Package ‘mvoutlier’

January 16, 2017

Version 2.0.8
Date 2017-01-15
Title Multivariate Outlier Detection Based on Robust Methods
Author Peter Filzmoser <P.Filzmoser@tuwien.ac.at> and Moritz Gschwandtner <e0125439@student.tuwien.ac.at>
Maintainer P. Filzmoser <P.Filzmoser@tuwien.ac.at>
Depends sgeostat, R (>= 2.14)
Imports robCompositions, robustbase
Description Various Methods for Multivariate Outlier Detection.
LazyData TRUE
License GPL (>= 3)
URL http://www.statistik.tuwien.ac.at/public/filz/
NeedsCompilation no
Repository CRAN
Date/Publication 2017-01-16 08:13:02

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>aq.plot</td>
<td>2</td>
</tr>
<tr>
<td>arw</td>
<td>3</td>
</tr>
<tr>
<td>bhorizon</td>
<td>5</td>
</tr>
<tr>
<td>bss.background</td>
<td>7</td>
</tr>
<tr>
<td>bssbot</td>
<td>8</td>
</tr>
<tr>
<td>bssstop</td>
<td>10</td>
</tr>
<tr>
<td>chisq.plot</td>
<td>12</td>
</tr>
<tr>
<td>chorizon</td>
<td>13</td>
</tr>
<tr>
<td>color.plot</td>
<td>17</td>
</tr>
<tr>
<td>corr.plot</td>
<td>18</td>
</tr>
<tr>
<td>dat</td>
<td>19</td>
</tr>
<tr>
<td>dd.plot</td>
<td>20</td>
</tr>
<tr>
<td>humus</td>
<td>21</td>
</tr>
</tbody>
</table>
Description

The function `aq.plot` plots the ordered squared robust Mahalanobis distances of the observations against the empirical distribution function of the MD^2_i. In addition the distribution function of χ^2_p is plotted as well as two vertical lines corresponding to the chisq-quantile specified in the argument list (default is 0.975) and the so-called adjusted quantile. Three additional graphics are created (the first showing the data, the second showing the outliers detected by the specified quantile of the χ^2_p distribution and the third showing these detected outliers by the adjusted quantile).

Usage

```r
aq.plot(x, delta=qchisq(0.975, df=ncol(x)), quan=1/2, alpha=0.05)
```

Arguments

- `x` matrix or data.frame containing the data; has to be at least two-dimensional
- `delta` quantile of the chi-squared distribution with ncol(x) degrees of freedom. This quantile appears as cyan-colored vertical line in the plot.
- `quan` proportion of observations which are used for mcd estimations; has to be between 0.5 and 1, default ist 0.5
- `alpha` Maximum thresholding proportion (optional scalar, default: alpha = 0.05)
Details

The function `aq.plot` plots the ordered squared robust Mahalanobis distances of the observations against the empirical distribution function of the MD^2_i. The distance calculations are based on the MCD estimator.

For outlier detection two different methods are used. The first one marks observations as outliers if they exceed a certain quantile of the chi-squared distribution. The second is an adaptive procedure searching for outliers specifically in the tails of the distribution, beginning at a certain chisq-quantile (see Filzmoser et al., 2005).

The function behaves differently depending on the dimension of the data. If the data is more than two-dimensional the data are projected on the first two robust principal components.

Value

- `outliers` boolean vector of outliers

Author(s)

Moritz Gschwandtner <<e0125439@student.tuwien.ac.at>>
Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

Examples

```r
# create data:
set.seed(134)
x <- cbind(rnorm(80), rnorm(80), rnorm(80))
y <- cbind(rnorm(10, 5, 1), rnorm(10, 5, 1), rnorm(10, 5, 1))
z <- rbind(x, y)
# execute:
aq.plot(z, alpha=0.1)
```

Description

Adaptive reweighted estimator for multivariate location and scatter with hard-rejection weights. The multivariate outliers are defined according to the supremum of the difference between the empirical distribution function of the robust Mahalanobis distance and the theoretical distribution function.

Usage

```r
arw(x, m0, c0, alpha, pcrit)
```
Arguments

- **x**: Dataset (n x p)
- **m0**: Initial location estimator (1 x p)
- **c0**: Initial scatter estimator (p x p)
- **alpha**: Maximum thresholding proportion (optional scalar, default: alpha = 0.025)
- **pcrit**: Critical value obtained by simulations (optional scalar, default value obtained from simulations)

Details

At the basis of initial estimators of location and scatter, the function arw performs a reweighting step to adjust the threshold for outlier rejection. The critical value pcrit was obtained by simulations using the MCD estimator as initial robust covariance estimator. If a different estimator is used, pcrit should be changed and computed by simulations for the specific dimensions of the data x.

Value

- **m**: Adaptive location estimator (p x 1)
- **c**: Adaptive scatter estimator (p x p)
- **cn**: Adaptive threshold (“adjusted quantile”)
- **w**: Weight vector (n x 1)

Author(s)

Moritz Gschwandtner <<e0125439@student.tuwien.ac.at>>
Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

Examples

```r
x <- cbind(rnorm(100), rnorm(100))
arw(x, apply(x,2,mean), cov(x))
```
bhorizon

bhorizon B-horizon of the Kola Data

Description

The Kola data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the B-horizon.

Usage

data(bhorizon)

Format

A data frame with 609 observations on the following 48 variables.

- ID a numeric vector
- XC00 a numeric vector
- YC00 a numeric vector
- Ag a numeric vector
- Al a numeric vector
- Al_XRF a numeric vector
- As a numeric vector
- Ba a numeric vector
- Be a numeric vector
- Bi a numeric vector
- Ca a numeric vector
- Ca_XRF a numeric vector
- Cd a numeric vector
- Co a numeric vector
- Cr a numeric vector
- Cu a numeric vector
- EC a numeric vector
- Fe a numeric vector
- Fe_XRF a numeric vector
- K a numeric vector
- K_XRF a numeric vector
- LOI a numeric vector
- La a numeric vector
Li a numeric vector
Mg a numeric vector
Mg_XRF a numeric vector
Mn a numeric vector
Mn_XRF a numeric vector
Mo a numeric vector
Na a numeric vector
Na_XRF a numeric vector
Ni a numeric vector
P a numeric vector
P_XRF a numeric vector
Pb a numeric vector
S a numeric vector
Sc a numeric vector
Se a numeric vector
Si a numeric vector
Si_XRF a numeric vector
Sr a numeric vector
Te a numeric vector
Th a numeric vector
Ti a numeric vector
Ti_XRF a numeric vector
V a numeric vector
Y a numeric vector
Zn a numeric vector

Source

References

Examples
data(bhorizon)
classical versus robust correlation
corr.plot(log(bhorizon[,"Al"]), log(bhorizon[,"Na"]))
bss.background

Background map for the BSS project

Description

Coordinates of the BSS data background map

Usage

data(bss.background)

Format

A data frame with 6093 observations on the following 2 variables.

