Package ‘mvinfluence’

May 17, 2018

Type Package
Title Influence Measures and Diagnostic Plots for Multivariate Linear Models
Version 0.8-3
Date 2018-05-16
Author Michael Friendly
Maintainer Michael Friendly <friendly@yorku.ca>
Description Computes regression deletion diagnostics for multivariate linear models and provides some associated diagnostic plots. The diagnostic measures include hat-values (leverages), generalized Cook's distance, and generalized squared 'studentized' residuals. Several types of plots to detect influential observations are provided.
Depends car, heplots
Suggests
LazyData TRUE
License GPL-2
URL https://github.com/friendly/mvinfluence
BugReports https://github.com/friendly/mvinfluence/issues
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-17 17:01:07 UTC

R topics documented:
mvinfluence-package .. 2
Fertilizer ... 4
infIndexPlot.mlm .. 5
influence.measures .. 7
Influence Measures and Diagnostic Plots for Multivariate Linear Models

Description

This collection of functions is designed to compute regression deletion diagnostics for multivariate linear models following Barrett & Ling (1992). These are close analogs of standard methods for univariate and generalized linear models handled by the `influence.measures` in the `stats` package. These functions also extend plots of influence diagnostic measures such as those provided by `influencePlot` in the `stats` package.

In addition, the functions provide diagnostics for deletion of subsets of observations of size $m > 1$. This case is theoretically interesting because sometimes pairs ($m=2$) of influential observations can mask each other, sometimes they can have joint influence far exceeding their individual effects, as well as other interesting phenomena described by Lawrence (1995). Associated methods for the case $m > 1$ are still under development in this package.

Details

The DESCRIPTION file:

- **Package**: mvinfluence
- **Type**: Package
- **Title**: Influence Measures and Diagnostic Plots for Multivariate Linear Models
- **Version**: 0.8-3
- **Date**: 2018-05-16
- **Author**: Michael Friendly
- **Maintainer**: Michael Friendly <friendly@yorku.ca>
- **Description**: Computes regression deletion diagnostics for multivariate linear models and provides some associated diagnostics.
- **Depends**: car, heplots
- **Suggests**:
- **LazyData**: TRUE
- **License**: GPL-2
- **URL**: https://github.com/friendly/mvinfluence
- **BugReports**: https://github.com/friendly/mvinfluence/issues
- **Packaged**: 2012-03-18 21:51:10 UTC; Michael
Index of help topics:

- Fertilizer Data
- General Classes of Influence Measures
- Regression Deletion Diagnostics for Multivariate Linear Models
- Influence Index Plots for Multivariate Linear Models
- Regression Deletion Diagnostics for Multivariate Linear Models
- Influence Plots for Multivariate Linear Models
- Regression LR Influence Plot
- Calculate Regression Deletion Diagnostics for Multivariate Linear Models
- General Matrix Power
- Influence Measures and Diagnostic Plots for Multivariate Linear Models
- Matrix trace

An overview of how to use the package, including the most important functions. The design goal for this package is that, as an extension of standard methods for univariate linear models, you should be able to fit a linear model with a multivariate response,

```r
mymlm <- lm(cbind(y1, y2, y3) ~ x1 + x2 + x3, data=mydata)
```

and then get useful diagnostics and plots with

```r
influence(mymlm)
hatvalues(mymlm)
influencePlot(mymlm, ...)
```

Author(s)

Michael Friendly

Maintainer: Michael Friendly <friendly@yorku.ca>

References

See Also

influence.measures, influence.mlm, influencePlot.mlm, ...

Jdet, Jtr provide some theoretical description and definitions of influence measures in the Barrett & Ling framework.

Examples

none here

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Fertilizer Data</th>
</tr>
</thead>
</table>

Description

A small data set on the use of fertilizer (x) in relation to the amount of grain (y1) and straw (y2) produced.

Usage

data(Fertilizer)

Format

A data frame with 8 observations on the following 3 variables.

- grain amount of grain produced
- straw amount of straw produced
- fertilizer amount of fertilizer applied

Details

The first observation is an obvious outlier and influential observation.

