Package ‘mwTensor’

October 12, 2021

Type Package
Title Multi-Way Component Analysis
Version 0.99.5
Date 2021-10-12
Suggests testthat
Depends R (>= 4.1.0)
Imports methods, MASS, rTensor, nnTensor, ccTensor, ica, igraph
Description For single tensor data, any matrix factorization method can be specified the matri-
cised tensor in each dimension by Multi-way Component Analysis (MWCA). An originally ex-
tended MWCA is also implemented to specify and decompose multiple matrices and tensors si-
multaneously (CoupledMWCA). See the reference sec-
tion of GitHub README.md <https://github.com/rikenbit/mwTensor>, for de-
tails of the methods.
License Artistic-2.0
URL https://github.com/rikenbit/mwTensor
NeedsCompilation no
Author Koki Tsuyuzaki [aut, cre]
Maintainer Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>
Repository CRAN
Date/Publication 2021-10-12 08:00:02 UTC

R topics documented:

mwTensor-package .. 2
CoupledMWCA .. 4
CoupledMWCAParams-class ... 5
CoupledMWCAResult-class ... 6
MWCA ... 8
MWCAParams-class ... 9
MWCAResult-class ... 9
myALS_SVD .. 10
Description

For single tensor data, any matrix factorization method can be specified the matricised tensor in each dimension by Multi-way Component Analysis (MWCA). An originally extended MWCA is also implemented to specify and decompose multiple matrices and tensors simultaneously (CoupledMWCA). See the reference section of GitHub README.md <https://github.com/rikenbit/mwTensor>, for details of the methods.

Details

The DESCRIPTION file:

Package: mwTensor
Type: Package
Title: Multi-Way Component Analysis
Version: 0.99.5
Date: 2021-10-12
Authors@R: c(person("Koki", "Tsuyuzaki", role = c("aut", "cre"), email = "k.t.the-answer@hotmail.co.jp"))
Suggests: testthat
Depends: R (>= 4.1.0)
Imports: methods, MASS, rTensor, nnTensor, ccTensor, ica, igraph
Description: For single tensor data, any matrix factorization method can be specified the matricised tensor in each dimension by Multi-way Component Analysis (MWCA). An originally extended MWCA is also implemented to specify and decompose multiple matrices and tensors simultaneously (CoupledMWCA). See the reference section of GitHub README.md <https://github.com/rikenbit/mwTensor>, for details of the methods.
License: Artistic-2.0
URL: https://github.com/rikenbit/mwTensor
Author: Koki Tsuyuzaki [aut, cre]
Maintainer: Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>

Index of help topics:

CoupledMWCA Coupled Multi-way Component Analysis (CoupledMWCA)
CoupledMWCAParams-class Class "CoupledMWCAParams"
CoupledMWCAResult-class Class "CoupledMWCAResult"
Multi-way Component Analysis (MWCA)

Class "MWCAParams"

Class "MWCAResult"

Multi-Way Component Analysis

Alternating Least Square Singular Value Decomposition (ALS-SVD) as an example of user-defined matrix decomposition.

CX Decomposition as an example of user-defined matrix decomposition.

Independent Component Analysis (ICA) as an example of user-defined matrix decomposition.

Independent Component Analysis (ICA) as an example of user-defined matrix decomposition.

Singular Value Decomposition (SVD) as an example of user-defined matrix decomposition.

Plot function for visualization of tensor data structure

Toy model of coupled tensor data

Author(s)

NA

Maintainer: NA

References

See Also

mySVD, myALS_SVD, myNMF, myICA, myCX, MWCA, CoupledMWCA, plotTensor3Ds

Examples

ls("package:mwTensor")
Description

The input is assumed to be a CoupledMWCAParams object.

Usage

CoupledMWCA(params)

Arguments

params CoupledMWCAParams object

Value

CoupledMWCAResult object.

Author(s)

Koki Tsuyuzaki

See Also

CoupledMWCAParams-class and CoupledMWCAResult-class.

Examples

if(interactive()){
 # Test data (multiple arrays)
 Xs <- toyModel("coupled_CP_Easy")

 params <- new("CoupledMWCAParams", Xs=Xs)
 out <- CoupledMWCA(params)
}
Class "CoupledMWCAParams"

Description

The parameter object to be specified against CoupledMWCA function.