- V1: a numeric vector with the x-coordinates
- V2: a numeric vector with the y-coordinates

Details

Is used by pbb()

Source

BSS project

References

Examples

data(bss.background)
pbb()
bssbot

Bottom Layer of the BSS Data

Description

The BSS data were collected in agricultural soils from Northern Europe, from an area of about 1,800,000 km². 769 samples on an irregular grid were taken in two different layers, the top layer (0-20cm) and the bottom layer. This dataset contains the bottom layer of the BSS data. It has 46 variables, including x and y coordinates.

Usage

data(bssbot)

Format

A data frame with 768 observations on the following 46 variables.

- **ID** a numeric vector
- **CNo** a numeric vector
- **XCOO** x coordinates: a numeric vector
- **YCOO** y coordinates: a numeric vector
- **SiO2_B** a numeric vector
- **TiO2_B** a numeric vector
- **Al2O3_B** a numeric vector
- **Fe2O3_B** a numeric vector
- **MnO_B** a numeric vector
- **MgO_B** a numeric vector
- **CaO_B** a numeric vector
- **Na2O_B** a numeric vector
- **K2O_B** a numeric vector
- **P2O5_B** a numeric vector
- **SO3_B** a numeric vector
- **Cl_B** a numeric vector
- **F_B** a numeric vector
- **LOI_B** a numeric vector
- **As_B** a numeric vector
- **Ba_B** a numeric vector
- **Bi_B** a numeric vector
- **Ce_B** a numeric vector
Co_B a numeric vector
Cr_B a numeric vector
Cs_B a numeric vector
Cu_B a numeric vector
Ga_B a numeric vector
Hf_B a numeric vector
La_B a numeric vector
Mo_B a numeric vector
Nb_B a numeric vector
Ni_B a numeric vector
Pb_B a numeric vector
Rb_B a numeric vector
Sb_B a numeric vector
Sc_B a numeric vector
Sn_B a numeric vector
Sr_B a numeric vector
Ta_B a numeric vector
Th_B a numeric vector
U_B a numeric vector
V_B a numeric vector
W_B a numeric vector
Y_B a numeric vector
Zn_B a numeric vector
Zr_B a numeric vector

Source
BSS Project in Northern Europe

References

Examples
data(bssbot)
classical versus robust correlation
corr.plot(log(bssbot[, "Al2O3_B"]), log(bssbot[, "Na2O_B"]))
bsstop

Top Layer of the BSS Data

Description
The BSS data were collected in agricultural soils from Northern Europe. from an area of about 1,800,000 km2. 769 samples on an irregular grid were taken in two different layers, the top layer (0-20cm) and the bottom layer. This dataset contains the top layer of the BSS data. It has 46 variables, including x and y coordinates.

Usage
data(bsstop)

Format
A data frame with 768 observations on the following 46 variables.

- **ID** a numeric vector
- **CNo** a numeric vector
- **XCOO** x coordinates: a numeric vector
- **YCOO** y coordinates: a numeric vector
- **SiO2_T** a numeric vector
- **TiO2_T** a numeric vector
- **Al2O3_T** a numeric vector
- **Fe2O3_T** a numeric vector
- **MnO_T** a numeric vector
- **MgO_T** a numeric vector
- **CaO_T** a numeric vector
- **Na2O_T** a numeric vector
- **K2O_T** a numeric vector
- **P2O5_T** a numeric vector
- **SO3_T** a numeric vector
- **Cl_T** a numeric vector
- **F_T** a numeric vector
- **LOI_T** a numeric vector
- **As_T** a numeric vector
- **Ba_T** a numeric vector
- **Bi_T** a numeric vector
- **Ce_T** a numeric vector
Co_T a numeric vector
Cr_T a numeric vector
Cs_T a numeric vector
Cu_T a numeric vector
Ga_T a numeric vector
Hf_T a numeric vector
La_T a numeric vector
Mo_T a numeric vector
Nb_T a numeric vector
Ni_T a numeric vector
Pb_T a numeric vector
Rb_T a numeric vector
Sb_T a numeric vector
Sc_T a numeric vector
Sn_T a numeric vector
Sr_T a numeric vector
Ta_T a numeric vector
Th_T a numeric vector
U_T a numeric vector
V_T a numeric vector
W_T a numeric vector
Y_T a numeric vector
Zn_T a numeric vector
Zr_T a numeric vector

Source
BSS Project in Northern Europe

References

Examples
data(bsstop)
classical versus robust correlation
corr.plot(log(bsstop[, "Al2O3_T"]), log(bsstop[, "Na2O_T"]))
chisq.plot

Chi-Square Plot

Description

The function chisq.plot plots the ordered robust mahalanobis distances of the data against the quantiles of the Chi-squared distribution. By user interaction this plotting is iterated each time leaving out the observation with the greatest distance.

Usage

```r
chisq.plot(x, quan=1/2, ask=TRUE, ...)
```

Arguments

- `x`: matrix or data.frame containing the data
- `quan`: amount of observations which are used for mcd estimations. has to be between 0.5 and 1, default ist 0.5
- `ask`: logical. specifies whether user interaction is allowed or not. default is TRUE
- `...`: additional graphical parameters

Details

The function chisq.plot plots the ordered robust mahalanobis distances of the data against the quantiles of the Chi-squared distribution. If the data is normal distributed these values should approximately correspond to each other, so outliers can be detected visually. By user interaction this procedure is repeated, each time leaving out the observation with the greatest distance (the number of the observation is printed on the console). This method can be seen as an iterative deletion of outliers until a straight line appears.

Value

- `outliers`: indices of the outliers that are removed by left-click on the plotting device.

Author(s)

Moritz Gschwandtner <<e0125439@student.tuwien.ac.at>>
Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

Examples

```r
data(humus)
res <- chisq.plot(log(humus[,c("Co","Cu","Ni")]))
res$outliers # these are the potential outliers
```

<table>
<thead>
<tr>
<th>chorizon</th>
<th>C-horizon of the Kola Data</th>
</tr>
</thead>
</table>

Description

The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the C-horizon.

Usage

```r
data(chorizon)
```

Format

A data frame with 606 observations on the following 110 variables.

