Package ‘naivebayes’

March 16, 2024

Type Package
Title High Performance Implementation of the Naive Bayes Algorithm
Version 1.0.0
Description In this implementation of the Naive Bayes classifier following class conditional distributions are available: ‘Bernoulli’, ‘Categorical’, ‘Gaussian’, ‘Poisson’, ‘Multinomial’ and non-parametric representation of the class conditional density estimated via Kernel Density Estimation. Implemented classifiers handle missing data and can take advantage of sparse data.
License GPL-2
URL https://github.com/majkamichal/naivebayes,
https://majkamichal.github.io/naivebayes/
BugReports https://github.com/majkamichal/naivebayes/issues
Suggests knitr, Matrix
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
Author Michal Majka [aut, cre] (<https://orcid.org/0000-0002-7524-8014>)
Maintainer Michal Majka <michalmajka@hotmail.com>
Repository CRAN
Date/Publication 2024-03-16 12:50:02 UTC

R topics documented:

beroulli_naive_bayes ... 2
coeff ... 5
gaussian_naive_bayes ... 6
get_cond_dist .. 8
Infix operators ... 9
multinomial_naive_bayes 10
bernoulli_naive_bayes

Description

bernoulli_naive_bayes is used to fit the Bernoulli Naive Bayes model in which all class conditional distributions are assumed to be Bernoulli and be independent.

Usage

bernoulli_naive_bayes(x, y, prior = NULL, laplace = 0, ...)

Arguments

x matrix with numeric 0-1 predictors (matrix or dgCMatrix from Matrix package).
y class vector (character/factor/logical).
prior vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
laplace value used for Laplace smoothing (additive smoothing). Defaults to 0 (no Laplace smoothing).

... not used.
Details

This is a specialized version of the Naive Bayes classifier, in which all features take on numeric 0-1 values and class conditional probabilities are modelled with the Bernoulli distribution.

The Bernoulli Naive Bayes is available in both, naive_bayes and bernoulli_naive_bayes. The latter provides more efficient performance though. Faster calculation times come from restricting the data to a numeric 0-1 matrix and taking advantage of linear algebra operations. Sparse matrices of class "dgCMatrix" (Matrix package) are supported in order to furthermore speed up calculation times.

The bernoulli_naive_bayes and naive_bayes() are equivalent when the latter uses "0"-"1" character matrix.

The missing values (NAs) are omitted while constructing probability tables. Also, the corresponding predict function excludes all NAs from the calculation of posterior probabilities (an informative warning is always given).

Value

bernoulli_naive_bayes returns an object of class "bernoulli_naive_bayes" which is a list with following components:

data list with two components: x (matrix with predictors) and y (class variable).
levels character vector with values of the class variable.
laplace amount of Laplace smoothing (additive smoothing).
prob1 matrix with class conditional probabilities for the value 1. Based on this matrix full probability tables can be constructed. Please, see tables and coef.
prior numeric vector with prior probabilities.
call the call that produced this object.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, predict.bernoulli_naive_bayes, plot.bernoulli_naive_bayes, tables, get_cond_dist, %class%

Examples

library(naivebayes)

Simulate the data:
set.seed(1)
cols <- 10 ; rows <- 100 ; probs <- c("0" = 0.9, "1" = 0.1)
M <- matrix(sample(0:1, rows * cols, TRUE, probs), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3,0.7)))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0
Train the Bernoulli Naive Bayes

```r
bnb <- bernoulli_naive_bayes(x = M, y = y, laplace = laplace)
summary(bnb)
```

Classification

```r
head(predict(bnb, newdata = M, type = "class")) # head(bnb %class% M)
```

Posterior probabilities

```r
head(predict(bnb, newdata = M, type = "prob")) # head(bnb %prob% M)
```

Parameter estimates

```r
coef(bnb)
```

Sparse data: train the Bernoulli Naive Bayes

```r
library(Matrix)
M_sparse <- Matrix(M, sparse = TRUE)
class(M_sparse) # dgCMatrix
```

Fit the model with sparse data

```r
bnb_sparse <- bernoulli_naive_bayes(M_sparse, y, laplace = laplace)
```

Classification

```r
head(predict(bnb_sparse, newdata = M_sparse, type = "class"))
```

Posterior probabilities

```r
head(predict(bnb_sparse, newdata = M_sparse, type = "prob"))
```

Parameter estimates

```r
coef(bnb_sparse)
```

Equivalent calculation with general naive_bayes function.

(no sparse data support by naive_bayes)

Make sure that the columns are factors with the 0-1 levels

```r
df <- as.data.frame(lapply(as.data.frame(M), factor, levels = c(0,1)))
```

sapply(df, class)

```r
nb <- naive_bayes(df, y, laplace = laplace)
summary(nb)
```

Obtain probability tables

```r
tables(nb, which = "V1")
tables(bnb, which = "V1")
```

Visualise class conditional Bernoulli distributions

```r
plot(nb, "V1", prob = "conditional")
plot(bnb, which = "V1", prob = "conditional")
```

Check the equivalence of the class conditional distributions
Description

coef is a generic function which extracts model coefficients from specialized Naive Bayes objects.

Usage

```r
## S3 method for class 'bernoulli_naive_bayes'
coef(object, ...)

## S3 method for class 'multinomial_naive_bayes'
coef(object, ...)

## S3 method for class 'poisson_naive_bayes'
coef(object, ...)

## S3 method for class 'gaussian_naive_bayes'
coef(object, ...)
```

Arguments

- **object**: object of class inheriting from "*_naive_bayes".
- **...**: not used.

Value

Coefficients extracted from the specialised Naive Bayes objects in form of a data frame.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

- `bernoulli_naive_bayes`
- `multinomial_naive_bayes`
- `poisson_naive_bayes`
- `gaussian_naive_bayes`

Examples

```r
data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

### Train the Gaussian Naive Bayes
gnb <- gaussian_naive_bayes(x = M, y = y)
```
gaussian_naive_bayes

Extract coefficients
`coef(gnb)`

`coef(gnb)[c(TRUE,FALSE)]` # only means

`coef(gnb)[c(FALSE,TRUE)]` # only standard deviations

gaussian_naive_bayes
Gaussian Naive Bayes Classifier

Description

gaussian_naive_bayes is used to fit the Gaussian Naive Bayes model in which all class conditional distributions are assumed to be Gaussian and be independent.

Usage

gaussian_naive_bayes(x, y, prior = NULL, ...)

Arguments

- `x`
 numeric matrix with metric predictors (matrix or dgCMatrix from Matrix package).

- `y`
 class vector (character/factor/logical).

- `prior`
 vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.

- `...`
 not used.

Details

This is a specialized version of the Naive Bayes classifier, in which all features take on real values (numeric/integer) and class conditional probabilities are modelled with the Gaussian distribution.

The Gaussian Naive Bayes is available in both, naive_bayes and gaussian_naive_bayes. The latter provides more efficient performance though. Faster calculation times come from restricting the data to a matrix with numeric columns and taking advantage of linear algebra operations. Sparse matrices of class "dgCMatrix" (Matrix package) are supported in order to furthermore speed up calculation times.