Objects from the Class

Objects can be created by calls of the form new("CoupledMWCAParams", ...).

Slots

MWCAParams has four settings as follows. For each setting, the list must have the same structure.

1. Data-wise setting
 Each item must be a list object that is as long as the number of data and is named after the data.
 A list containing multiple high-dimensional arrays.

 mask: A list containing multiple high-dimensional arrays, in which 0 or 1 values are filled to specify the missing elements.

 weights: A list containing multiple high-dimensional arrays, in which some numeric values are specified to weight each data.

2. Common Model setting
 Each item must be a nested list object that is as long as the number of data and is named after the data.

 common_model: Each element of the list must be a list corresponding the dimension name of data and common factor matrices name.

3. Common Factor matrix-wise setting
 Each item must be a list object that is as long as the number of common factor matrices and is named after the factor matrices.

 common_initial: The initial values of common factor matrices. If nothing is specified, random matrices are used.

 common_algorithms: Algorithms used to decompose the matricised tensor in each mode.

 common_iteration: The number of iterations.

 common_decomp: If FALSE is specified, unit matrix is used as the common factor matrix.

 common_fix: If TRUE is specified, the common factor matrix is not updated in the iteration.

 common_dims: The lower dimension of each common factor matrix.

 common_transpose: Whether the common factor matrix is transposed to calculate core tensor.

 common_coretype: If "CP" is specified, all the core tensors become diagonal core tensors. If "Tucker" is specified, all the core tensors become dense core tensors.

4. Specific Model setting
 Each item must be a nested list object that is as long as the number of data and is named after the data.
specific_model: Each element of the list must be a list corresponding the dimension name of data and data specific factor matrices name.

5. Specific Factor matrix-wise setting Each item must be a list object that is as long as the number of data specific factor matrices and is named after the factor matrices.

specific_initial: The initial values of data specific factor matrices. If nothing is specified, random matrices are used.

specific_algorithms: Algorithms used to decompose the matricised tensor in each mode.

specific_iteration: The number of iterations.

specific_decomp: If FALSE is specified, unit matrix is used as the data specific factor matrix.

specific_fix: If TRUE is specified, the data specific factor matrix is not updated in the iteration.

specific_dims: The lower dimension of each data specific factor matrix.

specific_transpose: Whether the data specific factor matrix is transposed to calculate core tensor.

specific_coretype: If "CP" is specified, all the core tensors become diagonal core tensors. If "Tucker" is specified, all the core tensors become dense core tensors.

6. Other option Each item must to be a vector of length 1.

specific: Whether data specific factor matrices are also calculated.

thr: The threshold to stop the iteration. The higher the value, the faster the iteration will stop.

viz: Whether the output is visualized.

figdir: When viz=TRUE, whether the plot is output in the directory.

verbose: Whether the process is monitored by verbose messages.

Methods

CoupledMWCA Function to perform CoupledMWCA.

See Also

CoupledMWCAResult-class, CoupledMWCA

Description

The result object generated by CoupledMWCA function.
Slots

weights: weights of CoupledMWCAParams.
common_model: common_model of CoupledMWCAParams.
common_initial: common_initial of CoupledMWCAParams.
common_algorithms: common_algorithms of CoupledMWCAParams.
common_iteration: common_iteration of CoupledMWCAParams.
common_decomp: common_decomp of CoupledMWCAParams.
common_fix: common_fix of CoupledMWCAParams.
common_dims: common_dims of CoupledMWCAParams.
common_transpose: common_transpose of CoupledMWCAParams.
common_coretype: common_coretype of CoupledMWCAParams.
common_factors: Common factor matrices of CoupledMWCA.
common_cores: Common core tensors of CoupledMWCA.
specific_model: specific_model of CoupledMWCAParams.
specific_initial: specific_initial of CoupledMWCAParams.
specific_algorithms: specific_algorithms of CoupledMWCAParams.
specific_iteration: specific_iteration of CoupledMWCAParams.
specific_decomp: specific_decomp of CoupledMWCAParams.
specific_fix: specific_fix of CoupledMWCAParams.
specific_dims: specific_dims of CoupledMWCAParams.
specific_transpose: specific_transpose of CoupledMWCAParams.
specific_coretype: specific_coretype of CoupledMWCAParams.
specific_factors: Data specific factor matrices of CoupledMWCA.
specific_cores: Data specific core tensors of CoupledMWCA.
specific: specific of CoupledMWCAParams.
thr: thr of CoupledMWCAParams.
viz: viz of CoupledMWCAParams.
figdir: figdir of CoupledMWCAParams.
verbose: verbose of CoupledMWCAParams.
rec_error: The reconstructed error.
train_error: Training Error. train_error + test_error = rec_error.
test_error: Test Error. train_error + test_error = rec_error.
rel_change: The relative change of each iteration step.

