Package ‘musica’

September 3, 2016

Type Package
Title Multiscale Climate Model Assessment
Version 0.1.3
Description Provides functions allowing for (1) easy aggregation of multivariate time series into custom time scales, (2) comparison of statistical summaries between different data sets at multiple time scales (e.g. observed and bias-corrected data), (3) comparison of relations between variables and/or different data sets at multiple time scales (e.g. correlation of precipitation and temperature in control and scenario simulation) and (4) transformation of time series at custom time scales.
License GPL-2
LazyData TRUE
Depends R (>= 2.15.1), data.table
Imports magrittr, qmap, lubridate
RoxygenNote 5.0.1
Suggests knitr, rmarkdown, ggplot2
VignetteBuilder knitr
NeedsCompilation yes
Author Martin Hanel [aut, cre]
Maintainer Martin Hanel <hanel@fzp.cz>
Repository CRAN
Date/Publication 2016-09-03 10:01:12

R topics documented:

musica-package .. 2
basin_PT ... 2
codes .. 3
compare .. 4
decomp .. 5
difs ... 6
m2s ... 7
Description

Contains functions for flexible assessment of climate model bias and changes at multiple time scales. See documentation for `decomp`, `compare` and `vcompare`. In addition, musica provides functions for multiscale transformations of time series (see `msTrans_abs` and `msTrans_dif`).

Package options

Following option(s) are available:

- **additive_variables** At several places the package compares values. The character vector `additive_values` specifies for which variables difference should be used for comparison instead of ratio. Defaults to `additive_values = "TAS"`. See `options` for setting or examining options.

Author(s)

Martin Hanel <hanel@fzp.cz>

References

Description

A list of three data.tables with observed (`obs_ctrl`) and RCM simulated data for the control (`sim_ctrl`) and scenario (`sim_scen`) periods for Oslava basin (down to Cucice) in the Czech Republic. The basin average precipitation and temperature were obtained from gridded observations and RCM simulation (EUR-11_CNRM-CERFACS-CNRM-CM5_rcp45_r1i1p1_CLMcom-CCLM4-8-17 simulation conducted within the CORDEX project).
Usage

basin_PT

Format

List of 3 data.tables:

- **obs_ctrl** observed data for the basin for a period 1981-01-01 – 2005-21-31
- **sim_ctrl** simulated data for the basin for a period 1981-01-01 – 2005-21-31
- **sim_scen** simulated data for the basin for a period 2070-01-01 – 2099-21-31

Each data.table contains 3 variables:

- **DTM** date
- **PR** precipitation, mm
- **TAS** temperature, degrees C

Description

Conversion between period specification and codes

Usage

- **period2code**

 `period2code(periods)`

- **code2period**

 `code2period(code)`

Arguments

- **periods** period specification
- **code** period code

Details

Periods are specified using keywords "day", "month", "year" preceded by an integer and a space and optionally followed by "s" (the specification is further passed to `cut.Date`, see `cut.Date` for details). To fit in figures and for simplicity, periods can also be specified by codes, i.e. by D, M, Y (for "day", "month" and "year", respectively) and followed by integer specifying the number of intervals. The functions `period2code` and `code2period` provide conversion between the two alternatives.

Examples

- **period2code**

 `period2code(c('1 day', '23 days', '3 month', '2 years'))`

- **code2period**

 `code2period(c('D1', 'D23', 'M3', 'Y2'))`
Compare decomposed variables

Description

The function evaluates distance between statistical characteristics of specified data sets. Distance is measured as difference for variables included in `getOption('additive_variables')`, i.e. temperature (TAS) by default, and as a ratio for other variables.

Usage

```r
compare(x, compare_to, fun = mean, wet_int_only = TRUE, wet_int_thr = 0.1,
        exclude_below = 0.9)
```

Arguments

- `x` List of decomposed variables to be compared
- `compare_to` Decomposed variable used as a reference
- `fun` Function used for comparison
- `wet_int_only` (logical) Should only the wet intervals be considered?
- `wet_int_thr` Numeric value specifying the minimum depth to be considered wet
- `exclude_below` Some of the intervals might not be of required length, e.g. D10 interval may have less than 10 days available. The `exclude_below` argument controls the minimum fraction of the interval that has to be available in order to be considered in the summary statistics.