The gaussian_naive_bayes and naive_bayes() are equivalent when the latter is used with usepoisson = FALSE and usekernel = FALSE; and a matrix/data.frame contains numeric columns.

The missing values (NAs) are omitted during the estimation process. Also, the corresponding predict function excludes all NAs from the calculation of posterior probabilities (an informative warning is always given).
gaussian_naive_bayes

Value

`gaussian_naive_bayes` returns an object of class "gaussian_naive_bayes" which is a list with following components:

- **data** list with two components: `x` (matrix with predictors) and `y` (class variable).
- **levels** character vector with values of the class variable.
- **params** list with two matrices, first containing the class conditional means and the second containing the class conditional standard deviations.
- **prior** numeric vector with prior probabilities.
- **call** the call that produced this object.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

`naive_bayes`, `predict.gaussian_naive_bayes`, `plot.gaussian_naive_bayes`, `tables`, `get_cond_dist`, `%class%`

Examples

```r
# library(naivebayes)
set.seed(1)
cols <- 10 ; rows <- 100
M <- matrix(rnorm(rows * cols, 100, 15), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3, 0.7)))
colnames(M) <- paste0("V", seq_len(ncol(M)))

### Train the Gaussian Naive Bayes
gnb <- gaussian_naive_bayes(x = M, y = y)
summary(gnb)

# Classification
head(predict(gnb, newdata = M, type = "class"))  # head(gnb %class% M)

# Posterior probabilities
head(predict(gnb, newdata = M, type = "prob"))  # head(gnb %prob% M)

# Parameter estimates
coef(gnb)

### Sparse data: train the Gaussian Naive Bayes
library(Matrix)
M_sparse <- Matrix(M, sparse = TRUE)
class(M_sparse)  # dgCMatrix

# Fit the model with sparse data
```
gnb_sparse <- gaussian_naive_bayes(M_sparse, y)

Classification
head(predict(gnb_sparse, newdata = M_sparse, type = "class"))

Posterior probabilities
head(predict(gnb_sparse, newdata = M_sparse, type = "prob"))

Parameter estimates
coef(gnb_sparse)

Equivalent calculation with general naive_bayes function.
(no sparse data support by naive_bayes)

nb <- naive_bayes(M, y)
summary(nb)
head(predict(nb, type = "prob"))

Obtain probability tables
tables(nb, which = "V1")
tables(gnb, which = "V1")

Visualise class conditional Gaussian distributions
plot(nb, "V1", prob = "conditional")
plot(gnb, which = "V1", prob = "conditional")

Check the equivalence of the class conditional distributions
all(get_cond_dist(nb) == get_cond_dist(gnb))

get_cond_dist

Obtain names of class conditional distribution assigned to features

Description
Auxiliary function for "naive_bayes", "*_naive_bayes" and "naive_bayes_tables" objects for obtaining names of class conditional distributions assigned to the features.

Usage
get_cond_dist(object)

Arguments
object object of class inheriting from "naive_bayes" or "*_naive_bayes" or "naive_bayes_tables".

Value
vector with names of class conditional distributions assigned to the features.
Infix operators

Author(s)
Michal Majka, <michalmajka@hotmail.com>

See Also
naive_bayes, bernoulli_naive_bayes, multinomial_naive_bayes, poisson_naive_bayes, gaussian_naive_bayes, tables

Examples

data(iris)
nb <- naive_bayes(Species ~ ., data = iris)
get_cond_dist(nb) # <=> attr(nb$tables, "cond_dist")
get_cond_dist(tables(nb))

Infix operators Predict Method for Family of Naive Bayes Objects

Description
The infix operators %class% and %prob% are shorthands for performing classification and obtaining posterior probabilities, respectively.

Usage
lhs %class% rhs
lhs %prob% rhs

Arguments
lhs
object of class inheriting from "naive_bayes" and "*_naive_bayes" family.

rhs
dataframe or matrix for "naive_bayes" objects OR matrix for all "*_naive_bayes" objects.

Details
If lhs is of class inheriting from the family of the Naive Bayes objects and rhs is either dataframe or matrix then the infix operators %class% and %prob% are equivalent to:

• lhs %class% rhs <= predict(lhs, newdata = rhs, type = "class", threshold = 0.001, eps = 0)
• lhs %prob% rhs <= predict(lhs, newdata = rhs, type = "prob", threshold = 0.001, eps = 0)

Compared to predict(), both operators do not allow changing values of fine tuning parameters threshold and eps.
Value

- `%class%` returns factor with class labels corresponding to the maximal conditional posterior probabilities.
- `%prob%` returns a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

predict.naive_bayes, predict.bernoulli_naive_bayes, predict.multinomial_naive_bayes, predict.poisson_naive_bayes, predict.gaussian_naive_bayes, predict.nonparametric_naive_bayes

Examples

Fit the model
```r
nb <- naive_bayes(Species ~ ., iris)
```

```r
newdata <- iris[1:5,-5] # Let's pretend
```

Classification
```r
nb %class% newdata
```
```r
predict(nb, newdata, type = "class")
```

Posterior probabilities
```r
nb %prob% newdata
```
```r
predict(nb, newdata, type = "prob")
```
Arguments

- **x**: numeric matrix with integer predictors (matrix or dgCMatrix from Matrix package).
- **y**: class vector (character/factor/logical).
- **prior**: vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
- **laplace**: value used for Laplace smoothing (additive smoothing). Defaults to 0.5.
- **...**: not used.

Details

This is a specialized version of the Naive Bayes classifier, where the features represent frequencies generated by a multinomial distribution.

Sparse matrices of class "dgCMatrix" (Matrix package) are supported in order to speed up calculation times.

Please note that the Multinomial Naive Bayes is not available through the `naive_bayes` function.

Value

`multinomial_naive_bayes` returns an object of class "multinomial_naive_bayes" which is a list with following components:

- **data**: list with two components: x (matrix with predictors) and y (class variable).
- **levels**: character vector with values of the class variable.
- **laplace**: amount of Laplace smoothing (additive smoothing).
- **params**: matrix with class conditional parameter estimates.
- **prior**: numeric vector with prior probabilities.
- **call**: the call that produced this object.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

References

See Also

`predict.multinomial_naive_bayes`, `tables`, `get_cond_dist`, `%class%`, `coef.multinomial_naive_bayes`
Examples

```r
# library(naivebayes)

### Simulate the data:
set.seed(1)
cols <- 3 # words
rows <- 10000 # all documents
rows_spam <- 100 # spam documents
prob_word_non_spam <- prop.table(runif(cols))
prob_word_spam <- prop.table(runif(cols))

M1 <- t(rmultinom(rows_spam, size = cols, prob = prob_word_spam))
M2 <- t(rmultinom(rows - rows_spam, size = cols, prob = prob_word_non_spam))
M <- rbind(M1, M2)
colnames(M) <- paste0("word", 1:cols) ; rownames(M) <- paste0("doc", 1:rows)
head(M)
y <- c(rep("spam", rows_spam), rep("non-spam", rows - rows_spam))

### Train the Multinomial Naive Bayes
laplace <- 1
mnb <- multinomial_naive_bayes(x = M, y = y, laplace = laplace)
summary(mnb)

# Classification
head(predict(mnb, newdata = M, type = "class")) # head(mnb %class% M)

# Posterior probabilities
head(predict(mnb, newdata = M, type = "prob")) # head(mnb %prob% M)

# Parameter estimates
coeff(mnb)

# Compare
round(cbind(non_spam = prob_word_non_spam, spam = prob_word_spam), 3)

### Sparse data: train the Multinomial Naive Bayes
library(Matrix)
M_sparse <- Matrix(M, sparse = TRUE)
class(M_sparse) # dgCMatrix

# Fit the model with sparse data
mnb_sparse <- multinomial_naive_bayes(M_sparse, y, laplace = laplace)

# Classification
head(predict(mnb_sparse, newdata = M_sparse, type = "class"))

# Posterior probabilities
head(predict(mnb_sparse, newdata = M_sparse, type = "prob"))
```