See Also

CoupledMWCAParams-class, CoupledMWCA
Multi-way Component Analysis (MWCA)

Description

The input is assumed to be a MWCAParams object.

Usage

MWCA(params)

Arguments

params MWCAParams object

Value

MWCAResult object.

Author(s)

Koki Tsuyuzaki

References

See Also

MWCAParams-class and MWCAResult-class.

Examples

if(interactive()){
 # Test data (single array)
 X <- nnTensor::toyModel("Tucker")@data

 params <- new("MWCAParams", X=X)
 out <- MWCA(params)
}
MWCAParams-class

Description

The parameter object to be specified against MWCA function.

Objects from the Class

Objects can be created by calls of the form new("MWCAParams", ...).

Slots

X: A high-dimensional array.

mask: A mask array having the same dimension of X.

algorithms: Algorithms used to decompose the matricised tensor in each mode.

dims: The lower dimension of each factor matrix.

transpose: Whether the factor matrix is transposed to calculate core tensor.

viz: Whether the output is visualized.

figdir: When viz=TRUE, whether the plot is output in the directory.

Methods

MWCA Function to perform MWCA.

See Also

MWCAResult-class, MWCA

MWCAResult-class

Description

The result object generated by MWCA function.
Slots

- **algorithms**: algorithm of MWCAParams.
- **dims**: dims of MWCAParams.
- **transpose**: transpose of MWCAParams.
- **viz**: viz of MWCAParams.
- **figdir**: figdir of MWCAParams.
- **factors**: The factor matrices of MWCA.
- **core**: The core tensor of MWCA.
- **rec_error**: The reconstructed error.
- **train_error**: Training Error. train_error + test_error = rec_error.
- **test_error**: Test Error. train_error + test_error = rec_error.

See Also

- MWCAParams-class, MWCA

Description

The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMWCAParams are specified as "myALS_SVD", this function is called in MWCA and CoupledMWCA.

Usage

```
myALS_SVD(Xn, k, L2=1e-10, iter=30)
```

Arguments

- **Xn**: The input matrix which has N-rows and M-columns.
- **k**: The rank parameter (k <= min(N,M))
- **L2**: The regularization parameter (Default: 1e-10)
- **iter**: The number of iteration (Default: 30)

Value

The output matrix which has N-rows and k-columns.

Author(s)

Koki Tsuyuzaki
myCX

References

Examples

```r
if(interactive()){
  # Test data
  matdata <- matrix(runif(10*20), nrow=10, ncol=20)
  myALS_SVD(matdata, k=3, L2=0.1, iter=10)
}
```

Description

The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMWCAParams are specified as "myCX", this function is called in MWCA and CoupledMWCA.

Usage

```r
myCX(Xn, k)
```

Arguments

- **Xn**: The input matrix which has N-rows and M-columns.
- **k**: The rank parameter (k <= min(N,M))

Value

The output matrix which has N-rows and k-columns.

Author(s)

Koki Tsuyuzaki

References

Examples

```r
if(interactive()){
  # Test data
  matdata <- matrix(runif(10*20), nrow=10, ncol=20)
  myCX(matdata, k=3)
}
```
myICA

Description

The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMWCAParams are specified as "myICA", This function is called in MWCA and CoupledMWCA.