- ID a numeric vector
- XCO0 a numeric vector
- YCO0 a numeric vector
- Ag a numeric vector
- Ag_INAA a numeric vector
- Al a numeric vector
- Al203 a numeric vector
- As a numeric vector
- As_INAA a numeric vector
- Au_INAA a numeric vector
- B a numeric vector
- Ba a numeric vector
- Ba_INAA a numeric vector
- Be a numeric vector
- Bi a numeric vector
- Br_IC a numeric vector
- Br_INAA a numeric vector
- Ca a numeric vector
- Ca_INAA a numeric vector
CaO a numeric vector
Cd a numeric vector
Ce_INAA a numeric vector
Cl_IC a numeric vector
Co a numeric vector
Co_INAA a numeric vector
EC a numeric vector
Cr a numeric vector
Cr_INAA a numeric vector
Cs_INAA a numeric vector
Cu a numeric vector
Eu_INAA a numeric vector
F_IC a numeric vector
Fe a numeric vector
Fe_INAA a numeric vector
Fe2O3 a numeric vector
Hf_INAA a numeric vector
Hg a numeric vector
Hg_INAA a numeric vector
Ir_INAA a numeric vector
K a numeric vector
K2O a numeric vector
La a numeric vector
La_INAA a numeric vector
Li a numeric vector
LOI a numeric vector
Lu_INAA a numeric vector
wt_INAA a numeric vector
Mg a numeric vector
MgO a numeric vector
Mn a numeric vector
MnO a numeric vector
Mo a numeric vector
Mo_INAA a numeric vector
Na a numeric vector
Na_INAA a numeric vector
Na2O a numeric vector
Nd_INAA a numeric vector
Ni a numeric vector
Ni_INAA a numeric vector
NO3_IC a numeric vector
P a numeric vector
P2O5 a numeric vector
Pb a numeric vector
pH a numeric vector
P04_IC a numeric vector
Rb a numeric vector
S a numeric vector
Sb a numeric vector
Sb_INAA a numeric vector
Sc a numeric vector
Sc_INAA a numeric vector
Se a numeric vector
Se_INAA a numeric vector
Si a numeric vector
SiO2 a numeric vector
Sm_INAA a numeric vector
Sn_INAA a numeric vector
S04_IC a numeric vector
Sr a numeric vector
Sr_INAA a numeric vector
SUM_XRF a numeric vector
Ta_INAA a numeric vector
Tb_INAA a numeric vector
Te a numeric vector
Th a numeric vector
Th_INAA a numeric vector
Ti a numeric vector
TiO2 a numeric vector
U_INAA a numeric vector
V a numeric vector
W_INAA a numeric vector
Y a numeric vector
Yb_INAA a numeric vector
Zn a numeric vector
Zn_INAA a numeric vector
ELEV a numeric vector
COUN a numeric vector
ASP a numeric vector
TOPC a numeric vector
LITO a numeric vector
Al_XRF a numeric vector
Ca_XRF a numeric vector
Fe_XRF a numeric vector
K_XRF a numeric vector
Mg_XRF a numeric vector
Mn_XRF a numeric vector
Na_XRF a numeric vector
P_XRF a numeric vector
Si_XRF a numeric vector
Ti_XRF a numeric vector

Source

References

Examples
data(chorizon)
classical versus robust correlation
corr.plot(log(chorizon[,"Al")), log(chorizon[,"Na"]))
color.plot

Description

The function `color.plot` plots the (two-dimensional) data using different symbols according to the robust mahalanobis distance based on the mcd estimator with adjustment and using different colors according to the euclidean distances of the observations.

Usage

```
color.plot(x, quan=1/2, alpha=0.025, ...)
```

Arguments

- `x`: two dimensional matrix or data.frame containing the data.
- `quan`: amount of observations which are used for mcd estimations. has to be between 0.5 and 1, default ist 0.5
- `alpha`: amount of observations used for calculating the adjusted quantile (see function `arw`).
- `...`: additional graphical parameters

Details

The function `color.plot` plots the (two-dimensional) data using different symbols (see function `symbol.plot`) according to the robust mahalanobis distance based on the mcd estimator with adjustment and using different colors according to the euclidean distances of the observations. Blue is typical for a little distance, whereas red is the opposite. In addition four ellipsoids are drawn, on which mahalanobis distances are constant. These constant values correspond to the 25%, 50%, 75% and adjusted quantiles (see function `arw`) of the chi-square distribution (see Filzmoser et al., 2005).

Value

- `outliers`: boolean vector of outliers
- `md`: robust mahalanobis distances of the data
- `euclidean`: euclidean distances of the observations according to the minimum of the data.

Author(s)

Moritz Gschwandtner <<e0125439@student.tuwien.ac.at>>
Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

corr.plot

Correlation Plot: robust versus classical bivariate correlation

Description

The function corr.plot plots the (two-dimensional) data and adds two correlation ellipsoids, based on classical and robust estimation of location and scatter. Robust estimation can be thought of as estimating the mean and covariance of the 'good' part of the data.

Usage

corr.plot(x, y, quan=1/2, alpha=0.025, ...)

Arguments

x vector to be plotted against y and of which the correlation with y is calculated.
y vector to be plotted against x and of which the correlation with x is calculated.
quan amount of observations which are used for mcd estimations. has to be between 0.5 and 1, default ist 0.5
alpha Determines the size of the ellipsoids. An observation will be outside of the ellipsoid if its mahalanobis distance exceeds the 1-alpha quantile of the chi-squared distribution.
... additional graphical parameters

Value

cor.cla correlation between x and y based on classical estimation of location and scatter
cor.rob correlation between x and y based on robust estimation of location and scatter

Author(s)

Moritz Gschwandtner <<e0125439@student.tuwien.ac.at>>
Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

See Also

symbol.plot, dd.plot, arw

Examples

create data:
x <- cbind(rnorm(100), rnorm(100))
y <- cbind(rnorm(10, 5, 1), rnorm(10, 5, 1))
z <- rbind(x, y)
execute:
color.plot(z, quan=0.75)
dat

See Also

covMcd

Examples

create data:
x <- cbind(rnorm(100), rnorm(100))
y <- cbind(rnorm(10, 3, 1), rnorm(10, 3, 1))
z <- rbind(x, y)
execute:
corr.plot(z[,1], z[,2])

dat

Data of illustrative example in paper (see below)

Description

Illustrative data example with 100 observations in two dimensions.

Usage

data(dat)

Format

The format is: num [1:100, 1:2] 3.39 4.08 4.35 4.89 4.55 ...

Details

Data are constructed to contain global as well as local outliers.

Source

References

Examples

data(dat)
plot(dat)
dd.plot

Distance-Distance Plot

Description
The function dd.plot plots the classical mahalanobis distance of the data against the robust mahalanobis distance based on the mcd estimator. Different symbols (see function symbol.plot) and colours (see function color.plot) are used depending on the mahalanobis and euclidean distance of the observations (see Filzmoser et al., 2005).

Usage
dd.plot(x, quan=1/2, alpha=0.025, ...)

Arguments
- x: matrix or data frame containing the data
- quan: amount of observations which are used for mcd estimations. has to be between 0.5 and 1, default ist 0.5
- alpha: amount of observations used for calculating the adjusted quantile (see function arw).
- ... additional graphical parameters

Value
- outliers: boolean vector of outliers
- md.cla: mahalanobis distances of the observations based on classical estimators of location and scatter.
- md.rob: mahalanobis distances of the observations based on robust estimators of location and scatter (mcd).

