Package ‘mztwinreg’

February 20, 2015

Title Regression Models for Monozygotic Twin Data

Description Linear and logistic regression models for quantitative genetic analysis of data from monozygotic twins.

Version 1.0-1

Date 2015-01-13

Author Aldo Cordova-Palomera

Maintainer Aldo Cordova-Palomera <a.cordova@ub.edu>

Imports rms, mcllogit

Suggests lme4

License GPL-3

URL https://github.com/AldoCP/mztwinreg

NeedsCompilation no

Repository CRAN

Date/Publication 2015-01-14 19:50:57

R topics documented:

 mztwinreg-package 2
 abs_dif 3
 env_dif 4
 env_dif_logistic 5
 fam_env 6
 flu_weight 8
 log_dif 9

Index 11
mztwinreg-package Regression Modeling of MZ Twin Data

Description

Linear and logistic regression models for quantitative genetic analysis of data from monozygotic twins

Details

Package: mztwinreg
Type: Package
Version: 1.0
Date: 2015-01-13
License: What license is it under?

This package implements a number of functions to perform different linear and logistic regression models of data from monozygotic twins. Examples include the variability gene approach by Berg, K. (1994), the Epigenetic Epidemiology model by Tan, Q. (2013), and the conventional approaches of Carlin, J. B. et al. (1994).

Author(s)

Aldo Cordova-Palomera
Maintainer: Aldo Cordova-Palomera <a.cordova@ub.edu>

References

abs_dif

Test for intrapair phenotypic differences based on pair-level predictor variables

Description
Regression models to test whether the intrapair phenotypic differences are due to factors that are identical for both co-twins (i.e., a genotype). It is based on the work on "variability genes", by Berg, K. (1994).

Usage
abs_dif(formula, regression = "linear", data, ...)

Arguments
- `formula` an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. See `formula`.
- `regression` the type of regression model to be fitted. Use either 'linear' (default) or 'logistic'.
- `data` a data frame containing the variables in the model.
- `...` additional arguments to be passed to either `ols` (linear regression) or `lrm` (logistic model), from the `rms` package.

Details
Inspired by the "variability gene" concept by Berg, K. (1994), these regression models (linear and logistic) allow determining whether a pair-level variable (i.e., a genotype, which is identical for both co-twins). Further usage details are explained by Cordova-Palomera, A. et al. (2014).

Value
`abs_dif` returns an object of `class` "rms", along with either `c("ols", "lm")` (linear models) or `c("lrm", "glm")` (logistic models).

Author(s)

References
See Also

rms, ols, lrm

Examples

data(flu_weight)

The linear regression below tests whether the intrapair differences in
DNA methylation (outcome) depend on pair-specific variables such as gender,
age or both.
The conceptual justification of the working hypothesis is partly inspired
by Fraga, M. F., et al. (2005) Proceedings of the National Academy of
Sciences of the United States of America, 102(30), 10604-10609.
(variability_linear <- abs_dif(DNAmeth ~ Gender + Age, data=flu_weight, regression='linear'))

The logistic regression below tests whether or not there was an
increased/decreased rate of phenotypic differences in flu liability during
childhood in males, compared with females.
Namely, it evaluates there were more intrapair differences in flu liability
in one of the genders (male or female).
(variability_logistic <- abs_dif(FluChild ~ Gender, data=flu_weight, regression='logistic'))

env_dif

Test for intrapair phenotypic differences in an outcome based on intrapair-differences predictor variables

Description

Linear regression model to test whether the intrapair differences in an outcome phenotype are due to intrapair differences in a predictor phenotype.

Usage

env_dif(formula, data, ...)

Arguments

formula an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. See formula.
data a data frame containing the variables in the model.
... additional arguments to be passed to ols, from the rms package.

Details

Inspired by the implementation of Carlin, J. B. et al. (1994), this linear regression model without intercept tests allows evaluating whether intrapair differences in one or more predictor variables are related to intrapair differences in the outcome.
env_dif_logistic

Value

env_dif returns an object of class "lm".

Author(s)

Developed by Aldo Cordova-Palomera, following Carlin, J. B. et al. (1994).

References

See Also

lm

Examples

data(flu_weight)

The linear regression below tests whether the intrapair differences in weight
(in kilograms) of a given twin-pair predict its intrapair differences in DNA
methylation levels at a given genomic locus.
summary(unique_env_linear <- env_dif(DNAmeth ~ Weight, data=flu_weight))

env_dif_logistic

Test for intrapair phenotypic differences in a binary outcome based on intrapair-differences predictor variables

Description

Conditional logit model to test whether the intrapair differences in an outcome phenotype (binary variable) are due to intrapair differences in a predictor phenotype.

Usage

diff_logistic(formula, cluster = "default", data, ...)

Arguments

formula an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. See formula.
cluster a vector identifying the pairs in the sample. If not specified, the default value assumes that twin pairs are introduced in adjacent rows.
data a data frame containing the variables in the model.
... additional arguments to be passed to mclogit, from the mclogit package.
Details

This is an R implementation of some code proposed by Carlin, J. B. et al. (1994) for Stata.
Note that this conditional logit model -either in the original version by Carlin, J. B. et al. (1994) or
in the current R scripts- is not widely used and may require improvements.

Value

env_dif_logistic returns an object of class c("mclogit", "lm").

Author(s)

Carlin, J. B. et al. (1994) proposed this model and implemented it in Stata. Aldo Cordova-Palomera
adjusted the algorithm for R.