Parameter estimates

coe(mnb_sparse)

naivebayes

naivebayes

Description

The **naivebayes** package presents an efficient implementation of the widely-used Naive Bayes classifier. It upholds three core principles: efficiency, user-friendliness, and reliance solely on Base R. By adhering to the latter principle, the package ensures stability and reliability without introducing external dependencies. This design choice maintains efficiency by leveraging the optimized routines inherent in Base R, many of which are programmed in high-performance languages like C/C++ or FORTRAN. By following these principles, the naivebayes package provides a reliable and efficient tool for Naive Bayes classification tasks, ensuring that users can perform their analyses effectively and with ease, even in the presence of missing data.

Details

The general `naive_bayes()` function is designed to determine the class of each feature in a dataset, and depending on user specifications, it can assume various distributions for each feature. It currently supports the following class conditional distributions:

- Categorical distribution for discrete features (with Bernoulli distribution as a special case for binary outcomes)
- Poisson distribution for non-negative integer features
- Gaussian distribution for continuous features
- non-parametrically estimated densities via Kernel Density Estimation for continuous features

In addition to the general Naive Bayes function, the package provides specialized functions for various types of Naive Bayes classifiers. The specialized functions are carefully optimized for efficiency, utilizing linear algebra operations to excel when handling dense matrices. Additionally, they can also exploit sparsity of matrices for enhanced performance:

- Bernoulli Naive Bayes via `bernoulli_naive_bayes()`
- Multinomial Naive Bayes via `multinomial_naive_bayes()`
- Poisson Naive Bayes via `poisson_naive_bayes()`
- Gaussian Naive Bayes via `gaussian_naive_bayes()`
- Non-Parametric Naive Bayes via `nonparametric_naive_bayes()`

These specialized classifiers are tailored to different assumptions about the underlying data distributions, offering users versatile tools for classification tasks. Moreover, the package incorporates various helper functions aimed at enhancing the user experience. Notably, the model fitting functions provided by the package can effectively handle missing data, ensuring that users can utilize the classifiers even in the presence of incomplete information.

Extended documentation can be found on the website:
naive_bayes

Naive Bayes Classifier

Description

`naive_bayes` is used to fit Naive Bayes model in which predictors are assumed to be independent within each class label.

Usage

```r
## Default S3 method:
naive_bayes(x, y, prior = NULL, laplace = 0,
            usekernel = FALSE, usepoisson = FALSE, ...)

## S3 method for class 'formula'
naive_bayes(formula, data, prior = NULL, laplace = 0,
            usekernel = FALSE, usepoisson = FALSE,
            subset, na.action = stats::na.pass, ...)
```

Arguments

- `x`: matrix or dataframe with categorical (character/factor/logical) or metric (numeric) predictors.
- `y`: class vector (character/factor/logical).
- `formula`: an object of class "formula" (or one that can be coerced to "formula") of the form: `class ~ predictors` (class has to be a factor/character/logical).
- `data`: matrix or dataframe with categorical (character/factor/logical) or metric (numeric) predictors.
- `prior`: vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
- `laplace`: value used for Laplace smoothing (additive smoothing). Defaults to 0 (no Laplace smoothing).
- `usekernel`: logical; if TRUE, `density` is used to estimate the class conditional densities of metric predictors. This applies to vectors with class "numeric". For further details on interaction between `usekernel` and `usepoisson` parameters please see Note below.
Details

Numeric (metric) predictors are handled by assuming that they follow Gaussian distribution, given the class label. Alternatively, kernel density estimation can be used (`usekernel = TRUE`) to estimate their class-conditional distributions. Also, non-negative integer predictors (variables representing counts) can be modelled with Poisson distribution (`usepoisson = TRUE`); for further details please see **Note** below. Missing values are not included into constructing tables. Logical variables are treated as categorical (binary) variables.

Value

`naive_bayes` returns an object of class "naive_bayes" which is a list with following components:

- **data** list with two components: x (dataframe with predictors) and y (class variable).
- **levels** character vector with values of the class variable.
- **laplace** amount of Laplace smoothing (additive smoothing).
- **tables** list of tables. For each categorical predictor a table with class-conditional probabilities, for each integer predictor a table with Poisson mean (if `usepoisson = TRUE`) and for each metric predictor a table with a mean and standard deviation or `density` objects for each class. The object `tables` contains also an additional attribute "cond_dist" - a character vector with the names of conditional distributions assigned to each feature.
- **prior** numeric vector with prior probabilities.
- **usekernel** logical; TRUE, if the kernel density estimation was used for estimating class conditional densities of numeric variables.
- **usepoisson** logical; TRUE, if the Poisson distribution was used for estimating class conditional PMFs of non-negative integer variables.
- **call** the call that produced this object.

Note

The class "numeric" contains "double" (double precision floating point numbers) and "integer". Depending on the parameters `usekernel` and `usepoisson` different class conditional distributions are applied to columns in the dataset with the class "numeric".
• If usekernel=FALSE and poisson=FALSE then Gaussian distribution is applied to each "numeric" variable ("numeric" & "integer" or "numeric" & "double")

• If usekernel=TRUE and poisson=FALSE then kernel density estimation (KDE) is applied to each "numeric" variable ("numeric" & "integer" or "numeric" & "double")

• If usekernel=FALSE and poisson=TRUE then Gaussian distribution is applied to each "double" vector and Poisson to each "integer" vector. (Gaussian: "numeric" & "double"; Poisson: "numeric" & "integer")

• If usekernel=TRUE and poisson=TRUE then kernel density estimation (KDE) is applied to each "double" vector and Poisson to each "integer" vector. (KDE: "numeric" & "double"; Poisson: "numeric" & "integer")

By default usekernel=FALSE and poisson=FALSE, thus Gaussian is applied to each numeric variable.

On the other hand, "character", "factor" and "logical" variables are assigned to the Categorical distribution with Bernoulli being its special case.