Author(s)
Moritz Gschwandtner <<e0125439@student.tuwien.ac.at>>
Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also
symbol.plot, color.plot, arw, covPlot
Examples

```r
# create data:
x <- cbind(rnorm(100), rnorm(100))
y <- cbind(rnorm(10, 3, 1), rnorm(10, 3, 1))
z <- rbind(x, y)
# execute:
dd.plot(z)

# Identify multivariate outliers for Co-Cu-Ni in humus layer of Kola data:
data(humus)
dd.plot(log(humus[,c("Co","Cu","Ni")]))
```

Humus Layer (O-horizon) of the Kola Data

Description

The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the humus layer.

Usage

data(humus)

Format

A data frame with 617 observations on the following 44 variables.

- **ID**: a numeric vector
- **XCOO**: a numeric vector
- **YCOO**: a numeric vector
- **Ag**: a numeric vector
- **Al**: a numeric vector
- **As**: a numeric vector
- **B**: a numeric vector
- **Ba**: a numeric vector
- **Be**: a numeric vector
- **Bi**: a numeric vector
- **Ca**: a numeric vector
- **Cd**: a numeric vector
- **Co**: a numeric vector
- **Cr**: a numeric vector
Cu a numeric vector
Fe a numeric vector
Hg a numeric vector
K a numeric vector
La a numeric vector
Mg a numeric vector
Mn a numeric vector
Mo a numeric vector
Na a numeric vector
Ni a numeric vector
P a numeric vector
Pb a numeric vector
Rb a numeric vector
S a numeric vector
Sb a numeric vector
Sc a numeric vector
Si a numeric vector
Sr a numeric vector
Th a numeric vector
Tl a numeric vector
U a numeric vector
V a numeric vector
Y a numeric vector
Zn a numeric vector
C a numeric vector
H a numeric vector
N a numeric vector
LOI a numeric vector
pH a numeric vector
Cond a numeric vector

Source

References
Examples

data(humus)
classical versus robust correlation:
corr.plot(log(humus[,"Al"]), log(humus[,"Na"]));

Description

Coordinates of the Kola background map

Usage

data(kola.background)

Format

Details

Is used by map.plot()

Source

References

Examples

eample(map.plot)
locoutNeighbor

Diagnostic plot for identifying local outliers with varying size of neighborhood

Description

Computes global and pairwise Mahalanobis distances for visualizing global and local multivariate outliers. The size of the neighborhood (number of neighbors) is varying, but the fraction of neighbors is fixed.

Usage

```r
locoutNeighbor(dat, X, Y, propneighb = 0.1, variant = c("dist", "knn"), usemax = 1/3, npoints = 50, chisqqu = 0.975, indices = NULL, xlab = NULL, ylab = NULL, colall = gray(0.7), colsel = 1, ...)
```

Arguments

- `dat`: multivariate data set (without coordinates)
- `X`: X coordinates of the data points
- `Y`: Y coordinates of the data points
- `propneighb`: proportion of neighbors to be included in tolerance ellipse
- `variant`: either search for neighbors according to the Eucl.Distance, or according to kNN
- `usemax`: for either variant: give fraction of points (max Dist) that is used for the plot
- `npoints`: computation is done at most at npoints points
- `chisqqu`: quantile of the chisquare distribution for splitting the plot
- `indices`: if this is not NULL, these should be indices of observations to be highlighted
- `xlab`: x-axis label for plot
- `ylab`: y-axis label for plot
- `colall`: color for lines if indices is NULL
- `colsel`: color for lines if indices are selected
- `...`: additional parameters for plotting

Details

For this diagnostic tool, the number of neighbors is varied up to a fraction of usemax observations. Then propneighb (called beta) is fixed, and for each observation we compute the degree of isolation from a fraction of 1-beta of its neighbors. Neighborhood can be defined either via the Euclidean distance or by k-Nearest-Neighbors. For computational reasons, all computations are done at most for npoints points. The critical value for outliers is the quantile chisqqu of the chisquare distribution. One can also provide indices of observations (for indices). Then the corresponding lines in the plots will be highlighted.
locoutPercent

Value

indices.reg indices of the (selected) observations being regular observations
indices.out indices of the (selected) observations being global outliers

Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> \texttt{http://www.statistik.tuwien.ac.at/public/filz/}

References

See Also

\texttt{locoutPercent, locoutSort}

Examples

\begin{verbatim}
use data from illustrative example in paper:
data(X)
data(Y)
data(dat)
res <- locoutNeighbor(dat, X, Y, variant="knn", usemax=1, chisqu=0.975, indices=c(1, 11, 24, 36),
 propneighb=0.1, npoints=100)
\end{verbatim}

\begin{verbatim}
locoutPercent Diagnostic plot for identifying local outliers with fixed size of neighborhood
\end{verbatim}

Description

Computes global and pairwise Mahalanobis distances for visualizing global and local multivariate outliers. The size of the neighborhood (number of neighbors) is fixed, but the fraction of neighbors is varying.

Usage

\begin{verbatim}
locoutPercent(dat, X, Y, dist = NULL, k = 10, chisqu = 0.975, sortup = 10, sortlow = 90,
nlinesup = 10, nlineslow = 10, indices = NULL, xlab = "(Sorted) Index",
 ylab = "Distance to neighbor", col = gray(0.7), ...)\end{verbatim}
locoutPercent

Arguments

dat multivariate data set (without coordinates)
X X coordinates of the data points
Y Y coordinates of the data points
dist maximum distance to search for neighbors; if nothing is provided, k for kNN is used
k number of nearest neighbors to search - not taken if a value for dist is provided
chisqu quantile of the chisquare distribution for splitting the plot
sortup sort local outliers according to given percentage
sortlow sort local inliers according to given percentage
nlinesup number of lines to be plotted for upper part
nlineslow number of lines to be plotted for lower part
indices if this is not NULL, these should be indices of observations to be highlighted
xlab x-axis label for plot
ylab y-axis label for plot
col color for lines
... additional parameters for plotting

Details

For this diagnostic tool, the number of neighbors is fixed, but propneighb (called beta) is varied. For each observation we compute the degree of isolation from a fraction of 1-beta of its neighbors. Neighborhood can be defined either via the Euclidean distance or by k-Nearest-Neighbors. The critical value for outliers is the quantile chisqu of the chisquare distribution. One can also provide indices of observations (for indices). Then the corresponding lines in the plots will be highlighted.

Value

ret list containing indices of regular and outlying observations

Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also

locoutNeighbor, locoutSort
locoutSort

Examples

use data from illustrative example in paper:
dat(X)
dat(Y)
dat(dat)
res <- locoutPercent(dat,X,Y,k=10,chisqqu=0.975, indices=c(1,11,24,36))

locoutSort Interactive diagnostic plot for identifying local outliers

Description

Computes global and pairwise Mahalanobis distances for visualizing global and local multivariate outliers. The plot is split into regular (left) and global (right) outliers, and points can be selected interactively. In a second plot, these points are shown by spatial coordinates.

Usage

locoutSort(dat, X, Y, distc = NULL, k = 10, propneighb = 0.1, chisqqu = 0.975, sel = NULL, ...)