Source

References

Examples

```r
data(Fertilizer)

# simple plots
plot(Fertilizer, col=c('red', rep("blue",7)), cex=c(2,rep(1.2,7)), pch=as.character(1:8))
biplot(prcomp(Fertilizer))

# fit mlm
mod <- lm(cbind(grain, straw) ~ fertilizer, data=Fertilizer)
Anova(mod)

# influence plots (m=1)
influencePlot(mod)
influencePlot(mod, type='LR')
influencePlot(mod, type='stres')
```

Influence Index Plots for Multivariate Linear Models

Description

Provides index plots of some diagnostic measures for a multivariate linear model: Cook’s distance, a generalized (squared) studentized residual, hat-values (leverages), and Mahalanobis squared distances of the residuals.

Usage

```r
## S3 method for class 'mlm'
infIndexPlot(model,
inf1 = mlm.influence(model, do.coef = FALSE), FUN = det,
vars = c("Cook", "Studentized", "hat", "DSQ"),
main = paste("Diagnostic Plots for", deparse(substitute(model))),
pch = 19,
labels,
id.method = "y", id.n = if (id.method[1] == "identify") Inf else 0,
id.cex = 1, id.col = palette()[1], id.location = "lr",
grid = TRUE, ...)
```

Arguments

- `model` A multivariate linear model object of class mlm.
- `inf1` influence measure structure as returned by `mlm.influence`
- `FUN` For m>1, the function to be applied to the H and Q matrices returning a scalar value. `FUN=det` and `FUN=tr` are possible choices, returning the $|H|$ and $tr(H)$ respectively.
vars

All the quantities listed in this argument are plotted. Use "Cook" for generalized
Cook's distances, "Studentized" for generalized Studentized residuals, "hat" for
hat-values (or leverages), and DSQ for the squared Mahalanobis distances of
the model residuals. Capitalization is optional. All may be abbreviated by the
first one or more letters.

main

main title for graph

pch

Plotting character for points

id.method, labels, id.n, id.cex, id.col, id.location

Arguments for the labeling of points. The default is id.n=0 for labeling no
points. See showLabels for details of these arguments.

grid

If TRUE, the default, a light-gray background grid is put on the graph

... Arguments passed to plot

Details

This function produces index plots of the various influence measures calculated by influence.mlm,
and in addition, the measure based on the Mahalanobis squared distances of the residuals from the
origin.

Value

None. Used for its side effect of producing a graph.

Author(s)

Michael Friendly; borrows code from car::infIndexPlot

References

Barrett, B. E. (2003). Understanding Influence in Multivariate Regression Communications in

See Also

influencePlot.mlm, Mahalanobis, infIndexPlot

Examples

iris data
data(iris)
iris.mod <- lm(as.matrix(iris[,1:4]) ~ Species, data=iris)
infIndexPlot(iris.mod, col=iris$Species, id.n=3)

Sake data
data(Sake, package="heplots")
Sake.mod <- lm(cbind(taste,smell) ~ ., data=Sake)
infIndexPlot(Sake.mod, id.n=3)
Description

The functions `cooks.distance.mlm` and `hatvalues.mlm` are designed as extractor functions for regression deletion diagnostics for multivariate linear models following Barrett & Ling (1992). These are close analogs of methods for univariate and generalized linear models handled by the `influence.measures` in the `stats` package.

In addition, the functions provide diagnostics for deletion of subsets of observations of size \(m > 1 \).

Usage

```r
## S3 method for class 'mlm'
cooks.distance(model, infl = mlm.influence(model, do.coef = FALSE), ...)

## S3 method for class 'mlm'
hatvalues(model, m = 1, infl, ...)
```

Arguments

- `model` A `mlm` object, as returned by `lm` with a multivariate response
- `do.coef` logical. Should the coefficients be returned in the `inflmlm` object?
- `m` Size of the subsets for deletion diagnostics
- `infl` An influence structure, of class `inflmlm` as returned by `mlm.influence`
- `...` Other arguments, passed on

Value

When \(m = 1 \), these functions return a vector, corresponding to the observations in the data set. When \(m > 1 \), they return a list of \(m \times m \) matrices, corresponding to deletion of subsets of size \(m \).
Author(s)

Michael Friendly

References

See Also

`influencePlot.mlm`

Examples

```r
data(Rohwer, package="heplots")
Rohwer2 <- subset(Rohwer, subset=group==2)
rownames(Rohwer2) <- 1:nrow(Rohwer2)
Rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ n+s+ns+na+ss, data=Rohwer2)

hatvalues(Rohwer.mod)
cooks.distance(Rohwer.mod)
```

influence.mlm

Regression Deletion Diagnostics for Multivariate Linear Models

Description

This collection of functions is designed to compute regression deletion diagnostics for multivariate linear models following Barrett & Ling (1992) that are close analogs of methods for univariate and generalised linear models handled by the `influence.measures` in the `stats` package.