Prior the model fitting the classes of columns in the data.frame "data" can be easily checked via:

• sapply(data, class)
• sapply(data, is.numeric)
• sapply(data, is.double)
• sapply(data, is.integer)

Author(s)
Michal Majka, <michalmajka@hotmail.com>

See Also
predict.naive_bayes, plot.naive_bayes, tables, get_cond_dist, %class%

Examples
Simulate example data
n <- 100
data.seed(1)
data <- data.frame(class = sample(c("classA", "classB"), n, TRUE),
 bern = sample(LETTERS[1:2], n, TRUE),
 cat = sample(letters[1:3], n, TRUE),
 logical = sample(c(TRUE, FALSE), n, TRUE),
 norm = rnorm(n),
 count = rpois(n, lambda = c(5, 15)))

train <- data[1:95,]
test <- data[96:100, -1]

1) General usage via formula interface
nb <- naive_bayes(class ~ ., train)
summary(nb)
Classification
predict(nb, test, type = "class")
nb %class% test

Posterior probabilities
predict(nb, test, type = "prob")
nb %prob% test

Helper functions
tables(nb, 1)
gt_cond_dist(nb)

Note: all "numeric" (integer, double) variables are modelled
with Gaussian distribution by default.

2) General usage via matrix/data.frame and class vector
X <- train[-1]
class <- train$class
nb2 <- naive_bayes(x = X, y = class)
nb2 %prob% test

3) Model continuous variables non-parametrically
via kernel density estimation (KDE)
nb_kde <- naive_bayes(class ~ ., train, usekernel = TRUE)
summary(nb_kde)
gt_cond_dist(nb_kde)

nb_kde %prob% test

Visualize class conditional densities
plot(nb_kde, "norm", arg.num = list(legend.cex = 0.9), prob = "conditional")
plot(nb_kde, "count", arg.num = list(legend.cex = 0.9), prob = "conditional")

?density and ?bw.nrd for further documentation

3.1) Change Gaussian kernel to biweight kernel
nb_kde_biweight <- naive_bayes(class ~ ., train, usekernel = TRUE,
 kernel = "biweight")
nb_kde_biweight %prob% test
plot(nb_kde_biweight, c("norm", "count"),
 arg.num = list(legend.cex = 0.9), prob = "conditional")

3.2) Change "nrd0" (Silverman's rule of thumb) bandwidth selector
nb_kde_SJ <- naive_bayes(class ~ ., train, usekernel = TRUE,
 bw = "SJ")
nb_kde_SJ %prob% test
plot(nb_kde_SJ, c("norm", "count"),
 arg.num = list(legend.cex = 0.9), prob = "conditional")
3.3) Adjust bandwidth

```r
nb_kde_adjust <- naive_bayes(class ~ ., train, usekernel = TRUE, adjust = 1.5)
nb_kde_adjust %prob% test
plot(nb_kde_adjust, c("norm", "count"),
     arg.num = list(legend.cex = 0.9), prob = "conditional")
```

4) Model non-negative integers with Poisson distribution

```r
nb_pois <- naive_bayes(class ~ ., train, usekernel = TRUE, usepoisson = TRUE)
summary(nb_pois)
get_cond_dist(nb_pois)

# Posterior probabilities
nb_pois %prob% test

# Class conditional distributions
plot(nb_pois, "count", prob = "conditional")

# Marginal distributions
plot(nb_pois, "count", prob = "marginal")
```

Not run:
```r
vars <- 10
rows <- 1000000
y <- sample(c("a", "b"), rows, TRUE)

# Only categorical variables
X1 <- as.data.frame(matrix(sample(letters[5:9], vars * rows, TRUE),
                           ncol = vars))
nb_cat <- naive_bayes(x = X1, y = y)
nb_cat
system.time(pred2 <- predict(nb_cat, X1))
## End(Not run)
```

nonparametric_naive_bayes

Non-Parametric Naive Bayes Classifier

Description

`nonparametric_naive_bayes` is used to fit the Non-Parametric Naive Bayes model in which all class conditional distributions are non-parametrically estimated using kernel density estimator and are assumed to be independent.

Usage

```r
nonparametric_naive_bayes(x, y, prior = NULL, ...)
```
nonparametric_naive_bayes

Arguments

- **x**: matrix with metric predictors (only numeric matrix accepted).
- **y**: class vector (character/factor/logical).
- **prior**: vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
- **...**: other parameters to `density` (for instance `adjust`, `kernel` or `bw`).

Details

This is a specialized version of the Naive Bayes classifier, in which all features take on real values (numeric/integer) and class conditional probabilities are estimated in a non-parametric way with the kernel density estimator (KDE). By default Gaussian kernel is used and the smoothing bandwidth is selected according to the Silverman’s ’rule of thumb’. For more details, please see the references and the documentation of `density` and `bw.nrd0`.

The Non-Parametric Naive Bayes is available in both, `naive_bayes()` and `nonparametric_naive_bayes()`. The latter does not provide a substantial speed up over the general `naive_bayes()` function but it is meant to be more transparent and user friendly.

The `nonparametric_naive_bayes` and `naive_bayes()` are equivalent when the latter is used with `usekernel = TRUE` and `usepoisson = FALSE`; and a matrix/data.frame contains only numeric variables.

The missing values (NAs) are omitted during the estimation process. Also, the corresponding predict function excludes all NAs from the calculation of posterior probabilities (an informative warning is always given).

Value

`nonparametric_naive_bayes` returns an object of class "nonparametric_naive_bayes" which is a list with following components:

- **data**: list with two components: `x` (matrix with predictors) and `y` (class variable).
- **levels**: character vector with values of the class variable.
- **dens**: nested list containing `density` objects for each feature and class.
- **prior**: numeric vector with prior probabilities.
- **call**: the call that produced this object.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

References

See Also

`predict.nonparametric_naive_bayes`, `plot.nonparametric_naive_bayes`, `tables.get_cond_dist`, `%class%

Examples

```r
# library(naivebayes)
data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

### Train the Non-Parametric Naive Bayes
nnb <- nonparametric_naive_bayes(x = M, y = y)
summary(nnb)
head(predict(nnb, newdata = M, type = "prob"))

### Equivalent calculation with general naive_bayes function:
nb <- naive_bayes(M, y, usekernel = TRUE)
summary(nb)
head(predict(nb, type = "prob"))

### Change kernel
nnb_kernel <- nonparametric_naive_bayes(x = M, y = y, kernel = "biweight")
plot(nnb_kernel, 1, prob = "conditional")

### Adjust bandwidth
nnb_adjust <- nonparametric_naive_bayes(M, y, adjust = 1.5)
plot(nnb_adjust, 1, prob = "conditional")

### Change bandwidth selector
nnb_bw <- nonparametric_naive_bayes(M, y, bw = "SJ")
plot(nnb_bw, 1, prob = "conditional")

### Obtain tables with conditional densities
# tables(nnb, which = 1)
```

plot.bernoulli_naive_bayes

Plot Method for bernoulli_naive_bayes Objects

Description

Plot method for objects of class "bernoulli_naive_bayes" designed for a quick look at the class marginal distributions or class conditional distributions of 0-1 valued predictors.