Arguments

dat multivariate data set (without coordinates)
X X coordinates of the data points
Y Y coordinates of the data points
distc maximum distance to search for neighbors; if nothing is provided, k for kNN is used
k number of nearest neighbors to search - not taken if a value for dist is provided
propneighb proportion of neighbors to be included in tolerance ellipse
chisqqu quantile of the chisquare distribution for splitting the plot
sel optional list with x and y, i.e. coordinates with selected polygon
... additional parameters for plotting

Details

For this diagnostic tool, the number of neighbors is fixed, and propneighb (called beta) is also fixed. For each observation we compute the degree of isolation from a fraction of 1-beta of its neighbors. The observations are sorted according to this degree of isolation, and this sorted index forms the x-axis of the left plot. This plot is also split into regular (left) and global (right) outliers. Then one can select with the mouse a region in this plot, meaning an observation and (some of) its neighbors. Alternatively, this region can be supplied by sel. The selected observations are then shown in the right plot. Links to the neighbors are also shown.
map.plot

Value

list(sel=sel,index.regular=res$indices.regular,index.outliers=res$indices.outliers)

sel plot coordinates of the selected region
indices.reg indices of the observations being regular observations
indices.out indices of the observations being global outliers

Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also

locoutPercent, locoutNeighbor

Examples

use data from illustrative example in paper:
data(X)
data(Y)
data(dat)

sel <- locoutSort(dat,X,Y,k=10,propneighb=0.1,chisqu=0.975,
 sel=list(x=c(87.5,87.5,89.3,89.3),y=c(4.3,0.7,0.7,4.3)))

Description

The function map.plot creates a map using geographical (x,y)-coordinates. This is thought for spatially dependent data of which coordinates are available. Multivariate outliers are marked.

Usage

map.plot(coord, data, quan=1/2, alpha=0.025, symb=FALSE, plotmap=TRUE,
 map="kola.background", which.map=c(1,2,3,4), map.col=c(5,1,3,4),
 map.lwd=c(2,1,2,1),...)

Plot Multivariate Outliers in a Map
Arguments

- `coord`: (x,y)-coordinates of the data
- `data`: matrix or data.frame containing the data.
- `quan`: amount of observations which are used for mcd estimations. has to be between 0.5 and 1, default ist 0.5
- `alpha`: amount of observations used for calculating the adjusted quantile (see function arw).
- `symb`: logical for plotting special symbols (see details).
- `plotmap`: logical for plotting the background map.
- `map`: see plot.kola.background()
- `which.map`: see plot.kola.background()
- `map.col`: see plot.kola.background()
- `map.lwd`: see plot.kola.background()
- `...`: additional graphical parameters

Details

The function `map.plot` shows multivariate outliers in a map. If `symb=FALSE` (default), only two colors and no special symbols are used to mark multivariate outliers (the outliers are marked red). If `symb=TRUE` different symbols and colors are used. The symbols (cross means big value, circle means little value) are selected according to the robust mahalanobis distance based on the adjusted mcd estimator (see function `symbol.plot` Different colors (red means big value, blue means little value) according to the euclidean distances of the observations (see function `color.plot`) are used. For details see Filzmoser et al. (2005).

Value

- `outliers`: boolean vector of outliers
- `md`: robust mahalanobis distances of the data
- `euclidean`: (only if symb=TRUE) euclidean distances of the observations according to the minimum of the data.

Author(s)

Moritz Gschwandtner <<e0125439@student.tuwien.ac.at>>
Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also

`symbol.plot`, `color.plot`, `arw`
Examples

data(humus) # Load humus data
xy <- humus[, c("XCOO", "YCOO")]. # X and Y Coordinates
myhumus <- log(humus[, c("As", "Cd", "Co", "Cu", "Mg", "Pb", "Zn")])
map.plot(xy, myhumus, symb=TRUE)

Description

The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the moss layer.

Usage

data(moss)

Format

A data frame with 598 observations on the following 34 variables.

ID a numeric vector
XCOO a numeric vector
YCOO a numeric vector
Ag a numeric vector
Al a numeric vector
As a numeric vector
B a numeric vector
Ba a numeric vector
Bi a numeric vector
Ca a numeric vector
Cd a numeric vector
Co a numeric vector
Cr a numeric vector
Cu a numeric vector
Fe a numeric vector
Hg a numeric vector
K a numeric vector
Mg a numeric vector
Mn a numeric vector

Moss Layer of the Kola Data
mvoutlier.CoDa

\[Mo \text{ a numeric vector} \]
\[Na \text{ a numeric vector} \]
\[Ni \text{ a numeric vector} \]
\[P \text{ a numeric vector} \]
\[Pb \text{ a numeric vector} \]
\[Rb \text{ a numeric vector} \]
\[S \text{ a numeric vector} \]
\[Sb \text{ a numeric vector} \]
\[Si \text{ a numeric vector} \]
\[Sr \text{ a numeric vector} \]
\[Th \text{ a numeric vector} \]
\[Tl \text{ a numeric vector} \]
\[U \text{ a numeric vector} \]
\[V \text{ a numeric vector} \]
\[Zn \text{ a numeric vector} \]

Source

References

Examples

data(moss)
classical versus robust correlation:
corr.plot(log(moss[,"Al"]), log(moss[,"Na"]))

mvoutlier.CoDa Interpreting multivariate outliers of CoDa

Description

Computes the basis information for plot functions supporting the interpretation of multivariate outliers in case of compositional data.
Usage

mvoutlier.CoDa(x, quan = 0.75, alpha = 0.025,
 col.quantile = c(0, 0.05, 0.1, 0.5, 0.9, 0.95, 1),
 symb.pch = c(3, 3, 16, 1, 1), symb.cex = c(1.5, 1, 0.5, 1, 1.5),
 adaptive = TRUE)

Arguments

x data set (matrix or data frame) containing the raw untransformed compositional data
quan quantity of data used for robust estimation; between 0.5 and 1
alpha maximum threshold for adaptive outlier detection
col.quantile quantiles of an average concentration defining the colors
symb.pch plotting character for symbols
symb.cex plotting size for symbols
adaptive if TRUE then the adaptive method for the outlier threshold is used

Details

In a first step, the raw compositional data set in transformed by the isometric logratio (ilr) transformation to the usual Euclidean space. Then adaptive outlier detection is performed: Starting from a quantile 1-alpha of the chisquare distribution, one looks for the supremum of the differences between the chisquare distribution and the empirical distribution of the squared Mahalanobis distances. The latter are derived from the MCD estimator using the proportion quan of the data. The supremum is the outlier cutoff, and certain colors and symbols for the outliers are computed: The colors should reflect the magnitude of the median element concentration of the observations, which is done by computing for each observation along the single ilr variables the distances to the medians. The medians of all distances determines the color (or grey scale): a high value, resulting in a red (or dark) symbol, means that most univariate parts have higher values than the average, and a low value (blue or light symbol) refers to an observation with mainly low values. The symbols are according to the cut-points from the quantiles 0.25, 0.5, 0.75, and the outlier cutoff of the squared Mahalanobis distances.