In addition, the functions provide diagnostics for deletion of subsets of observations of size $m>1$.

Usage

```r
## S3 method for class 'mlm'
influence(model, do.coef = TRUE, m = 1, ...)

## S3 method for class 'inflmlm'
as.data.frame(x, ..., FUN = det, funnames = TRUE)

## S3 method for class 'inflmlm'
print(x, digits = max(3,getOption("digits") - 4), FUN = det, ...)
```
Arguments

model: An `mlm` object, as returned by `lm`.
do.coef: logical. Should the coefficients be returned in the `inflmlm` object?
m: Size of the subsets for deletion diagnostics.
x: An `inflmlm` object, as returned by `mlm.influence`.
FUN: For m>1, the function to be applied to the `H` and `Q` matrices returning a scalar value. `FUN=det` and `FUN=tr` are possible choices, returning the |H| and tr(H) respectively.
funnames: logical. Should the `FUN` name be prepended to the statistics when creating a data frame?
...: Other arguments passed to methods.
digits: Number of digits for the print method.

Details

`influence.mlm` is a simple wrapper for the computational function, `mlm.influence` designed to provide an S3 method for class "mlm" objects.

There are still infelicities in the methods for the m>1 case in the current implementation. In particular, for m>1, you must call `influence.mlm` directly, rather than using the S3 generic `influence()`.

Value

`influence.mlm` returns an S3 object of class `inflmlm`, a list with the following components:

- m: Deletion subset size.
- H: Hat values, H_i. If m=1, a vector of diagonal entries of the 'hat' matrix. Otherwise, a list of m x m matrices corresponding to the subsets.
- Q: Residuals, Q_i.
- CookD: Cook's distance values.
- L: Leverage components.
- R: Residual components.
- subsets: Indices of the observations in the subsets of size m.
- labels: Observation labels.
- call: Model call for the `mlm` object.
- Beta: Deletion regression coefficients-- included if `do.coef=TRUE`.

Author(s)

Michael Friendly

References

See Also

influencePlot.mlm, mlm.influence

Examples

Rohwer data
Rohwer2 <- subset(Rohwer, subset=group==2)
rownames(Rohwer2) <- 1:nrow(Rohwer2)
Rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ n+s+ns+na+ss, data=Rohwer2)

m=1 diagnostics
influence(Rohwer.mod)

try an m=2 case
res2 <- influence.mlm(Rohwer.mod, m=2, do.coef=FALSE)
res2.df <- as.data.frame(res2)
head(res2.df)
scatterplotMatrix(log(res2.df))

influencePlot(Rohwer.mod, id.n=4, type="cookd")

Sake data
Sake.mod <- lm(cbind(taste,smell) ~ ., data=Sake)
influence(Sake.mod)
influencePlot(Sake.mod, id.n=3, type="cookd")

influencePlot.mlm

Influence Plots for Multivariate Linear Models

Description

This function creates various types of “bubble” plots of influence measures with the areas of the circles representing the observations proportional to Cook’s distances.

type="stres" plots squared (internally) Studentized residuals against hat values; type="cookd" plots Cook’s distance against hat values; type="LR" plots residual components against leverage components, with the property that contours of constant Cook’s distance fall on diagonal lines with slope = -1.

Usage

S3 method for class 'mlm'
influencePlot(model, scale = 12, type=c("stres", "LR", "cookd"),
infl = mlm.influence(model, do.coef = FALSE), FUN = det,
fill = TRUE, fill.col = "red", fill.alpha.max = 0.5,
labels,
id.method = "noteworthy", id.n = if (id.method[1] == "identify") Inf else 0,
 id.cex = 1, id.col = palette()[1],
 ref.col = "gray", ref.lty = 2, ref.lab = TRUE, ...)

