Package ‘nCopula’

October 13, 2022

Type Package

Title Hierarchical Archimedean Copulas Constructed with Multivariate Compound Distributions

Version 0.1.1

Maintainer Simon-Pierre Gadoury <spgadou@me.com>

Description Construct and manipulate hierarchical Archimedean copulas with multivariate compound distributions. The model used is the one of Cossette et al. (2017) <doi:10.1016/j.insmatheco.2017.06.001>.

Depends R (>= 3.4.0), copula

Imports Deriv, stringr, stringi, compiler, methods,

License GPL (>= 2)

LazyData FALSE

RoxygenNote 6.0.1

Suggests knitr, rmarkdown

NeedsCompilation no

Author Simon-Pierre Gadoury [cre, aut],
David Beauchemin [ctb]

Repository CRAN

Date/Publication 2018-11-30 12:40:07 UTC

R topics documented:

AMH ... 2
Clayton .. 3
Frank ... 3
GAMMA .. 4
GeneticCodes ... 5
GEO ... 5
Gumbel .. 6
InvLap ... 7
Lap ... 8
AMH

Construction of an Archimedean Copula Class Object.

Description

Constructs an AMH Archimedean copula object with a given parameter and dimension.

Usage

AMH(param, dim = 2L, density = FALSE)

Arguments

param parameter of the copula.
dim dimension of the copula (>= 2), which is, by default, 2.
density compute the expression of the density of the copulas.

Details

Constructs an AMH Archimedean copula object with a given parameter and dimension.

Value

An archm S4 class object.

Author(s)

Simon-Pierre Gadoury
Clayton

Construction of an Archimedean Copula Class Object

Description

Constructs a Clayton Archimedean copula object with a given parameter and dimension.

Usage

Clayton(param, dim = 2L, density = FALSE)

Arguments

param
the parameter of the copula.
dim
the dimension of the copula (>= 2), which is, by default, 2.
density
logical. Should the expression of the density of the copula be computed?

Value

An archm S4 class object.

Author(s)

Simon-Pierre Gadoury

Frank

Construction of an Archimedean Copula Class Object

Description

Constructs a Frank Archimedean copula object with a given parameter and dimension.

Usage

Frank(param, dim = 2L, density = FALSE)

Arguments

param
parameter of the copula.
dim
dimension of the copula (>= 2), which is, by default, 2.
density
compute the expression of the density of the copulas.

Value

An archm S4 class object.
Description

The function GAMMA constructs a gamma Child class object for a given parameter and arguments.

Usage

GAMMA(par, unif, structure = NULL)

Arguments

par parameter of the distribution.
unif uniform structure, a numeric vector of grouped numbers, i.e. c(1,2,3) is translated as being c(u1, u2, u3).
structure nesting structure of the form
X(par1, c(i,...), list(Y(par2, c(j,...), NULL), Z(par3, c(k,...), NULL))),
where X, Y, and Z are compatible functions (see ‘details’). It is to note that if structure is NULL, the function will automatically be of class Child. For continuous distributions (i.e. GAMMA), structure is always NULL.

Author(s)

Simon-Pierre Gadoury

See Also

Other mother or child class objects: GEO, LOG

Examples

GEO(0.5, NULL, list(GAMMA(1/30, c(5,6), NULL),
GEO(0.1, NULL, list(GAMMA(1/30, c(1,2), NULL),
GAMMA(1/30, c(3,4), NULL))))))
GeneticCodes

Obtain the Genetic Codes of a Structure

Description
Function to obtain the list of all genetic codes of a structure.

Usage
GeneticCodes(structure)

Arguments
structure an object of class Mother (the structure)

Value
A list of the structure’s genetic codes.

Author(s)
Simon-Pierre Gadoury

Examples
Create the structure
structure <- GEO(0.5, NULL, list(GAMMA(1/30, c(5,6), NULL),
GEO(0.1, NULL, list(GAMMA(1/30, c(1,2), NULL),
GAMMA(1/30, c(3,4), NULL))))))

Get the genetic codes
GeneticCodes(structure)

GEO
Construction of a GEO Mother or Child Class Object

Description
Constructs either a GEO Mother or Child class object for a given parameter, arguments, and nesting structure.

Usage
GEO(par, unif, structure)
Gumbel

Description

Constructs a Gumbel Archimedean copula object with a given parameter and dimension.

Usage

Gumbel(param, dim = 2L)

Arguments

param parameter of the copula
dim dimension of the copula (>= 2), which is, by default, 2

Value

An archm S4 class object.