Value

ilrvariables the ilr transformed data matrix
outliers TRUE/FALSE vector; TRUE refers to outlier
pcaobj object from PCA
colcol vector with the colors
colbw vector with the grey scales
pchvec vector with plotting symbols
cexvec vector with sizes of plot symbols
Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also

plot.mvoutlierCoDa, arw.map.plot, uni.plot

Examples

data(humus)
d <- humus[,c("As","Cd","Co","Cu","Mg","Pb","Zn")]
res <- mvoutlier.CoDa(d)
str(res)

pbb BSS background Plot

Description

Plots the BSS background map

Usage

pbb(map = "bss.background", add.plot = FALSE, ...)

Arguments

map List of coordinates. For the correct format see also help(kola.background)
add.plot logical. If true background is added to an existing plot
... additional plot parameters, see help(par)

Details

The list of coordinates is plotted as a polygon line.

Value

The plot is produced on the graphical device.
Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also

See also pkb

Examples

data(bss.background)
data(bsstop)
plot(bsstop$XCO0,bsstop$YCO0,col="red",pch=3)
pbb(add=TRUE)

pcout

PCOut Method for Outlier Identification in High Dimensions

Description

Fast algorithm for identifying multivariate outliers in high-dimensional and/or large datasets, using the algorithm of Filzmoser, Maronna, and Werner (CSDA, 2007).

Usage

pcout(x, makeplot = FALSE, explvar = 0.99, crit.M1 = 1/3, crit.c1 = 2.5, crit.M2 = 1/4, crit.c2 = 0.99, cs = 0.25, outbound = 0.25, ...)

Arguments

x
a numeric matrix or data frame which provides the data for outlier detection

makeplot
a logical value indicating whether a diagnostic plot should be generated (default to FALSE)

explvar
a numeric value between 0 and 1 indicating how much variance should be covered by the robust PCs (default to 0.99)

crit.M1
a numeric value between 0 and 1 indicating the quantile to be used as lower boundary for location outlier detection (default to 1/3)

crit.c1
a positive numeric value used for determining the upper boundary for location outlier detection (default to 2.5)
crit.M2 a numeric value between 0 and 1 indicating the quantile to be used as lower boundary for scatter outlier detection (default to 1/4)
crit.c2 a numeric value between 0 and 1 indicating the quantile to be used as upper boundary for scatter outlier detection (default to 0.99)
cs a numeric value indicating the scaling constant for combined location and scatter weights (default to 0.25)
outbound a numeric value between 0 and 1 indicating the outlier boundary for defining values as final outliers (default to 0.25)
...
additional plot parameters, see help(par)

Details
Based on the robustly sphered data, semi-robust principal components are computed which are needed for determining distances for each observation. Separate weights for location and scatter outliers are computed based on these distances. The combined weights are used for outlier identification.

Value

wfinal01 0/1 vector with final weights for each observation; weight 0 indicates potential multivariate outliers.
wfinal numeric vector with final weights for each observation; small values indicate potential multivariate outliers.
wloc numeric vector with weights for each observation; small values indicate potential location outliers.
wscat numeric vector with weights for each observation; small values indicate potential scatter outliers.
x.dist1 numeric vector with distances for location outlier detection.
x.dist2 numeric vector with distances for scatter outlier detection.
M1 upper boundary for assigning weight 1 in location outlier detection.
const1 lower boundary for assigning weight 0 in location outlier detection.
M2 upper boundary for assigning weight 1 in scatter outlier detection.
const2 lower boundary for assigning weight 0 in scatter outlier detection.

Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also

`sign1, sign2`

Examples

```r
# geochemical data from northern Europe
data(bsstop)
x=bsstop[,5:14]
# identify multivariate outliers
x.out=pcout(x,makeplot=FALSE)
# visualize multivariate outliers in the map
op <- par(mfrow=c(1,2))
data(bss.background)
plot(asp=1)
points(bsstop$XCOO,bsstop$YCOO,pch=16,col=x.out$wfinal@1+2)
title("Outlier detection based on pcout")
legend("topleft",legend=c("potential outliers","regular observations"),pch=16,col=c(2,3))

# compare with outlier detection based on MCD:
x.mcd <- robustbase::covMcd(x)
plot(asp=1)
points(bsstop$XCOO,bsstop$YCOO,pch=16,col=x.mcd$mcd$wt+2)
title("Outlier detection based on MCD")
legend("topleft",legend=c("potential outliers","regular observations"),pch=16,col=c(2,3))
par(op)
```

`pkb`
Kola background Plot

Description

Plots the Kola background map

Usage

```r
pkb(map = "kola.background", which.map = c(1, 2, 3, 4), map.col = c(5, 1, 3, 4),
    map.lwd = c(2, 1, 2, 1), add.plot = FALSE, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>List of coordinates. For the correct format see also help(kola.background)</td>
</tr>
</tbody>
</table>
| which.map | which==1 ... plot project boundary \# which==2 ... plot coast line \# which==3 ...
| | plot country borders \# which==4 ... plot lakes and rivers |
| map.col | Map colors to be used |
| map.lwd | Defines linestyle of the background |
| add.plot | logical. if true background is added to an existing plot |
| ... | additional plot parameters, see help(par) |
plot.mvoutlierCoDa

Details

Is used by map.plot()

Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

Examples

example(map.plot)

plot.mvoutlierCoDa Plots for interpreting multivariate outliers of CoDa

Description

Plots the computed information by mvoutlier.CoDa for supporting the interpretation of multivariate outliers in case of compositional data.

Usage