Usage

```r
## S3 method for class 'bernoulli_naive_bayes'
plot(x, which = NULL, ask = FALSE, arg.cat = list(),
     prob = c("marginal", "conditional"), ...)```

plot.bernoulli_naive_bayes

Arguments

x object of class inheriting from "bernoulli_naive_bayes".

which variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables.

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).

arg.cat other parameters to be passed as a named list to mosaicplot.

prob character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal".

... not used.

Details

Class conditional or class conditional distributions are visualised by mosaicplot.

The parameter prob controls the kind of probabilities to be visualized for each individual predictor \(X_i\). It can take on two values:

- "marginal": \(P(X_i|\text{class}) \times P(\text{class})\)
- "conditional": \(P(X_i|\text{class})\)

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, bernoulli_naive_bayes, predict.bernoulli_naive_bayes, tables, get_cond_dist

Examples

# Simulate data
cols <- 10 ; rows <- 100 ; probs <- c("0" = 0.4, "1" = 0.1)
M <- matrix(sample(0:1, rows * cols, TRUE, probs), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3,0.7)))
colnames(M) <- paste0(\"V\", seq_len(ncol(M)))
laplace <- 0.5

# Train the Bernoulli Naive Bayes model
bnb <- bernoulli_naive_bayes(x = M, y = y, laplace = laplace)

# Visualize class marginal probabilities corresponding to the first feature
plot(bnb, which = 1)

# Visualize class conditional probabilities corresponding to the first feature
plot(bnb, which = 1, prob = "conditional")
plot.gaussian_naive_bayes

Plot Method for gaussian_naive_bayes Objects

Description

Plot method for objects of class "gaussian_naive_bayes" designed for a quick look at the class marginal or conditional Gaussian distributions of metric predictors.

Usage

```r
S3 method for class 'gaussian_naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
 legend.box = FALSE, arg.num = list(),
 prob = c("marginal", "conditional"), ...)
```

Arguments

- **x**: object of class inheriting from "gaussian_naive_bayes".
- **which**: variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables.
- **ask**: logical; if TRUE, the user is asked before each plot, see `par(ask=.)`.
- **legend**: logical; if TRUE a `legend` will be be plotted.
- **legend.box**: logical; if TRUE a box will be drawn around the legend.
- **arg.num**: other parameters to be passed as a named list to `matplot`.
- **prob**: character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal".
- **...**: not used.

Details

Class marginal and class conditional Gaussian distributions are visualised by `matplot`.

The parameter prob controls the kind of probabilities to be visualized for each individual predictor $X_i$. It can take on two values:

- "marginal": $P(X_i \mid \text{class}) \times P(\text{class})$
- "conditional": $P(X_i \mid \text{class})$

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

`naive_bayes`, `gaussian_naive_bayes`, `predict.gaussian_naive_bayes`, `tables`, `get_cond_dist`
Examples

data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

### Train the Gaussian Naive Bayes with custom prior
gnb <- gaussian_naive_bayes(x = M, y = y, prior = c(0.1,0.3,0.6))

# Visualize class marginal Gaussian distributions corresponding
# to the first feature
plot(gnb, which = 1)

# Visualize class conditional Gaussian distributions corresponding
# to the first feature
plot(gnb, which = 1, prob = "conditional")

plot.naive_bayes  

Plot Method for naive_bayes Objects

Description

Plot method for objects of class "naive_bayes" designed for a quick look at the class marginal
distributions or class conditional distributions of predictor variables.

Usage

## S3 method for class 'naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
     legend.box = FALSE, arg.num = list(), arg.cat = list(),
     prob = c("marginal", "conditional"), ...)

Arguments

x            object of class inheriting from "naive_bayes".
which         variables to be plotted (all by default). This can be any valid indexing vector or
vector containing names of variables.
ask           logical; if TRUE, the user is asked before each plot, see par(ask=).
legend        logical; if TRUE a legend will be plotted.
legend.box    logical; if TRUE a box will be drawn around the legend.
arg.num       other parameters to be passed as a named list to matplot.
arg.cat       other parameters to be passed as a named list to mosaicplot.
prob          character; if "marginal" then marginal distributions of predictor variables for
each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal".
...            not used.
Details

Probabilities are visualised by `matplot` (for numeric (metric) predictors) and `mosaicplot` (for categorical predictors). In case of non parametric estimation of densities, the bandwidths are reported for each class. Nothing is returned. For numeric (metric) predictors position of the legend can be adjusted changed via `arg.num(..., legend.position = "topright")`. `legend.position` can be one of "topright", "topleft", "bottomright", "bottomleft". In order to adjust the legend size following argument can be used: `arg.num(..., legend.cex = 0.9)

The parameter `prob` controls the kind of probabilities to be visualized for each individual predictor $X_i$. It can take on two values:

- "marginal": $P(X_i|class) \times P(class)$
- "conditional": $P(X_i|class)$

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, predict.naive_bayes, %class%, tables, get_cond_dist

Examples

data(iris)
iris2 <- cbind(iris, New = sample(letters[1:3], 150, TRUE))

# Fit the model with custom prior probabilities
nb <- naive_bayes(Species ~ ., data = iris2, prior = c(0.1, 0.3, 0.6))

# Visualize marginal distributions of two predictors
plot(nb, which = c("Sepal.Width", "Sepal.Length"), ask = TRUE)

# Visualize class conditional distributions corresponding to the first predictor
# with customized settings
plot(nb, which = 1, ask = FALSE, prob = "conditional",
  arg.num = list(col = 1:3, lty = 1,
  main = "Naive Bayes Plot", legend.position = "topright",
  legend.cex = 0.55))

# Visualize class marginal distributions corresponding to the first predictor
# with customized settings
plot(nb, which = 1, ask = FALSE, prob = "marginal",
  arg.num = list(col = 1:3, lty = 1,
  main = "Naive Bayes Plot", legend.position = "topright",
  legend.cex = 0.55))

# Visualize class marginal distribution corresponding to the predictor "new"
# with custom colours
plot(nb, which = "New", arg.cat = list(color = gray.colors(3)))
plot.nonparametric_naive_bayes

Plot Method for nonparametric_naive_bayes Objects

Description

Plot method for objects of class "nonparametric_naive_bayes" designed for a quick look at the estimated class marginal or class conditional densities of metric predictors.

Usage