Author(s)

Simon-Pierre Gadoury
InvLap

Inverse LST of a Node

Description

With a specific path and a predefined structure (S4 class of a type 'Mother'), returns the inverse Laplace-Stieltjes Transform expression of the corresponding node with a specific variable.

Usage

```r
InvLap(code, structure, outVar = "z", par = "value")
```

Arguments

- `code`: the genetic code (numeric vector) of the node (can be a leaf i.e. end by 0).
- `structure`: an object of class Mother (the structure).
- `outVar`: the output variable to be used ('z' by default).
- `par`: logical. Should the parameters be values ('value') or variables ('variable')?

Details

For mother nodes, parameters are always called 'gamma' and for child nodes, parameters are always called 'alpha'. Furthermore, to recognize the parameters, the path is inserted at the end. For example, a child node with path (0,2,1) will have the parameter 'alpha021'.

Value

A character string giving the inverse LST of the specified node.

Author(s)

Simon-Pierre Gadoury

See Also

`Lap`

Examples

```r
structure <- GEO(0.1, NULL, list(GAMMA(0.1, 1:2, NULL),
                                 GAMMA(0.2, 3:4, NULL)))

InvLap(c(0,2), structure, outVar = 'z', par = 'value')
```
Lap \textit{LST of a Node}

\textbf{Description}

With a specific path and a predefined structure (S4 class of a type 'Mother'), returns the Laplace-Stieltjes Transform expression of the corresponding node with a specific variable.

\textbf{Usage}

\begin{verbatim}
Lap(code, structure, outVar = "z", par = "value")
\end{verbatim}

\textbf{Arguments}

\begin{tabular}{ll}
\texttt{code} & genetic code (numeric vector) of the node (can be a leaf i.e. end by 0). \\
\texttt{structure} & object of class Mother (the structure). \\
\texttt{outVar} & output variable to be used ('z' by default). \\
\texttt{par} & Should the parameters be values ('value') or variables ('variable')?
\end{tabular}

\textbf{Details}

For mother nodes, parameters are always called 'gamma' and for child nodes, parameters are always called 'alpha'. Furthermore, to recognize the parameters, the path is inserted at the end. For example, a child node with path (0,2,1) will have the parameter 'alpha021'.

\textbf{Value}

A character string giving the LST of the specified node.

\textbf{Author(s)}

Simon-Pierre Gadoury

\textbf{See Also}

InvLap

\textbf{Examples}

\begin{verbatim}
structure <- GEO(0.1, NULL, list(GAMMA(0.1, 1:2, NULL),
 GAMMA(0.2, 3:4, NULL)))

Lap(c(0,2), structure, outVar = 'z', par = 'value')
\end{verbatim}
Description

Constructs either a LOG Mother or Child class object for a given parameter, arguments, and nesting structure.

Usage

\[
\text{LOG}(\text{par}, \text{unif}, \text{structure})
\]

Arguments

- **par**: parameter of the distribution.
- **unif**: uniform structure, a numeric vector of grouped numbers, i.e. c(1,2,3) is translated as being c(u1, u2, u3).
- **structure**: nesting structure of the form
 \[
 X(\text{par1}, c(i,...), \text{list}(Y(\text{par2}, c(j,...), \text{NULL}), Z(\text{par3}, c(k,...), \text{NULL}))),
 \]
 where X, Y, and Z are compatible functions (see 'details'). It is good to note that if structure is NULL, the function will automatically be of class Child. For continuous distributions (i.e. GAMMA), structure is always NULL.

Author(s)

Simon-Pierre Gadoury

See Also

Other mother or child class objects: \texttt{GAMMA, GEO}

Examples

\[
\text{LOG}(0.5, \text{NULL}, \text{list}(\text{GAMMA}(1/30, c(5,6), \text{NULL}), \text{LOG}(0.1, \text{NULL}, \text{list}(\text{GAMMA}(1/30, c(1,2), \text{NULL}), \text{GAMMA}(1/30, c(3,4), \text{NULL})))),
\]

Node

Obtain a node in mother class object

Description

Use a path (numeric vector) to obtain a subgroup of a structure (mother class object).

Usage

Node(path, structure)

Arguments

path the path of the node (numeric vector).
structure a mother class object (S4).

Details

Every node of a mother object (structure) can be identified with a numeric vector that indicates the path used from the root to the node. The vector is the 'path' argument and is used to find specific nodes of a given structure. For a complete explanation, we refer to Cossette et al. (2017).

Value

Either a child or mother class object.