Value

data.table summarizing the differences with columns:

- `variable` factor indicating the variable
- `period` specification of the averaging length with ‘D’ - day(s), ‘M’ - month(s), ‘Y’ - year(s) and ‘G1’ - the overall mean
- `TS` averaging length in hours
- `sub_period` indication of the aggregating scale specified by `agg_by` argument
- `comp` factor indicating the data sets from `x` with labels given by `names(x)`
- `DIF` distance between data sets from `x` and `compare_to`. Distance is measured as difference for variables included in `getOption('additive_variables')`, i.e. temperature (TAS) by default, and as a ratio for other variables, see `dif`
Examples

library(ggplot2)
data(basin_PT)
Not run:
dobs = decomp(basin_PT[['obs_ctrl']])
dctrl = decomp(basin_PT[['sim_ctrl']])
dscen = decomp(basin_PT[['sim_scen']])
d = compare(x = list(CTRL = dctrl, SCEN = dscen), compare_to = dobs, fun = max)
ggplot(d) +
 geom_line(aes(x = TS, y = DIF, col = factor(sub_period))) +
 facet_grid(variable ~ comp, scale = 'free') +
 scale_x_log10()
End(Not run)

decomp

Decomposition of time-series

Description

Calculate series of averages over the periods specified in the period argument into the input data.table.

Usage

decomp(x, period = c("Y1", "M6", "M3", "M1", "D15", "D1"), agg_by = quarter,
 full_return = FALSE, remove_incomplete = TRUE)

Arguments

x : data.table with columns dtm (date), variable and value. Any number of variables are in principle allowed.

period : The periods over which the averages will be calculated, see Details

agg_by : Function for specification of the period (season, month) to be additionally included in output, see Details

full_return : (logical) Should the average be repeated for each scale along with original time series? Default is FALSE (e.g. for M1 only monthly and not daily time series is returned)

remove_incomplete : Should the incomplete years be removed from results? Default is TRUE

Details

The original time series in daily time step is decomposed into series of averages over periods specified in periods argument using letter codes 'D' - day(s), 'M' - month(s), 'Y' - year(s) followed by number corresponding to number of periods and 'G1' the overall mean. The periods must be given
in order from longest to shortest, the overall mean is always included (and needs not to be specified in period). Shorter periods are always identified within the closest longer periods, i.e. each shorter period is included in exactly one longer period. As a result, the averages may be calculated over shorter periods than specified. This is due to varying length of "month" and "year" periods. The actual length used for averaging is included in the output. To make further assessment of the decomposed objects easier, indicator of period within the year (e.g. quarter or month) as specified by agg_by argument is included in the output.

Value

data.table with variables:

- **variable** factor indicating the variable
- **DTM** date
- **period** specification of the averaging length with ‘D’ - day(s), ‘M’ - month(s), ‘Y’ - year(s) and ‘G1’ - the overall mean
- **value** value of the variable for given averaging length
- **sub_period** indication of the aggregating scale specified by agg_by argument
- **period_pos** average date of the interval
- **N** real length of the vectors used for calculating averages
- **TS** averaging length in hours

Examples

data(basin_PT)
str(basin_PT)
basin_PT[['obs_ctrl']]
dobs = decomp(basin_PT[['obs_ctrl']], period = c('1 year', '1 month', '1 day'))

difs

Functions for evaluating distance between variables

Description

Functions for evaluating distance between variables

Usage

dif(x, y, var)
rev_dif(x, y, var)
rev_difv(x, var)
Arguments

- x, y: variables to be compared
- var: variable code

Value

Difference or ratio of x and y (for dif) and sum or product (for rev_dif and rev_difv). Distance is measured as difference for variables included in `getOption('additive_variables')`, i.e. temperature (TAS) by default, and as a ratio for other variables.

While `rev_dif` returns `sum(x, y)` or `prod(x, y)`, `rev_difv` takes single vector `x` and returns `sum(x)` or `prod(x)`.

Used mainly in other functions of the package.