```r
## S3 method for class 'mvoutlierCoDa'
plot(x, ..., which = c("biplot", "map", "uni", "parallel"),
     choice = 1:2, coord = NULL, map = NULL, onlyout = TRUE, bw = FALSE, symb = TRUE,
     symbtxt = FALSE, col = NULL, pch = NULL, obj.cex = NULL, transp = 1)
```

Arguments

- `x` resulting object from function `mvoutlier.CoDa`
- `...` further plotting arguments
- `which` type of plot that should be made
- `choice` select the pair of PCs used for the biplot
- `coord` coordinates for the presentation in a map
- `map` coordinates for the background map; see details below
- `onlyout` if TRUE only the outliers are shown in the plot
- `bw` if TRUE symbols will be in grey scale rather than in color
- `symb` if TRUE special symbols are used according to outlyingness
symbtxt if TRUE text labels are used for plotting
col define colors to be used for outliers and non-outliers
pch define plotting symbols to be used for outliers and non-outliers
obj.cex define symbol size for outliers and non-outliers
transp define transparency for parallel coordinate plot

Details

The function mvoutlierCoDa prepares the information needed for this plot function: In a first step, the raw compositional data set is transformed by the isometric logratio (ilr) transformation to the usual Euclidean space. Then adaptive outlier detection is performed: Starting from a quantile 1-alpha of the chi-square distribution, one looks for the supremum of the differences between the chi-square distribution and the empirical distribution of the squared Mahalanobis distances. The latter are derived from the MCD estimator using the proportion quan of the data. The supremum is the outlier cutoff, and certain colors and symbols for the outliers are computed: The colors should reflect the magnitude of the median element concentration of the observations, which is done by computing for each observation along the single ilr variables the distances to the medians. The medians of all distances determines the color (or grey scale): a high value, resulting in a red (or dark) symbol, means that most univariate parts have higher values than the average, and a low value (blue or light symbol) refers to an observation with mainly low values. The symbols are according to the cut-points from the quantiles 0.25, 0.5, 0.75, and the outlier cutoff of the squared Mahalanobis distances. This plot function then allows to visualize the information.

The optional background map for the representation of the outliers in a map can be included using the argument map. This should consist of one or more polygons representing the geographical x- and y-coordinates of the background map. Of course, this map should be represented in the same coordinate system as the coordinates for the sample locations provided by coord. The structure of map is as follows: It should consist of 2 columns, one for the x-, one for the y-coordinates. If a polygon ends, a row with 2 entries NA should follow. At the end two NA rows are needed. See also examples below.

Value

A plot is drawn.

Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also

mvoutlier.CoDa, arw, map.plot, uni.plot
Examples

data(humus)
el <- c("As","Cd","Co","Cu","Mg","Pb","Zn")
dsel <- humus[,el]
data(kola.background) # contains different information (coast, borders, etc.)
coo <- rbind(kola.background$coast,kola.background$boundary,kola.background$boundaries)
XY <- humus[,c("XCO0","YCO0")]
set.seed(123)
res <- mvoutlier.CDa(dsel)

par(ask=TRUE)
Parallel coordinate plot:
show for all observations (transp is only useful when generating e.g. a pdf):
plot(res,onlyout=FALSE,bw=TRUE,which="parallel",symb=FALSE,symbtext=FALSE,transp=0.3)
show only outliers with special colors and labels in the margins:
plot(res,onlyout=TRUE,bw=FALSE,which="parallel",symb=TRUE,symbtext=TRUE,transp=0.3)

Biplot:
show all data points, outliers are in different color and have different symbol:
plot(res,onlyout=FALSE,which="biplot",bw=FALSE,symb=FALSE,symbtext=FALSE)
show only the outliers with special symbols and colors:
plot(res,onlyout=TRUE,which="biplot",bw=FALSE,symb=TRUE,symbtext=TRUE)

Map:
show all data points, outliers are in different color and have different symbol:
plot(res,coord=XY,map=coo,onlyout=FALSE,which="map",bw=FALSE,symb=FALSE,symbtext=FALSE)
show only the outliers with special symbols and colors:
plot(res,coord=XY,map=coo,onlyout=TRUE,which="map",bw=FALSE,symb=TRUE,symbtext=TRUE)

Univariate scatterplot:
show all data points, outliers are in different color and have different symbol:
plot(res,onlyout=FALSE,which="uni",symb=FALSE,symbtext=FALSE)
show only the outliers with special symbols and colors:
plot(res,onlyout=TRUE,which="uni",symb=TRUE,symbtext=TRUE)

sign1

Sign Method for Outlier Identification in High Dimensions - Simple Version

Description

Fast algorithm for identifying multivariate outliers in high-dimensional and/or large datasets, using spatial signs, see Filzmoser, Maronna, and Werner (CSDA, 2007). The computation of the distances is based on Mahalanobis distances.

Usage

sign1(x, makeplot = FALSE, qcrit = 0.975, ...)

Arguments

- **x**: a numeric matrix or data frame which provides the data for outlier detection
- **makeplot**: a logical value indicating whether a diagnostic plot should be generated (default to FALSE)
- **qcrit**: a numeric value between 0 and 1 indicating the quantile to be used as critical value for outlier detection (default to 0.975)
- **...**: additional plot parameters, see help(par)

Details

Based on the robustly sphered and normed data, robust principal components are computed. These are used for computing the covariance matrix which is the basis for Mahalanobis distances. A critical value from the chi-square distribution is then used as outlier cutoff.

Value

- **wfinal01**: 0/1 vector with final weights for each observation; weight 0 indicates potential multivariate outliers.
- **x.dist**: numeric vector with distances used for outlier detection.
- **const**: outlier cutoff value.

Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also

- `pcout`, `sign2`

Examples