Arguments

model An mlm object, as returned by lm with a multivariate response.
scale a factor to adjust the radii of the circles, in relation to sqrt(CookD)
type Type of plot: one of c("stres", "cookd", "LR")
infl influence measure structure as returned by mlm.influence
FUN For m>1, the function to be applied to the H and Q matrices returning a scalar
 value. FUN=det and FUN=tr are possible choices, returning the |H| and tr(H)
 respectively.
labels, id.method, id.n, id.cex, id.col
 settings for labelling points; see link{showLabels} for details. To omit point
 labelling, set id.n=0, the default. The default id.method="noteworthy" is
 used in this function to indicate setting labels for points with large Studentized
 residuals, hat-values or Cook's distances. See Details below. Set id.method="identify"
 for interactive point identification.
fill, fill.col, fill.alpha.max
 fill: logical, specifying whether the circles should be filled. When fill=TRUE,
 fill.col gives the base fill color to which transparency specified by fill.alpha.max
 is applied.
ref.col, ref.lty, ref.lab
 arguments for reference lines. Incompletely implemented in this version

... other arguments passed down

Details

The id.method="noteworthy" setting also requires setting id.n>0 to have any effect. Using
id.method="noteworthy", and id.n>0, the number of points labeled is the union of the largest
id.n values on each of L, R, and CookD.

Value

If points are identified, returns a data frame with the hat values, Studentized residuals and Cook’s
distance of the identified points. If no points are identified, nothing is returned. This function is
primarily used for its side-effect of drawing a plot.

Author(s)

Michael Friendly
General Classes of Influence Measures

These functions implement the general classes of influence measures for multivariate regression models defined in Barrett and Ling (1992), Eqn 2.3, 2.4, as shown in their Table 1.

They are defined in terms of the submatrices for a deleted index subset I

\[H_I = X_I (X^T X)^{-1} X_I \]
\[Q_I = E_I(E_I^T E)^{-1} E_I \]

corresponding to the hat and residual matrices in univariate models.

For subset size \(m = 1 \) these evaluate to scalar equivalents of hat values and studentized residuals.

For subset size \(m > 1 \) these are \(m \times m \) matrices and functions in the \(J^\text{det} \) class use \(|H_I|\) and \(|Q_I|\), while those in the \(J^\text{tr} \) class use \(\text{tr}(H_I) \) and \(\text{tr}(Q_I) \).

The functions \texttt{COOKD}, \texttt{COVRATIO}, and \texttt{DFFITS} implement some of the standard influence measures in these terms for the general cases of multivariate linear models and deletion of subsets of size \(m > 1 \), but they are only included here for experimental purposes.

Usage

\[
\text{Jdet}(H, Q, a, b, f) \\
\text{Jtr}(H, Q, a, b, f) \\
\text{COOKD}(H, Q, n, p, r, m) \\
\text{COVRATIO}(H, Q, n, p, r, m) \\
\text{DFFITS}(H, Q, n, p, r, m)
\]

Arguments

- \(H \): a scalar or \(m \times m \) matrix giving the hat values for subset \(I \)
- \(Q \): a scalar or \(m \times m \) matrix giving the residual values for subset \(I \)
- \(a \): the \(a \) parameter for the \(J^\text{det} \) and \(J^\text{tr} \) classes
- \(b \): the \(b \) parameter for the \(J^\text{det} \) and \(J^\text{tr} \) classes
- \(f \): scaling factor for the \(J^\text{det} \) and \(J^\text{tr} \) classes
- \(n \): sample size
- \(p \): number of predictor variables
- \(r \): number of response variables
- \(m \): deletion subset size

Details

These functions are purely experimental and not intended to be used directly. However, they may be useful to define other influence measures than are currently implemented here.

Value

The scalar result of the computation.

Author(s)

Michael Friendly
References

lrPlot

Regression LR Influence Plot

Description

This function creates a “bubble” plot of functions, \(R = \log(\text{Studentized residuals}^2) \) by \(L = \log(\text{H}/p*(1-H)) \) of the hat values, with the areas of the circles representing the observations proportional to Cook’s distances.

This plot, suggested by McCulloch & Meeter (1983) has the attractive property that contours of equal Cook’s distance are diagonal lines with slope = -1. Various reference lines are drawn on the plot corresponding to twice and three times the average hat value, a “large” squared studentized residual and contours of Cook’s distance.

