297 25.64534
```
VandY

Convert Munsell Value V to Luminance Factor Y, and back again

Description

Convert non-linear Munsell Value V to linear Luminance Factor Y, and back again

Usage

\[
\begin{align*}
\text{YfromV}(V, \text{which}='\text{ASTM}') \\
\text{VfromY}(Y, \text{which}='\text{ASTM}')
\end{align*}
\]

Arguments

- **V**: a numeric vector with elements in the interval \([0,10]\)
- **Y**: a numeric vector with elements in the interval \([0,100]\)
- **which**: one of the strings in the first column of this table

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'ASTM'</td>
<td>ASTM D-1535 (2008)</td>
</tr>
<tr>
<td>'OSA'</td>
<td>Newhall, et. al. (1943)</td>
</tr>
<tr>
<td>'MgO'</td>
<td>Newhall, et. al. (1943)</td>
</tr>
<tr>
<td>'Munsell'</td>
<td>Munsell, et. al. (1933)</td>
</tr>
<tr>
<td>'Priest'</td>
<td>Priest, et. al. (1920)</td>
</tr>
</tbody>
</table>

Partial matching is enabled, and it is case insensitive.

Details

'Priest' is the earliest (1920) transfer function in this package. It is implemented as:

\[
V = \sqrt{Y} \quad \text{and} \quad Y = V^2
\]

One readily checks that when \(V=10\), \(Y=100\), and vice-versa. This transfer function has been implemented in colorimeters, using analog electric circuits. It is used in Hunter Lab - the precursor of CIE Lab.

'Munsell' is the next (1933) transfer function, and was proposed by Munsell’s son (Alexander Ector Orr Munsell) and co-workers. It is implemented as:

\[
V = \sqrt{(1.474 * Y - 0.00474 * Y^2)}
\]

\[
Y = 50 \times \frac{(1474 - \sqrt{1474^2 - 4 \times 4740 \times V^2})}{474}
\]

One readily checks that when \(V=10\), \(Y=100\), and vice-versa. The luminance factor \(Y\) is absolute, AKA relative to the perfect reflecting diffuser.

'Priest' and 'Munsell' are included in this package for historical interest only.
The remaining three define Y as a quintic polynomial in V.

The next one historically - 'MgO' - is implemented as:

$$Y = \frac{((((8404 \times V - 210090) \times V + 2395100) \times V - 2311100) \times V + 10000000) \times V}{10000000}$$

One readily checks that when $V=10$, $Y=102.568$. This Y is larger than 100, because the authors decided to make Y relative to a clean surface of MgO, instead of the perfect reflecting diffuser. In their words:

- It should be noted that the reflectances indicated are not absolute but relative to magnesium oxide; whereas the maximum at value 10/ was formerly 100 percent, it is now 102.57. Use of this relation facilitates results and also avoids the somewhat dubious conversion to absolute scale, by permitting Y determinations with a MgO standard to be converted directly to Munsell value.

Nowadays, the perfect reflecting diffuser is preferred over MgO. For users who would like to modify this quintic as little as possible, with the perfect reflecting diffuser in mind (going back to 'MUNSELL'), I offer 'OSA', which is given by this quintic of my own design

$$Y = \frac{((((8404 \times V - 210090) \times V + 2395100) \times V - 2311100) \times V + 10000000) \times V}{10256800}$$

ASTM had a similar modification in mind, but did it a little differently by scaling each coefficient. 'ASTM' is given by this quintic:

$$Y = \frac{((((81939 \times V - 2048400) \times V + 23352000) \times V - 22533000) \times V + 119140000) \times V}{1.e8}$$

One readily checks that when $V=10$, $Y=100$ exactly (for both 'OSA' and 'ASTM').

The inverses - from Y to V - of all 3 quintics are implemented as 3 `splinefun()`s at a large number (about 300) of points. These inverses are both fast and accurate. The round-trip $Y \rightarrow V \rightarrow Y$ is accurate to 7 digits after the decimal. The round-trip $V \rightarrow Y \rightarrow V$ is accurate to 8 digits after the decimal.

Value

a numeric vector the same length as the input

Note

The quintic functions 'ASTM' and 'OSA' are very close. They agree at the endpoints 0 and 10 exactly, and the largest difference is near $V=6.767$ where they differ by about 0.0007.