```r
S3 method for class 'nonparametric_naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
 legend.box = FALSE, arg.num = list(),
 prob = c("marginal", "conditional"), ...)
```

Arguments

- `x`: object of class inheriting from "nonparametric_naive_bayes".
- `which`: variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables.
- `ask`: logical; if TRUE, the user is asked before each plot, see `par(ask=.)`.
- `legend`: logical; if TRUE a `legend` will be be plotted.
- `legend.box`: logical; if TRUE a box will be drawn around the legend.
- `arg.num`: other parameters to be passed as a named list to `matplot`.
- `prob`: character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, `prob="marginal"`.
- `...`: not used.

Details

Estimated class marginal or class conditional densities are visualised by `matplot`.

The parameter `prob` controls the kind of probabilities to be visualized for each individual predictor $X_i$. It can take on two values:

- "marginal": $P(X_i|\text{class}) \times P(\text{class})$
- "conditional": $P(X_i|\text{class})$

Author(s)

Michal Majka, <michalmajka@hotmail.com>
See Also

`naive_bayes`, `nonparametric_naive_bayes` predict.nonparametric_naive_bayes, tables, get_cond_dist

Examples

data(iris)
y <- iris[,5]
M <- as.matrix(iris[-5])

### Train the Non-Parametric Naive Bayes with custom prior
prior <- c(0.1,0.3,0.6)
nnb <- nonparametric_naive_bayes(x = M, y = y, prior = prior)
nnb2 <- nonparametric_naive_bayes(x = M, y = y, prior = prior, adjust = 1.5)
nnb3 <- nonparametric_naive_bayes(x = M, y = y, prior = prior, bw = "ucv")

# Visualize estimated class conditional densities corresponding # to the first feature
plot(nnb, which = 1, prob = "conditional")
plot(nnb2, which = 1, prob = "cond")
plot(nnb3, which = 1, prob = "c")

# Visualize estimated class marginal densities corresponding # to the first feature
plot(nnb, which = 1)
plot(nnb2, which = 1)
plot(nnb3, which = 1)

plot.poisson_naive_bayes

Plot Method for poisson_naive_bayes Objects

Description

Plot method for objects of class "poisson_naive_bayes" designed for a quick look at the class marginal or class conditional Poisson distributions of non-negative integer predictors.

Usage

## S3 method for class 'poisson_naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
     legend.box = FALSE, arg.num = list(),
     prob = c("marginal", "conditional"), ...)
plot.poisson_naive_bayes

ask logical; if TRUE, the user is asked before each plot, see `par(ask=.)`.
legend logical; if TRUE a `legend` will be plotted.
legend.box logical; if TRUE a box will be drawn around the legend.
arg.num other parameters to be passed as a named list to `matplot`.
prob character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal".

Details

Class marginal or class conditional Poisson distributions are visualised by `matplot`.

The parameter `prob` controls the kind of probabilities to be visualized for each individual predictor $X_i$. It can take on two values:

- "marginal": $P(X_i|\text{class}) \times P(\text{class})$
- "conditional": $P(X_i|\text{class})$

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

`naive_bayes`, `poisson_naive_bayes`, `predict.poisson_naive_bayes`, `tables`, `get_cond_dist`

Examples

cols <- 10 ; rows <- 100
M <- matrix(rpois(rows * cols, lambda = 3), nrow = rows, ncol = cols)
# is.integer(M) # [1] TRUE
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0

### Train the Poisson Naive Bayes
pnb <- poisson_naive_bayes(x = M, y = y, laplace = laplace)

# Visualize class conditional Poisson distributions corresponding
# to the first feature
plot(pnb, which = 1, prob = "conditional")

# Visualize class marginal Poisson distributions corresponding
# to the first feature
plot(pnb, which = 1)
Poisson Naive Bayes Classifier

Description

poisson_naive_bayes is used to fit the Poisson Naive Bayes model in which all class conditional distributions are assumed to be Poisson and be independent.

Usage

poisson_naive_bayes(x, y, prior = NULL, laplace = 0, ...)

Arguments

x numeric matrix with integer predictors (matrix or dgCMatrix from Matrix package).
y class vector (character/factor/logical).
prior vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
laplace value used for Laplace smoothing (additive smoothing). Defaults to 0 (no Laplace smoothing).
... not used.

Details

This is a specialized version of the Naive Bayes classifier, in which all features take on non-negative integers (numeric/integer) and class conditional probabilities are modelled with the Poisson distribution.

The Poisson Naive Bayes is available in both, naive_bayes and poisson_naive_bayes. The latter provides more efficient performance though. Faster calculation times come from restricting the data to an integer-valued matrix and taking advantage of linear algebra operations. Sparse matrices of class "dgCMatrix" (Matrix package) are supported in order to furthermore speed up calculation times.

The poisson_naive_bayes and naive_bayes() are equivalent when the latter is used with usepoisson = TRUE and usekernel = FALSE; and a matrix/data.frame contains only integer-valued columns.

The missing values (NAs) are omitted during the estimation process. Also, the corresponding predict function excludes all NAs from the calculation of posterior probabilities (an informative warning is always given).

Value

poisson_naive_bayes returns an object of class "poisson_naive_bayes" which is a list with following components:

data list with two components: x (matrix with predictors) and y (class variable).
levels character vector with values of the class variable.

laplace amount of Laplace smoothing (additive smoothing).

params matrix containing class conditional means.

prior numeric vector with prior probabilities.

call the call that produced this object.

Note

When the parameter laplace is set to positive constant c then this amount is added to all counts. This leads to the ("global") Bayesian estimation with an improper prior. In each case, the estimate is the expected value of the posterior which is given by the gamma distribution with parameters: cell count + c and number of observations in the cell.

If in one cell there is a zero count and laplace = 0 then one pseudo-count is automatically to each such cell. This corresponds to the "local" Bayesian estimation with uniform prior.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

predict.poisson_naive_bayes, plot.poisson_naive_bayes, tables, get_cond_dist, %class%, coef.poisson_naive_bayes

Examples

library(naivebayes)

### Simulate the data:
set.seed(1)
cols <- 10 ; rows <- 100
M <- matrix(rpois(rows * cols, lambda = 3), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3,0.7)))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0.5

### Train the Poisson Naive Bayes
pnb <- poisson_naive_bayes(x = M, y = y, laplace = laplace)
summary(pnb)

# Classification
head(predict(pnb, newdata = M, type = "class")) # head(pnb %class% M)

# Posterior probabilities
head(predict(pnb, newdata = M, type = "prob")) # head(pnb %prob% M)

# Parameter estimates
coef(pnb)
### Sparse data: train the Poisson Naive Bayes

```r
library(Matrix)
M_sparse <- Matrix(M, sparse = TRUE)
class(M_sparse) # dgCMatrix

Fit the model with sparse data
pnb_sparse <- poisson_naive_bayes(M_sparse, y, laplace = laplace)

Classification
head(predict(pnb_sparse, newdata = M_sparse, type = "class"))

Posterior probabilities
head(predict(pnb_sparse, newdata = M_sparse, type = "prob"))

Parameter estimates
coef(pnb_sparse)
```

### Equivalent calculation with general naive_bayes function.
### (no sparse data support by naive_bayes)

```r
nb <- naive_bayes(M, y, laplace = laplace, usepoisson = TRUE)
summary(nb)
head(predict(nb, type = "prob"))

Obtain probability tables
tables(nb, which = "V1")
tables(pnb, which = "V1")

Visualise class conditional Poisson distributions
plot(nb, "V1", prob = "conditional")
plot(pnb, which = "V1", prob = "conditional")

Check the equivalence of the class conditional distributions
all(get_cond_dist(nb) == get_cond_dist(pnb))
```

---

**predict.bernoulli_naive_bayes**

*Predict Method for bernoulli_naive_bayes Objects*

**Description**

Classification based on the Bernoulli Naive Bayes model.

**Usage**