Usage

```r
myICA(Xn, k)
```

Arguments

- `Xn` The input matrix which has N-rows and M-columns.
- `k` The rank parameter (k <= min(N,M))

Value

The output matrix which has N-rows and k-columns.

Author(s)

Koki Tsuyuzaki

References

Examples

```r
if(interactive()){
  # Test data
  matdata <- matrix(rnorm(10*20), nrow=10, ncol=20)
  myICA(matdata, k=3)
}
```
myNMF

Independent Component Analysis (ICA) as an example of user-defined matrix decomposition.

Description

The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMWCAParams are specified as "myNMF", This function is called in MWCA and CoupledMWCA.

Usage

myNMF(Xn, k, L1=1e-10, L2=1e-10)

Arguments

Xn The input matrix which has N-rows and M-columns.
k The rank parameter (k <= min(N,M))
L1 The regularization parameter to control the sparseness (Default: 1e-10)
L2 The regularization parameter to control the overfit (Default: 1e-10)

Value

The output matrix which has N-rows and k-columns.

Author(s)

Koki Tsuyuzaki

References

Examples

if(interactive()){
 # Test data
 matdata <- matrix(runif(10*20), nrow=10, ncol=20)
 myNMF(matdata, k=3, L1=1e-1, L2=1e-2)
}
mySVD

Singular Value Decomposition (SVD) as an example of user-defined matrix decomposition.

Description

The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMWCAParams are specified as "mySVD", this function is called in MWCA and CoupledMWCA.

Usage

```r
mySVD(Xn, k)
```

Arguments

- **Xn**: The input matrix which has N-rows and M-columns.
- **k**: The rank parameter (k <= min(N,M))

Value

The output matrix which has N-rows and k-columns.

Author(s)

Koki Tsuyuzaki

Examples

```r
if(interactive()){
  # Test data
  matdata <- matrix(runif(10*20), nrow=10, ncol=20)
  mySVD(matdata, k=3)
}
```

plotTensor3Ds

Plot function for visualization of tensor data structure

Description

Multiple multi-dimensional arrays and matrices are visualized simultaneously.

Usage

```r
plotTensor3Ds(Xs)
```
toyModel

Arguments

-Xs- A List object containing multi-dimensional array (or matrix) in each element.

Author(s)

Koki Tsuyuzaki

See Also

plotTensor3D and plotTensor2D.

Examples

Xs <- toyModel(model = "coupled_CP_Easy")
tmp <- tempdir()
png(filename=paste0(tmp, "/couled_CP.png"))
plotTensor3Ds(Xs)
dev.off()

toyModel

Toy model of coupled tensor data

Description

A list object containing multiple arrays are generated.

Usage

toyModel(model = "coupled_CP_Easy", seeds=123)

Arguments

- **model**
 - "coupled_CP_Easy", "coupled_CP_Hard", "coupled_Tucker_Easy", "coupled_Tucker_Hard", "coupled_Complex_Easy", or "coupled_Complex_Hard" can be specified (Default: "coupled_CP_Easy").

- **seeds**
 - The seed of random number (Default: 123).

Author(s)

Koki Tsuyuzaki

Examples

Xs <- toyModel(model = "coupled_CP_Easy", seeds=123)
Index

* **methods**
 CoupledMWCA, 4
 MWCA, 8
 myALS_SVD, 10
 myCX, 11
 myICA, 12
 myNMF, 13
 mySVD, 14
 plotTensor3Ds, 14
 toyModel, 15

* **package**
 mwTensor-package, 2

CoupledMWCA, 3, 4, 6, 7
CoupledMWCA, CoupledMWCAParams-method
 (CoupledMWCA), 4
CoupledMWCAParams-class, 5
CoupledMWCAResult-class, 6

MWCA, 3, 8, 9, 10
MWCA, MWCAParams-method (MWCA), 8
MWCAParams-class, 9
MWCAResult-class, 9
mwTensor (mwTensor-package), 2
mwTensor-package, 2
myALS_SVD, 3, 10
myCX, 3, 11
myICA, 3, 12
myNMF, 3, 13
mySVD, 3, 14

plotTensor2D, 15
plotTensor3D, 15
plotTensor3Ds, 3, 14

toyModel, 15