Author(s)

Glenn Davis
References

ASTM D 1535-08. Standard Practice for Specifying Color by the Munsell System. 2008

See Also

MunsellToxyY(), xyYtoMunsell(),

Examples

VfromY(c(0,50,100))

xyYtoMunsell

Convert xyY coordinates into a Munsell specification

Description

xyYtoMunsell Converts xyY coordinates into a Munsell specification, by interpolating over the extrapolated Munsell renotation data

Usage

xyYtoMunsell(xyY, xyC='NBS', hcinterp='bicubic', vinterp='cubic', VfromY='ASTM', warn=TRUE, perf=FALSE)

Arguments

- **xyY**: a numeric Nx3 matrix with CIE xyY coordinates in the rows, or a vector that can be converted to such a matrix, by row. These are for viewing in an environment with Illuminant C, with Y=100.
- **xyC**: a numeric 2-vector with xy chromaticity of Illuminant C. It can also be one of the strings given in MunsellToxyY().
- **hcinterp**: either 'bicubic' or 'bilinear' (partial matching enabled). See MunsellToxyY() for details.
- **vinterp**: either 'cubic' or 'linear' (partial matching enabled). See MunsellToxyY() for details.
xyYtoMunsell

VfromY passed as the parameter which to the function VfromY(). See VfromY() for details. Option 'MGO' is not allowed because then Y>100 when V=10.

warn if an xyY cannot be mapped (usually because the root finder has wandered afar), its H and V are set to NA in the returned data.frame. Just before returning, if any rows have NA, and this argument is TRUE, then a warning is logged.

perf if perf is TRUE, then extra performance related metrics are appended to the returned data.frame, see Value.

Details

See MunsellToxyY() and the User Guide - Appendix C.

Value

a data.frame with N rows and these columns:

xyY The input xyY
HVC the computed HVC. H is automatically wrapped to (0,100]. In case of failure, H and C are NA.
SAMPLE_NAME a character vector - the Munsell notation for HVC

If perf is TRUE then there are these additional columns:

time.elapsed elapsed time in seconds. If available, the function microbenchmark::get_nanotime() is used.
iterations the number of iterations of rootSolve::multiroot()
evaluations the number of forward (HVC → xyY) function evaluations
estim.precis the estimated precision from rootSolve::multiroot(). This is in the HC plane for the Munsell Value easily computed from Y.

If the rownames of xyY are not NULL and have no duplicates, they are copied to the returned data frame.

Warning

Even when vinterp='cubic' the function xyY → HVC is not C¹ on the plane V=1. This is because of a change in Value spacing: when V≥1 the Value spacing is 1, but when V≤1 the Value spacing is 0.2.

Author(s)

Jose Gama and Glenn Davis

Source

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html
http://www.rit.edu/science/pocs/renotation
http://www.rit-mcsli.org/MunsellRenotation/all.dat
http://www.rit-mcsli.org/MunsellRenotation/real.dat
References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

See Also

MunsellToxyY(), multiroot(), get_nanotime()

Examples

xyYtoMunsell(c(0.310897, 0.306510, 74.613450))
xyY.1 xyY.2 xyY.3 HVC.H HVC.V HVC.C SAMPLE_NAME
1 0.310897 0.306510 74.613450 87.541720 8.900000 2.247428 7.5P 8.9/2.2

XYZtoMunsell

Convert XYZ coordinates to a Munsell specification

Description

XYZtoMunsell Convert XYZ coordinates to a Munsell specification, by interpolating over the extrapolated Munsell renotation data

Usage

XYZtoMunsell(XYZ, ...)

Arguments

XYZ a numeric Nx3 matrix with CIE XYZ coordinates in the rows, or a vector that can be converted to such a matrix, by row. The XYZ are for viewing in an environment with Illuminant C.

... other parameters passed to xyYtoMunsell()

Details

the function calls XYZ2xyY() and xyYtoMunsell().
Value

an Nx3 matrix with Munsell HVC in the rows. The rownames are copied from input to output.

Author(s)

Jose Gama and Glenn Davis

References

Paul Centore 2014 The Munsell and Kubelka-Munk Toolbox http://centore.isletech.net/~centore/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html

See Also

MunsellToXYZ()

Examples

XYZtoMunsell(c(0.310897, 0.306510, 74.613450))