Author(s)

Simon-Pierre Gadoury

Examples

We directly give the path of the desired node.
Node(c(0,2,2), LOG(0.5, NULL, list(GAMMA(1/30, c(5,6), NULL),
 LOG(0.1, NULL, list(GAMMA(1/30, c(1,2), NULL),
 GAMMA(1/30, c(3,4), NULL))))))

Here we provide the path with the GeneticCodes function of this package.
structure <- LOG(0.5, NULL, list(GAMMA(1/30, c(5,6), NULL),
 LOG(0.1, NULL, list(GAMMA(1/30, c(1,2), NULL),
 GAMMA(1/30, c(3,4), NULL))))
Node(GeneticCodes(structure)[[3]], structure)
pCompCop

Distribution function of Mother class objects

Description

Distribution function of a Mother class object.

Usage

\[
p\text{CompCop}(\text{structure, vector = FALSE, express = TRUE})
\]

Arguments

- **structure**: object of class Mother.
- **vector**: logical. If false, returns a function or a character string with \((u_1, u_2, \ldots)\) as arguments, else, just \((u)\).
- **express**: logical. If false, returns a function, else, a character string.

Value

The distribution function in the form of either a function or a character string.

Examples

```r
## Create the structure
structure <- LOG(0.5, NULL, list(GAMMA(1/30, c(5,6), NULL),
                                   LOG(0.1, NULL, list(GAMMA(1/30, c(1,2), NULL),
                                   GAMMA(1/30, c(3,4), NULL))))

## Character string
p\text{CompCop}(\text{structure, vector = TRUE, express = TRUE})
p\text{CompCop}(\text{structure, vector = FALSE, express = TRUE})

## Function
p\text{CompCop}(\text{structure, vector = TRUE, express = FALSE})
p\text{CompCop}(\text{structure, vector = FALSE, express = FALSE})
```

pCop

Distribution function of archm class objects

Description

Distribution function of an Archimedean copula (archm) class object.
Usage

\[
p\text{Cop}(\text{copula}, \text{vector} = \text{FALSE}, \text{express} = \text{TRUE})
\]

Arguments

- **copula**: an Archimedean copula (archm) class object.
- **vector**: logical. If false, returns a function or a character string with \((u_1, u_2, \ldots, u_{\text{dim}})\) as arguments, else, just \((u)\).
- **express**: logical. If false, returns a function, else, a character string.

Value

The distribution function in the form of either a function or a character string.

Author(s)

Simon-Pierre Gadoury

See Also

- \(r\text{Cop}, \text{Clayton}, \text{AMH}, \text{Gumbel}, \text{Frank}\)

Examples

\[
cop <- \text{Clayton}(5, 2)
p\text{Cop}(cop, \text{vector} = \text{TRUE}, \text{express} = \text{TRUE})
p\text{Cop}(cop, \text{vector} = \text{FALSE}, \text{express} = \text{TRUE})
\]

rCompCop
Random number generator for Mother class objects

Description

Samples from a Mother class object.

Usage

\[
r\text{CompCop}(n, \text{structure})
\]

Arguments

- **n**: the number of realisations.
- **structure**: an object of class Mother.

Value

A numeric matrix of sampled data from the structure
rCop

Author(s)
Simon-Pierre Gadoury

Examples

```r
## Create the structure
structure <- GEO(0.1, 1, list(GAMMA(0.2, 2:3, NULL),
                               GEO(0.3, 4:5, NULL)))

## Sample from the structure
rCompCop(1000, structure)
```

rCop

Random number generator for Archimedean copula class objects

Description
Random number generator for archm class objects.

Usage

```r
rCop(n, copula)
```

Arguments

- `n` number of realisations.
- `copula` an Archimedean copula (archm) class object.

Details
For bivariate archm copula objects, the function uses the conditional approach. As for dimensions higher than 2, the Marshall-Olkin (1988) approach is chosen instead.

Value
A numeric matrix containing the samples.

Author(s)
Simon-Pierre Gadoury

See Also
pCop, Clayton, AMH, Frank, Gumbel
Examples

```r
## Create the trivariate archm copula object
cop <- Clayton(5, 3)

## Generate the samples
res <- rCop(10000, cop)

## Plot the values
pairs(res, pch = 16, cex = 0.7)
```
Index

AMH, 2, 12, 13
Clayton, 3, 12, 13
Frank, 3, 12, 13
GAMMA, 4, 6, 9
GeneticCodes, 5
GEO, 4, 5, 9
Gumbel, 6, 12, 13
InvLap, 7, 8
Lap, 7, 8
LOG, 4, 6, 9
Node, 10
pCompCop, 11
pCop, 11, 13
rCompCop, 12
rCop, 12, 13