Usage

```
lrPlot(model, ...)  
```

```r
## S3 method for class 'lm'
lrPlot(model, scale = 12,
       xlab = "log Leverage factor \[\log H/p*(1-H)\]",
       ylab = "log (Studentized Residual^2)",
       xlim = NULL, ylim, 
       labels, 
       id.method = "noteworthy", 
       id.n = if (id.method[1] == "identify") Inf else 0,
       id.cex = 1, id.col = palette()[1],
       ref = c("h", "v", "d", "c"), ref.col = "gray",
       ref.lty = 2, ref.lab = TRUE, 
       ...)
```

Arguments

- `model` a linear or generalized-linear model.
- `scale` a factor to adjust the radii of the circles, in relation to \(\sqrt{\text{Cook's distance}} \).
- `xlab`, `ylab` axis labels.
- `xlim`, `ylim` Limits for x and y axes. In the space of \((L, R) \) very small residuals typically extend the y axis enough to swamp the large residuals, so the default for `ylim` is set to a range of 6 log units starting at the maximum value.

labels, id.method, id.n, id.cex, id.col

settings for labeling points; see \link{showLabels} for details. To omit point labeling, set \code{id.n=0}, the default. The default \code{id.method="noteworthy"} is used in this function to indicate setting labels for points with large Studentized residuals, hat-values or Cook's distances. See Details below. Set \code{id.method="identify"} for interactive point identification.

\code{ref}

Options to draw reference lines, any one or more of \code{c("h", "v", "d", "c")}. "h" and "v" draw horizontal and vertical reference lines at noteworthy values of \(R\) and \(L\) respectively. "d" draws equally spaced diagonal reference lines for contours of equal Cook\(D\). "c" draws diagonal reference lines corresponding to approximate 0.95 and 0.99 contours of Cook\(D\).

\code{ref.col}, \code{ref.lty}

Color and line type for reference lines. Reference lines for "c" \%in\% \code{ref} are handled separately.

\code{ref.lab}

A logical, indicating whether the reference lines should be labeled.

\dots

arguments to pass to the \code{plot} and \code{points} functions.

Details

The \code{id.method="noteworthy"} setting also requires setting \code{id.n>0} to have any effect. Using \code{id.method="noteworthy"}, and \code{id.n>0}, the number of points labeled is the union of the largest \code{id.n} values on each of \(L\), \(R\), and Cook\(D\).

Value

If points are identified, returns a data frame with the hat values, Studentized residuals and Cook's distance of the identified points. If no points are identified, nothing is returned. This function is primarily used for its side-effect of drawing a plot.

Author(s)

Michael Friendly

References

See Also

\code{influencePlot.mlm}

\code{influencePlot} in the \pkg{car} package for other methods
Examples

artificial example from Lawrence (1995)
x <- c(0, 0, 7, 8, 8, 9, 9, 10, 10, 11, 11, 18, 18)
y <- c(0, 6, 6, 7, 6, 7, 6, 7, 6, 7, 7, 18)
DF <- data.frame(x,y, row.names=LETTERS[1:length(x)])
DF

with(DF, {
 plot(x,y, pch=16, cex=1.3)
 abline(lm(y~x), col="red", lwd=2)
 NB <- c(1,2,13,14)
 text(x[NB],y[NB], LETTERS[NB], pos=c(4,4,2,2))
})

mod <- lm(y~x, data=DF)
standard influence plot from car
influencePlot(mod, id.n=4)

lRPlot version
lRPlot(mod, id.n=4)

library(car)
dmod <- lm(prestige ~ income + education, data = Duncan)
influencePlot(dmod, id.n=3)
lRPlot(dmod, id.n=3)

mlm.influence

Calculate Regression Deletion Diagnostics for Multivariate Linear Models

Description

mlm.influence is the main computational function in this package. It is usually not called directly, but rather via its alias, influence.mlmlm, the S3 method for a mlm object.

Usage

mlm.influence(model, do.coef = TRUE, m = 1, ...)

Arguments

model An mlm object, as returned by lm
do.coef logical. Should the coefficients be returned in the inf1mlmlm object?
m Size of the subsets for deletion diagnostics
... Further arguments passed to other methods
Details

The computations and methods for the $m=1$ case are straight-forward, as are the computations for the $m>1$ case. Associated methods for $m>1$ are still under development.