References

See Also

mclogit, lm, lrm

Examples

data(flu_weight)

The linear regression below tests whether the intrapair differences in flu
presence (binary outcome) of a given twin-pair are predicted by its
differences in weight (in kilograms).
summary(unique_env_logistic <- env_dif_logistic(FluNow ~ Weight, data=flu_weight))
Arguments

formula
- an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. See `formula`.

Bbw
- the name of the predictor variable(s) (already in `formula`) for which the familial and the unique environmental influences are going to be evaluated.

regression
- the type of regression model to be fitted. Use either 'linear' (default) or 'logistic'.

cluster
- a vector identifying the pairs in the sample. If not specified, the default value assumes that twin pairs are introduced in adjacent rows.

adjust
- a method to adjust for correlated responses (heteroskedasticity) of twin pairs. Use either 'robcov' (default) or 'bootcov'.

robcov_method
- if `adjust = 'robcov'` (default) is selected, it allows choosing a method to adjust the variance-covariance matrix. Use either 'huber' (default: Huber-White sandwich estimator) or 'efron' (especially for small samples; see `robcov`).

bootcov_B
- if `adjust = 'bootcov'` is selected, it allows specifying the number of bootstrap repetitions to computes an estimate of the covariance matrix for a set of regression coefficients.

data
- a data frame containing the variables in the model.

... additional arguments to be passed to either `ols` (linear regression) or `lrm` (logistic model), from the `rms` package.

Details

As shown by Carlin, J. B. et al. (1994), these cluster-based regression models allow parsing out familial and environmental factors contributing to the value of a predictor variable.

Value

`fam_env` returns an object of `class` "rms", along with either c("ols", "lm") (linear models) or c("lrm", "glm") (logistic models).

Author(s)

Developed by Aldo Cordova-Palomera, following Carlin, J. B. et al. (1994).

References

See Also

`rms, ols, lrm, robcov, bootcov`
Examples

```r
data(flu_weight)

# The linear regression below tests whether the intrapair differences in
# DNA methylation of a given twin-pair are predicted by its differences in
# either familial (Bb) or environmental (Bw) factors influencing weight
# (in kilograms).
(fam_env_linear <- fam_env(DNAmeth ~ Gender + Age + Weight, BbBw="Weight",
  regression='linear', data=flu_weight))

# The linear regression below tests whether the intrapair differences in
# flu (binary outcome) of a given twin-pair are predicted by its differences
# in either familial (Bb) or environmental (Bw) factors influencing weight
# (in kilograms).
(fam_env_logistic <- fam_env(FluNow ~ Gender + Age + Weight, BbBw="Weight",
  regression='logistic', data=flu_weight))
```

flu_weight
Flu, Body Weight and DNA methylation

Description

An artificial dataset containing information on flu, body weight and DNA methylation at an immune system gene locus, as well as demographic variables.

Usage

```r
data("flu_weight")
```

Format

A data frame with 200 observations on the following 7 variables.

- **DNAmeth** a numeric vector: DNA methylation fraction (ranging 0-1) at an immune system gene locus
- **FluNow** a numeric vector: Presence of severe flu at the moment of sample collection
- **FluChild** a numeric vector: History of recurrent flu during childhood
- **Gender** a character vector: Pair's gender
- **Age** a numeric vector: Pair's age
- **Weight** a numeric vector: Body weight in kilograms
- **PairNum** a numeric vector: Randomly assigned pair number
Details

As observed from this dataset, the individuals of the sample are sorted following two criteria: 1) twin pairs are put together (adjacent rows), and 2) all twins are discordant for present flu (FluNow). The second condition is necessary only when using the log_dif function.

It is recommended pre-sorting all datasets used along with this R package following criterion "1" or criteria "1" and "2".

log_dif

Test for intrapair logarithm-based phenotypic differences based on pair-level predictor variables

Description

Linear regression model to test whether the intrapair phenotypic differences in a continuous outcome (i.e., DNA methylation) in phenotype-discordant pairs are due to factors that are identical for both co-twins (i.e., a genotype). It is based on the work on Epigenetic Epidemiology by Tan, Q. (2013). It is similar to the abs_dif function in this package, inspired by Berg, K. (1994).

Usage

```r
log_dif(formula, data, ...)
```

Arguments

- `formula`: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. See `formula`.
- `data`: a data frame containing the variables in the model.
- `...`: additional arguments to be passed to either `ols`, from the `rms` package.

Details

Similar to the model implemented in the abs_dif function in this package, log_dif tests whether the logarithm of the difference in an outcome measure in phenotype-discordant pairs is explained by paired-level exposures such as age. Of note, the affected co-twin is set before (one row above of) his/her co-twin in the data dataset. This model was originally proposed by Tan, Q. (2013) in the context of Epigenetic Epidemiology, to evaluate whether phenotype-discordant pairs have DNA methylation differences due to pair-level exposures.

Value

log_dif returns an object of `class` c("ols" "rms" "lm").

Author(s)

Aldo Cordova-Palomera.
References

See Also

rms, ols

Examples

data(flu_weight)

The linear regression below tests whether DNA methylation differences at a
given locus are predicted by pair level variables (such as gender, age
or both).
(logarithm_differences <- log_dif(DNAmeth ~ Gender + Age, data=flu_weight))
Index

abs_dif, 3
bootcov, 7
class, 3, 5–7, 9
env_dif, 4
eenv_dif_logistic, 5
fam_env, 6
flu_weight, 8
lm, 5, 6
log_dif, 9
lrm, 4, 6, 7
mclogit, 6
mztwinreg (mztwinreg-package), 2
mztwinreg-package, 2
ols, 4, 7, 10
rms, 4, 7, 10
robcov, 7