Examples

```r
getOption('additive_variables')

# calculate distance of 2 vectors
dif(c(10, 20, 30), c(11, 18, 3), 'TAS')
dif(c(10, 20, 30), c(11, 18, 3), 'PR')

# inverse for 2 vectors
rev_dif(c(10, 20, 30), c(11, 18, 3), 'TAS')

# inverse for 1 vector
rev_difv(c(10, 1.1, .9), 'TAS')
```

m2s

Indication of a season

Description

Indication of a season

Usage

```r
month2sea(dtm, year_starts = months(0))

sscale2sea(sub_scale, year_starts = months(0))
```

Arguments

- dtm: a Date object
- year_starts: Month object indicating the start of the year
- sub_scale: integer indicating the season
Value

3 letter code (as DJF, JJA etc.) specifying the season

Examples

```r
month2sea(as.Date('2000-01-01') + months(1:10) )
sscale2sea(c(1, 1, 2, 2, 3, 3), year_starts = months(-1))
```

msTrans_abs
Multiscale quantile mapping bias correction

Description

Applies standard quantile mapping at custom time scales.

Usage

```r
msTrans_abs(dta, agg_by = month, wet_int_thr = 0.1, maxiter = 10,
            tol = 1e-04, qstep = 0.001, period = c("G1", "Y1", "M3", "M1", "D1"))
```

Arguments

- **dta**: List with components FROM (simulated data for the control period), TO (observed data) and NEWDATA (data to be corrected). Each component is a `data.table` with columns `dtm` (date) and the climate variables (typically PR - precipitation and TAS - temperature).
- **agg_by**: Function for specification of the period (season, month) to be additionally included in output, see Details.
- **wet_int_thr**: Numeric value specifying the minimum depth to be considered wet.
- **maxiter**: Maximum number of iterations, see Details.
- **tol**: Stoping criterion of the iteration cycle, see Details.
- **qstep**: A numeric value between 0 and 1. The quantile mapping is fitted only for the quantiles defined by `quantile(0,1,probs=seq(0,1,by=qstep))`. Passed to `doQmapQUANT`.
- **period**: Specification of the aggregation lengths the correction is applied at with ‘D’ - day(s), ‘M’ - month(s), ‘Y’ - year(s) and ‘G1’ - the overall mean.

Details

The procedure utilizes standard quantile mapping from the `qmap`-package, but at multiple time scales. Since correction at particular temporal scale influences values at other aggregations, the procedure is applied iteratively until the maximum number of iterations (`maxiter`) is reached or the difference between successive iteration step is smaller than `tol`. Differences between corrected and uncorrected variable at longer time scales are used to modify daily values after each iteration step (see e.g. Mehrorta and Sharma, 2016; Pegram et al. 2009). To make further assessment of the decomposed objects easier, indicator of period within the year (e.g. quarter or month) as specified by `agg_by` argument is included in the output.
Value

data.table with corrected data

References

Examples

data(Bbasin_ptB

scen

ctrl

obs

dta

Not run:

msTrans_abs(dta, maxiter = 10, period = 'D1')

End(Not run)

msTrans_dif

Multiscale delta method

Description

Transforms observed data such that the changes in summary statistics of variables at custom time scales are similar to those obtained from climate model simulation. Number of functions can be used to summarize the variables.

Usage

msTrans_dif(dta, model = "const", model_par = list(NULL), agg_by = month, wet_int_thr = 0.1, maxiter = 10, tol = 1e-04, period = c("G1", "Y1", "M1", "D1"), qstep = 0.001)

Arguments

dta List with components FROM (simulated data for the control period), TO (simulated data for the scenario period) and NEWDATA (observed data to be transformed). Each component is a data.table with columns DTm (date) and the climate variables (typically PR - precipitation and TAS - temperature)
model

One of loess, const, identity, lm, smooth, runmed, smooth.spline. The
model is used to provide statistical summary of the empirical cumulative distribution function.

model_par

optional parameters of the model

agg_by

Function for specification of the period (season, month) to be additionally included in output, see Details

wet_int_thr

Numeric value specifying the minimum depth to be considered wet

maxiter

Maximum number of iterations, see Details

tol

Stopping criterion of the iteration cycle, see Details

period

Specification of the aggregation lengths the correction is applied at with ‘D’ - day(s), ‘M’ - month(s), ‘Y’ - year(s) and ‘G1’ - the overall mean

qstep

A numeric value between 0 and 1. The ecdf is calculated only for the quantiles defined by quantile(0, 1, probs = seq(0, 1, by = qstep).