```r
# geochemical data from northern Europe
data(bsstop)
x <- bsstop[,5:14]
# identify multivariate outliers
x.out <- sign1(x, makeplot = FALSE)
# visualize multivariate outliers in the map
op <- par(mfrow = c(1,2))
data(bss.background)
pbb(asp = 1)
```
Sign Method for Outlier Identification in High Dimensions - Sophisticated Version

Description

Fast algorithm for identifying multivariate outliers in high-dimensional and/or large datasets, using spatial signs, see Filzmoser, Maronna, and Werner (CSDA, 2007). The computation of the distances is based on principal components.

Usage

sign2(x, makeplot = FALSE, explvar = 0.99, qcrit = 0.975, ...)

Arguments

x
makeplot
explvar
qcrit
... a numeric matrix or data frame which provides the data for outlier detection
a logical value indicating whether a diagnostic plot should be generated (default to FALSE)
a numeric value between 0 and 1 indicating how much variance should be covered by the robust PCs (default to 0.99)
a numeric value between 0 and 1 indicating the quantile to be used as critical value for outlier detection (default to 0.975)
additional plot parameters, see help(par)

Details

Based on the robustly sphered and normed data, robust principal components are computed which are needed for determining distances for each observation. The distances are transformed to approach chi-square distribution, and a critical value is then used as outlier cutoff.

Value

wfinal01 x.dist const
0/1 vector with final weights for each observation; weight 0 indicates potential multivariate outliers.
numeric vector with distances used for outlier detection.
signer cutoff value.
symbol.plot

Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also

pcout, sign1

Examples

geochemical data from northern Europe
data(bsstop)
x=bsstop[,5:14]
identify multivariate outliers
x.out=sign2(x,makeplot=FALSE)
visualize multivariate outliers in the map
op <- par(mfrow=c(1,2))
data(bss.background)
ppb(asp=1)
points(bsstop$XCOO,bsstop$YCOO,pch=16,col=x.out$wfinal01+2)
title("Outlier detection based on signout")
legend("topleft",legend=c("potential outliers","regular observations"),pch=16,col=c(2,3))

compare with outlier detection based on MCD:
x.mcd <- robustbase::covMcd(x)
ppb(asp=1)
points(bsstop$XCOO,bsstop$YCOO,pch=16,col=x.mcd$mcd.wt+2)
title("Outlier detection based on MCD")
legend("topleft",legend=c("potential outliers","regular observations"),pch=16,col=c(2,3))
par(op)

symbol.plot Symbol Plot

Description

The function symbol.plot plots the (two-dimensional) data using different symbols according to the robust mahalanobis distance based on the mcd estimator with adjustment.

Usage

symbol.plot(x, quan=1/2, alpha=0.025, ...)

Examples

geochemical data from northern Europe
data(bsstop)
x=bsstop[,5:14]
identify multivariate outliers
x.out=sign2(x,makeplot=FALSE)
visualize multivariate outliers in the map
op <- par(mfrow=c(1,2))
data(bss.background)
ppb(asp=1)
points(bsstop$XCOO,bsstop$YCOO,pch=16,col=x.out$wfinal01+2)
title("Outlier detection based on signout")
legend("topleft",legend=c("potential outliers","regular observations"),pch=16,col=c(2,3))

compare with outlier detection based on MCD:
x.mcd <- robustbase::covMcd(x)
ppb(asp=1)
points(bsstop$XCOO,bsstop$YCOO,pch=16,col=x.mcd$mcd.wt+2)
title("Outlier detection based on MCD")
legend("topleft",legend=c("potential outliers","regular observations"),pch=16,col=c(2,3))
par(op)

symbol.plot Symbol Plot

Description

The function symbol.plot plots the (two-dimensional) data using different symbols according to the robust mahalanobis distance based on the mcd estimator with adjustment.

Usage

symbol.plot(x, quan=1/2, alpha=0.025, ...)
symbol.plot

Arguments

x
two dimensional matrix or data.frame containing the data.
quan
amount of observations which are used for mcd estimations. has to be between 0.5 and 1, default ist 0.5
alpha
amount of observations used for calculating the adjusted quantile (see function arw).
...
additional graphical parameters

Details

The function symbol.plot plots the (two-dimensional) data using different symbols. In addition a legend and four ellipsoids are drawn, on which mahalanobis distances are constant. As the legend shows, these constant values correspond to the 25%, 50%, 75% and adjusted (see function arw) quantiles of the chi-square distribution.

Value

outliers
boolean vector of outliers
md
robust mahalanobis distances of the data

Author(s)

Moritz Gschwandtner <e0125439@student.tuwien.ac.at>
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also

dd.plot, color.plot, arw

Examples

create data:
x <- cbind(rnorm(100), rnorm(100))
y <- cbind(rnorm(10, 5, 1), rnorm(10, 5, 1))
z <- rbind(x,y)
execute:
symbol.plot(z, quan=0.75)
uni.plot

Univariate Presentation of Multivariate Outliers

Description

The function `uni.plot` plots each variable of `x` parallel in a one-dimensional scatter plot and in addition marks multivariate outliers.

Usage

`uni.plot(x, symb=FALSE, quan=1/2, alpha=0.025, ...)`

Arguments

- **x**: matrix or data.frame containing the data.
- **symb**: logical. if FALSE, only two colors and no special symbols are used. outliers are marked red. if TRUE different symbols (cross means big value, circle means little value) according to the robust mahalanobis distance based on the mcd estimator and different colors (red means big value, blue means little value) according to the euclidean distances of the observations are used.
- **quan**: amount of observations which are used for mcd estimations. has to be between 0.5 and 1, default is 0.5
- **alpha**: amount of observations used for calculating the adjusted quantile (see function `arw`).
- **...**: additional graphical parameters

Details

The function `uni.plot` shows the multivariate outliers in the single variables by one-dimensional scatter plots. If symb=FALSE (default), only two colors and no special symbols are used to mark multivariate outliers (the outliers are marked red). If symb=TRUE different symbols and colors are used. The symbols (cross means big value, circle means little value) are selected according to the robust mahalanobis distance based on the adjusted mcd estimator (see function `symbol.plot`). Different colors (red means big value, blue means little value) according to the euclidean distances of the observations (see function `color.plot`) are used. For details see Filzmoser et al. (2005).

Value

- **outliers**: boolean vector of outliers
- **md**: robust multivariate mahalanobis distances of the data
- **euclidean** (only if symb=TRUE) multivariate euclidean distances of the observations according to the minimum of the data.
X

Author(s)
Moritz Gschwandtner <<e0125439@student.tuwien.ac.at>>
Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>> http://www.statistik.tuwien.ac.at/public/filz/

References

See Also
map.plot, symbol.plot, color.plot, arw

Examples
data(swiss)
uni.plot(swiss)
#
Geostatistical data:
data(humus) # Load humus data
uni.plot(log(humus[, c("As", "Cd", "Co", "Cu", "Mg", "Pb", "Zn")]), symb=TRUE)

X

Data (X coordinate) of illustrative example in paper (see below)

Description
Illustrative data example with 100 values for the X coordinate.

Usage
data(X)

Format
The format is: num [1:100] 3.72 5.1 3.33 2.13 4.42 ...

Details
Data are constructed to contain global as well as local outliers.

Source
References

Examples

data(X)
data(Y)
plot(X,Y)

| Y | Data (Y coordinate) of illustrative example in paper (see below) |

Description

Illustrative data example with 100 values for the Y coordinate.

Usage

data(Y)

Format

The format is: num [1:100] 1.25 1.4 0.372 0.791 2.74 ...

Details

Data are constructed to contain global as well as local outliers.

Source

References

Examples

data(X)
data(Y)
plot(X,Y)
Index

*Topic datasets
 bhorizon, 5
 bss.background, 7
 bsstop, 8
 chorizon, 10
 dat, 19
 humus, 21
 kola.background, 23
 moss, 30
 pbb, 33
 pkb, 36
 X, 45
 Y, 46

*Topic dplot
 aq.plot, 2
 arw, 3
 chisq.plot, 12
 color.plot, 17
 corr.plot, 18
 dd.plot, 20
 map.plot, 28
 symbol.plot, 42
 unl.plot, 44

*Topic multivariate
 locoutNeighbor, 24
 locoutPercent, 25
 locoutSort, 27
 mvoutlier.CoDa, 31
 pcout, 34
 plot.mvoutlierCoDa, 37
 sign1, 39
 sign2, 41

*Topic robust
 locoutNeighbor, 24
 locoutPercent, 25
 locoutSort, 27
 mvoutlier.CoDa, 31
 pcout, 34
 plot.mvoutlierCoDa, 37
 sign1, 36, 39, 42
 sign2, 36, 40, 41

aq.plot, 2
arw, 3, 18, 20, 29, 33, 38, 43, 45
bhorizon, 5
bss.background, 7
bsstop, 8
chorizon, 10
chisq.plot, 12
ddat.plot, 18
covMcd, 19
covPlot, 20
dat, 19
dd.plot, 18, 20, 43
humus, 21
kola.background, 23
locoutNeighbor, 24, 26, 28
locoutPercent, 25, 25, 28
locoutSort, 25, 26, 27
map.plot, 28, 33, 38, 45
moss, 30
mvoutlier.CoDa, 31, 38
pbb, 33
pcout, 34, 40, 42
pkb, 34, 36
plot.mvoutlierCoDa, 33, 37
sign1, 36, 39, 42
sign2, 36, 40, 41
symbol.plot, 18, 20, 29, 42, 45
uni.plot, 33, 38, 44
X, 45
Y, 46