Value

`mlm.influence` returns an S3 object of class `inflmlm`, a list with the following components

- `m`: Deletion subset size
- `H`: Hat values, H_{ij}. If $m=1$, a vector of diagonal entries of the ‘hat’ matrix. Otherwise, a list of $m \times m$ matrices corresponding to the subsets.
- `Q`: Residuals, Q_i.
- `CookD`: Cook’s distance values
- `L`: Leverage components
- `R`: Residual components
- `subsets`: Indices of the observations in the subsets of size m
- `labels`: Observation labels
- `call`: Model call for the `mlm` object
- `Beta`: Deletion regression coefficients— included if `do.coef=TRUE`

Author(s)

Michael Friendly

References

See Also

`influencePlot.mlm`

Examples

```r
Rohwer2 <- subset(Rohwer, subset=group==2)
rownames(Rohwer2) <- 1:nrow(Rohwer2)
Rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ n+s+ns+na+ss, data=Rohwer2)
Rohwer.mod
influence(Rohwer.mod)

# Sake data
Sake.mod <- lm(cbind(taste,smell) ~ ., data=Sake)
influence(Sake.mod)
```
Description

Calculates the n-th power of a square matrix, where n can be a positive or negative integer or a fractional power.

Usage

```r
mpower(A, n)
```

Arguments

- `A`
 A square matrix. Must also be symmetric for non-integer powers.

- `n`
 matrix power

Details

If $n < 0$, the method is applied to A^{-1}. When n is an integer, the function uses the Russian peasant method, or repeated squaring for efficiency. Otherwise, it uses the spectral decomposition of A, requiring a symmetric matrix.

Value

Returns the matrix A^n

Author(s)

Michael Friendly

See Also

Packages corpcor and expm define similar functions.

Examples

```r
M <- matrix(sample(1:9), 3, 3)
mpower(M, 2)
mpower(M, 4)

# make a symmetric matrix
MM <- crossprod(M)
mpower(MM, -1)
Mhalf <- mpower(MM, 1/2)
all.equal(MM, Mhalf %*% Mhalf)
```
Description
Calculates the trace of a matrix

Usage
\[\text{tr}(M) \]

Arguments
- \(M \) a matrix

Value
returns the sum of the diagonal elements

Author(s)
Michael Friendly

Examples
\[M \leftarrow \text{matrix(sample(1:9), 3, 3)} \]
\[\text{tr}(M) \]
Index

*Topic array
 Jfuns, 12
 mpower, 18
 tr, 19
*Topic datasets
 Fertilizer, 4
*Topic hplot
 infIndexPlot.mlm, 5
*Topic models
 influence.measures, 7
 influence.mlm, 8
 influencePlot.mlm, 10
 mlm.influence, 16
*Topic multivariate
 influencePlot.mlm, 10
 mlm.influence, 16
*Topic package
 mvinfluence-package, 2
*Topic regression
 influence.measures, 7
 influence.mlm, 8
 influencePlot.mlm, 10
 lrPlot, 12
 mlm.influence, 16
 %%(mpower), 18
as.data.frame.inflmlm(influence.mlm), 8
COOKD (Jfuns), 12
cooks.distance.mlm
 (influence.measures), 7
COVRATIO (Jfuns), 12
DFFITS (Jfuns), 12
Fertilizer, 4
hatvalues.mlm(influence.measures), 7
infIndexPlot, 6
infIndexPlot.mlm, 5
influence.measures, 2, 4, 7, 7, 8
influence.mlm, 4, 6, 8, 16
influenceIndexPlot(inflIndexPlot.mlm), 5
influencePlot, 2, 12, 15
influencePlot.mlm, 4, 6, 8, 10, 10, 15, 17
Jdet, 4
Jdet (Jfuns), 12
Jfuns, 12
Jtr, 4
Jtr (Jfuns), 12
lm, 7, 9, 11, 16
lrPlot, 12, 14
mahalanobis, 6
mlm.influence, 5, 7, 9–12, 16
mpower, 18
mvinfluence (mvinfluence-package), 2
mvinfluence-package, 2
print.inflmlm(influence.mlm), 8
showLabels, 6
tr, 19