```r
S3 method for class 'bernoulli_naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"), ...)
```
Arguments

- **object**: object of class inheriting from "bernoulli_naive_bayes".
- **newdata**: matrix with numeric 0-1 predictors.
- **type**: if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
  
Details

This is a specialized version of the Naive Bayes classifier, in which all features take on numeric 0-1 values and class conditional probabilities are modelled with the Bernoulli distribution.

Class posterior probabilities are calculated using the Bayes' rule under the assumption of independence of predictors. If no newdata is provided, the data from the object is used.

The Bernoulli Naive Bayes is available in both, naive_bayes and bernoulli_naive_bayes. The implementation of the specialized Naive Bayes provides more efficient performance though. The speedup comes from the restricting the data input to a numeric 0-1 matrix and performing the linear algebra as well as vectorized operations on it. In other words, the efficiency comes at cost of the flexibility.

The NAs in the newdata are not included into the calculation of posterior probabilities; and if present an informative warning is given.

The bernoulli_naive_bayes function is equivalent to the naive_bayes function with the numeric 0-1 matrix being coerced, for instance, to the "0"-"1" character matrix.

Value

predict.bernoulli_naive_bayes returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, bernoulli_naive_bayes, plot.bernoulli_naive_bayes, tables, get_cond_dist,
%class%

Examples

cols <- 10 ; rows <- 100 ; probs <- c("0" = 0.4, "1" = 0.1)
M <- matrix(sample(0:1, rows * cols, TRUE, probs), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3,0.7)))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0.5

### Train the Bernoulli Naive Bayes
predict.gaussian_naive_bayes

Predict Method for gaussian_naive_bayes Objects

Description
Classification based on the Gaussian Naive Bayes model.

Usage
## S3 method for class 'gaussian_naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"),
threshold = 0.001, eps = 0, ...)

Arguments

object object of class inheriting from "gaussian_naive_bayes".
newdata matrix with metric predictors (only numeric matrix accepted).
type if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
threshold value by which zero probabilities or probabilities within the epsilon-range corresponding to metric variables are replaced (zero probabilities corresponding to categorical variables can be handled with Laplace (additive) smoothing).
eps value that specifies an epsilon-range to replace zero or close to zero probabilities by threshold. It applies to metric variables.
... not used.

Details
This is a specialized version of the Naive Bayes classifier, in which all features take on real values and class conditional probabilities are modelled with the Gaussian distribution.
Class posterior probabilities are calculated using the Bayes’ rule under the assumption of independence of predictors. If no newdata is provided, the data from the object is used.
The Gaussian Naive Bayes is available in both, naive_bayes and gaussian_naive_bayes. The implementation of the specialized Naive Bayes provides more efficient performance though. The speedup comes from the restricting the data input to a numeric matrix and performing the linear
algebra as well vectorized operations on it. In other words, the efficiency comes at cost of the flexibility.

The NAs in the newdata are not included into the calculation of posterior probabilities; and if present an informative warning is given.

The gaussian_naive_bayes function is equivalent to the naive_bayes function with the numeric matrix or a data.frame containing only numeric variables.

Value

predict.gaussian_naive_bayes returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, gaussian_naive_bayes, plot.gaussian_naive_bayes, tables, get_cond_dist, %class%

Examples

data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

### Train the Gaussian Naive Bayes
gnb <- gaussian_naive_bayes(x = M, y = y)

### Classification
head(predict(gnb, newdata = M, type = "class"))
head(gnb %class% M)

### Posterior probabilities
head(predict(gnb, newdata = M, type = "prob"))
head(gnb %prob% M)
Usage

```r
S3 method for class 'multinomial_naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"), ...)```

Arguments

- `object`: object of class inheriting from "multinomial_naive_bayes".
- `newdata`: matrix with non-negative integer predictors (only numeric matrix is accepted).
- `type`: if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
- `...`: not used.

Details

This is a specialized version of the Naive Bayes classifier, where the features represent the frequencies with which events have been generated by a multinomial distribution.

The Multinomial Naive Bayes is not available through the `naive_bayes` function. The NAs in the newdata are not included into the calculation of posterior probabilities; and if present an informative warning is given.

Value

`predict.multinomial_naive_bayes` returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

References

See Also

`multinomial_naive_bayes`, `tables`, `get_cond_dist`, `%class%`, `coef.multinomial_naive_bayes`

Examples

```r
### Simulate the data:
cols <- 10 ; rows <- 100
M <- matrix(sample(0:5, rows * cols, TRUE), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3,0.7)))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 1

### Train the Multinomial Naive Bayes
```
mnb <- multinomial_naive_bayes(x = M, y = y, laplace = laplace)

Classification
head(predict(mnb, newdata = M, type = "class"))
head(mnb %class% M)

Posterior probabilities
head(predict(mnb, newdata = M, type = "prob"))
head(mnb %prob% M)

predict.naive_bayes
Predict Method for naive_bayes Objects

Description
Classification based on Naive Bayes models.

Usage

```r
## S3 method for class 'naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"), threshold = 0.001, eps = 0, ...)
```

Arguments

- `object`: object of class inheriting from "naive_bayes".
- `newdata`: matrix or dataframe with categorical (character/factor/logical) or metric (numeric) predictors.
- `type`: if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
- `threshold`: value by which zero probabilities or probabilities within the epsilon-range corresponding to metric variables are replaced (zero probabilities corresponding to categorical variables can be handled with Laplace (additive) smoothing).
- `eps`: value that specifies an epsilon-range to replace zero or close to zero probabilities by threshold. It applies to metric variables.
- `...`: not used.

Details
Computes conditional posterior probabilities for each class label using the Bayes’ rule under the assumption of independence of predictors. If no new data is provided, the data from the object is used. Logical variables are treated as categorical (binary) variables. Predictors with missing values are not included into the computation of posterior probabilities.

Value
predict.naive_bayes returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.
predict.naive_bayes

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, plot.naive_bayes, tables.get_cond_dist, %class%

Examples

```r
### Simulate example data
n <- 100
set.seed(1)
data <- data.frame(class = sample(c("classA", "classB"), n, TRUE),
                   bern = sample(LETTERS[1:2], n, TRUE),
                   cat = sample(letters[1:3], n, TRUE),
                   logical = sample(c(TRUE, FALSE), n, TRUE),
                   norm = rnorm(n),
                   count = rpois(n, lambda = c(5, 15)))
train <- data[1:95, ]
test <- data[96:100, -1]

### Fit the model with default settings
nb <- naive_bayes(class ~ ., train)

# Classification
predict(nb, test, type = "class")
nb %class% test

# Posterior probabilities
predict(nb, test, type = "prob")
nb %prob% test

## Not run:
vars <- 10
rows <- 1000000
y <- sample(c("a", "b"), rows, TRUE)

# Only categorical variables
X1 <- as.data.frame(matrix(sample(letters[5:9], vars * rows, TRUE),
                           ncol = vars))
nb_cat <- naive_bayes(x = X1, y = y)
nb_cat
system.time(pred2 <- predict(nb_cat, X1))

## End(Not run)
```
predict.nonparametric_naive_bayes

Predict Method for nonparametric_naive_bayes Objects

Description
Classification based on the Non-Parametric Naive Bayes model.

Usage
S3 method for class 'nonparametric_naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"),
 threshold = 0.001, eps = 0, ...)

Arguments
object object of class inheriting from "nonparametric_naive_bayes".
newdata matrix with metric predictors (only numeric matrix accepted).
type if "class", new data points are classified according to the highest posterior prob-
 abilities. If "prob", the posterior probabilities for each class are returned.
threshold value by which zero probabilities or probabilities within the epsilon-range corre-
 sponding to metric variables are replaced (zero probabilities corresponding to
categorical variables can be handled with Laplace (additive) smoothing).
eps value that specifies an epsilon-range to replace zero or close to zero probabilities by threshold. It applies to metric variables.
... not used.