Value

transformed data.table

References

Examples

data("basin_PT")
scen = basin_PT$sim_scen
ctrl = basin_PT$sim_ctrl
obs = basin_PT$obs_ctrl
dta = list(TO = scen, FROM = ctrl, NEWDATA = obs)
Not run:
msTrans_dif(dta, maxiter = 10, period = 'D1')

End(Not run)
Arguments

\(x \) vector of values

Value

value of the empirical distribution function evaluated at \(x \)

Examples

\[
\text{prob(rnorm(10))}
\]

\(Q \) \textit{Convenience function for calculation of quantiles}

Description

The typical use is in \texttt{compare} to avoid anonymous functions in specification of its fun argument.

Usage

\(Q(\rho, \ldots) \)

Arguments

\(\rho \) Specification of the quantile

\(\ldots \) other arguments passed to \texttt{quantile}

Value

function calculating the p-th quantile

Examples

\[
q90 = Q(.9) \\
\text{class(q90)} \\
q90(rnorm(10))
\]
tscale

Convert averaging length code to hours

Description

Period durations are calculated by the `lubridate` package.

Usage

```r
tscale(x, nyears = 30)
```

Arguments

- `x` Vector of the averaging period codes
- `nyears` Overall number of years - used for conversion of the overall mean

Value

Numerical vector of durations in hours

Examples

```r
tscale('M1')
tscale('G1', nyears = 25)
```

vcompare

Assess the relations between two decomposed variables

Description

Assess the relations between two decomposed variables

Usage

```r
vcompare(x, fun = cor, wet_int_only = TRUE, wet_int_thr = 0.1, exclude_below = 0.9)
```

Arguments

- `x` List of decomposed objects
- `fun` Function to summarize dependence (like `cor`, `cov`)
- `wet_int_only` (logical) Should only the wet intervals be considered?
- `wet_int_thr` Numeric value specifying the minimum depth to be considered wet
- `exclude_below` Some of the intervals might not be of required length, e.g. D10 interval may have less than 10 days available. The `exclude_below` argument controls the minimum fraction of the interval that has to be available in order to be considered in the summary statistics.
Details

vcompare compares the relation between all pairs of variables included in x, typically precipitation and temperature, but other variables may be included also (e.g. runoff).

Value

data.table summarizing the relation with columns:

- **variable**: factor indicating the variable
- **period**: specification of the averaging length with ‘D’ - day(s), ‘M’ - month(s), ‘Y’ - year(s) and ‘G1’ - the overall mean
- **TS**: averaging length in hours
- **sub_period**: indication of the aggregating scale specified by agg_by argument
- **comp**: factor indicating the data sets from x with labels given by names(x)
- **DIF**: distance between data sets from x and compare_to. Distance is measured as difference for variables included in `getOption('additive_variables')`, i.e. temperature (TAS) by default, and as a ratio for other variables, see dif

Examples

```r
library(ggplot2)
data(basin_PT)
## Not run:
dobs = decomp(basin_PT[['obs_ctrl']])
dctrl = decomp(basin_PT[['sim_ctrl']])
d = vcompare(x = list(OBS = dobs, CTRL = dctrl), fun = cov)
ggplot(d[period!='G1']) +
  geom_line(aes(x = TS, y = value, col = factor(sub_period))) +
  facet_grid(VARS~ID) +
  scale_x_log10()

## End(Not run)
```
Index

*Topic datasets
 basin_PT, 2
basin_PT, 2
 code2period (codes), 3
codes, 3
compare, 2, 4, 11
cut.Date, 3
decomp, 2, 5
dif, 4, 13
dif (difs), 6
difs, 6
doQmapQUANT, 8
lubridate, 12
m2s, 7
month2sea (m2s), 7
msTrans_abs, 2, 8
msTrans_diff, 2, 9
musica-package, 2
options, 2
period2code (codes), 3
prob, 10
Q, 11
qmap, 8
quantile, 11
rev_dif (difs), 6
rev_difv (difs), 6
sscale2sea (m2s), 7
tscale, 12
vcompare, 2, 12