Details
This is a specialized version of the Naive Bayes classifier, in which all features take on real values
(numeric/integer) and class conditional probabilities are non-parametrically estimated with kernel
density estimator. By default Gaussian kernel is used and the smoothing bandwidth is selected
according to the Silverman’s 'rule of thumb’. For more details, please see the references and the
documentation of density and bw.nrd0.

The Non-Parametric Naive Bayes is available in both, naive_bayes() and nonparametric_naive_bayes().
The specialized implementation of the Naive Bayes does not provide a substantial speed-up over
the general naive_bayes() function but it should be more transparent and user friendly.

The nonparametric_naive_bayes function is equivalent to naive_bayes() when the numeric
matrix or a data.frame contains only numeric variables and usekernel = TRUE.

The missing values (NAs) are omitted during the parameter estimation. The NAs in the newdata in
predict.nonparametric_naive_bayes() are not included into the calculation of posterior prob-
abilities; and if present an informative warning is given.
predict.poisson_naive_bayes

Value

predict.nonparametric_naive_bayes returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

References

See Also

naive_bayes, nonparametric_naive_bayes, plot.nonparametric_naive_bayes, tables, get_cond_dist, naive_bayes, %class%

Examples

data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

Train the Non-Parametric Naive Bayes
nnb <- nonparametric_naive_bayes(x = M, y = y, bw = "SJ")

Classification
head(predict(nnb, newdata = M, type = "class"))
head(nnb %class% M)

Posterior probabilities
head(predict(nnb, newdata = M, type = "prob"))
head(nnb %prob% M)

predict.poisson_naive_bayes

Predict Method for poisson_naive_bayes Objects

Description

Classification based on the Poisson Naive Bayes model.

Usage

S3 method for class 'poisson_naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"),
 threshold = 0.001, eps = 0, ...)

Arguments

object: object of class inheriting from "poisson_naive_bayes".
newdata: matrix with non-negative integer predictors (only numeric matrix is accepted).
type: if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
threshold: value by which zero probabilities or probabilities within the epsilon-range corresponding to metric variables are replaced (zero probabilities corresponding to categorical variables can be handled with Laplace (additive) smoothing).
eps: value that specifies an epsilon-range to replace zero or close to zero probabilities by threshold.

Details

This is a specialized version of the Naive Bayes classifier, in which all features are non-negative integers and class conditional probabilities are modelled with the Poisson distribution.

Class posterior probabilities are calculated using the Bayes’ rule under the assumption of independence of predictors. If no newdata is provided, the data from the object is used.

The Poisson Naive Bayes is available in both, naive_bayes and poisson_naive_bayes. The implementation of the specialized Naive Bayes provides more efficient performance though. The speedup comes from the restricting the data input to a numeric matrix and performing the linear algebra as well vectorized operations on it.

The NAs in the newdata are not included into the calculation of posterior probabilities; and if present an informative warning is given.

The poisson_naive_bayes function is equivalent to the naive_bayes function with usepoisson=TRUE and a numeric matrix or a data.frame containing only non-negative integer valued features (each variable has class "integer").

Value

predict.poisson_naive_bayes returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

poisson_naive_bayes, plot.poisson_naive_bayes, tables, get_cond_dist, %class%, coef.poisson_naive_bayes
Examples

cols <- 10 ; rows <- 100
M <- matrix(rpois(rows * cols, lambda = 3), nrow = rows, ncol = cols)
is.integer(M) # [1] TRUE
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0

Train the Poisson Naive Bayes
pnb <- poisson_naive_bayes(x = M, y = y, laplace = laplace)

Classification
head(predict(pnb, newdata = M, type = "class"))
head(pnb %class% M)

Posterior probabilities
head(predict(pnb, newdata = M, type = "prob"))
head(pnb %prob% M)

tables

Browse Tables of Naive Bayes Classifier

Description

Auxiliary function for "naive_bayes" and "*_naive_bayes" objects for easy browsing tables.

Usage

tables(object, which = NULL)

Arguments

- **object**: object of class inheriting from: "naive_bayes" and "*_naive_bayes".
- **which**: tables to be showed (all by default). This can be any valid indexing vector or vector containing names of variables.

Details

Default print method for "naive_bayes" and "*_naive_bayes" objects shows at most five first tables. This auxiliary function tables returns by default all tables and allows easy subsetting via indexing variables.

Value

list with tables.

Author(s)

Michal Majka, <michalmajka@hotmail.com>
See Also

naive_bayes, bernoulli_naive_bayes, multinomial_naive_bayes, poisson_naive_bayes, gaussian_naive_bayes, tables, get_cond_dist

Examples

data(iris)
nb <- naive_bayes(Species ~ ., data = iris)
tables(nb, "Sepal.Length")
tables(nb, c("Sepal.Length", "Sepal.Width"))
tabs <- tables(nb, 1:2)
tabs
tabs[1]
Index

%class% (Infix operators), 9
%prob% (Infix operators), 9
%class%, 3, 7, 11, 16, 20, 24, 29, 31, 33, 34, 36, 38, 39
bernoulli_naive_bayes, 2, 5, 9, 21, 31, 41
bw.nrd0, 19, 37
coeff, 3, 5
coeff.multinomial_naive_bayes, 11, 34
coeff.poisson_naive_bayes, 29, 39
density, 14, 15, 19, 37
gaussian_naive_bayes, 5, 6, 9, 22, 33, 41
get_cond_dist, 3, 7, 8, 11, 16, 20–22, 24, 26, 27, 29, 31, 33, 34, 36, 38, 39, 41

Infix operators, 9
legend, 22, 23, 25, 27
matplot, 22–25, 27
mosaicplot, 21, 23, 24
multinomial_naive_bayes, 5, 9, 10, 34, 41
na.omit, 15
na.pass, 15
naive_bayes, 3, 7, 9, 11, 14, 21, 22, 24, 26, 27, 31, 33, 34, 36, 38, 41
naivebayes, 13
naivebayes-package (naivebayes), 13
nonparametric_naive_bayes, 18, 26, 38
par, 21–23, 25, 27
plot.bernoulli_naive_bayes, 3, 20, 31
plot.gaussian_naive_bayes, 7, 22, 33
plot.naive_bayes, 16, 23, 36
plot.nonparametric_naive_bayes, 20, 25, 38
plot.poisson_naive_bayes, 26, 29, 39
poisson_naive_bayes, 5, 9, 27, 28, 39, 41
predict.bernoulli_naive_bayes, 3, 10, 21, 30
predict.gaussian_naive_bayes, 7, 10, 22, 32
predict.multinomial_naive_bayes, 10, 11, 32
predict.naive_bayes, 10, 16, 24, 35
predict.nonparametric_naive_bayes, 10, 20, 26, 37
predict.poisson_naive_bayes, 10, 27, 29, 38
tables, 3, 7, 9, 11, 16, 20–22, 24, 26, 27, 29, 31, 33, 34, 36, 38, 39, 40, 41