Package ‘naivebayes’

June 3, 2019

Type Package
Title High Performance Implementation of the Naive Bayes Algorithm
Version 0.9.6
Author Michal Majka
Maintainer Michal Majka <michalmajka@hotmail.com>
Description In this implementation of the Naive Bayes classifier following class conditional distributions are available: Bernoulli, Categorical, Gaussian, Poisson and non-parametric representation of the class conditional density estimated via Kernel Density Estimation.
URL https://github.com/majkamichal/naivebayes,
 https://majkamichal.github.io/naivebayes/
BugReports https://github.com/majkamichal/naivebayes/issues
License GPL-2
Encoding UTF-8
NeedsCompilation no
VignetteBuilder knitr
Suggests knitr
Repository CRAN
Date/Publication 2019-06-03 21:40:03 UTC

R topics documented:

bernoulli_naive_bayes ... 2
coeff .. 4
gaussian_naive_bayes ... 5
get_cond_dist .. 7
Infix operators ... 8
multinomial_naive_bayes 9
naivebayes .. 11
naive_bayes .. 12
nonparametric_naive_bayes 16
beroulli_naive_bayes

Description

beroulli_naive_bayes is used to fit the Bernoulli Naive Bayes model in which all class conditional distributions are assumed to be Bernoulli and be independent.

Usage

beroulli_naive_bayes(x, y, prior = NULL, laplace = 0, ...)

Arguments

x matrix with numeric 0-1 predictors.
y class vector (character/factor/logical).
prior vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
laplace value used for Laplace smoothing (additive smoothing). Defaults to 0 (no Laplace smoothing).
... not used.

Details

This is a specialized version of the Naive Bayes classifier, in which all features take on numeric 0-1 values and class conditional probabilities are modelled with the Bernoulli distribution.

The Bernoulli Naive Bayes is available in both, naive_bayes and bernoulli_naive_bayes. The implementation of the specialized Naive Bayes provides more efficient performance though. The speedup comes from the restricting the data input to a numeric 0-1 matrix and performing the linear
algebra as well as vectorized operations on it. In other words, the efficiency comes at cost of the flexibility.

The bernoulli_naive_bayes function is equivalent to the naive_bayes function when the numeric 0-1 matrix is coerced to, for instance, a 0-1 character matrix.

The missing values (NAs) are omitted while constructing the probability tables. The NAs in the newdata in predict.gaussian_naive_bayes are not included into the calculation of posterior probabilities; and if present an informative warning is given.

Value

bernoulli_naive_bayes returns an object of class "bernoulli_naive_bayes" which is a list with following components:

data list with two components: x (matrix with predictors) and y (class variable).
levels character vector with values of the class variable.
laplace amount of Laplace smoothing (additive smoothing).
prob1 matrix with class conditional probabilities for the value 1. Based on this matrix full probability tables can be constructed. Please, see tables and coef.
prior numeric vector with prior probabilities.
call the call that produced this object.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, predict.bernoulli_naive_bayes, plot.bernoulli_naive_bayes, tables, get_cond_dist, %class%

Examples

Simulate the data:
cols <- 10L; rows <- 100L; probs <- c("0" = 0.4, "1" = 0.1)
M <- matrix(sample(0:1L, rows * colsL, TRUE, probs), nrow = rowsL, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3,0.7)))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0.5

Train the Bernoulli Naive Bayes
bnb <- bernoulli_naive_bayes(x = M, y = y, laplace = laplace)
bnb
head(predict(bnb, newdata = M, type = "prob"))

Equivalent calculation with general naive_bayes function.
(it is made sure that the columns are factors with the 0-1 levels)
df <- as.data.frame(lapply(as.data.frame(M), factor, levels = c(0,1)))
sapply(df, class)
nb <- naive_bayes(df, y, laplace = laplace)
head(predict(nb, type = "prob"))

Obtain probability tables
tables(bnb, which = "V1")
tables(nb, "V1")
coef(bnb)

Visualise class conditional Bernoulli distributions
plot(bnb, which = "V1", prob = "conditional")
plot(nb, "V1")

Check the equivalence of the class conditional distributions
all(get_cond_dist(bnb) == get_cond_dist(nb))

coef

Extract Model Coefficients

Description

c coef is a generic function which extracts model coefficients from specialized Naive Bayes objects.

Usage

```r
## S3 method for class 'bernoulli_naive_bayes'
coef(object, ...)

## S3 method for class 'multinomial_naive_bayes'
coef(object, ...)

## S3 method for class 'poisson_naive_bayes'
coef(object, ...)

## S3 method for class 'gaussian_naive_bayes'
coef(object, ...)
```

Arguments

- `object` object of class inheriting from "*_naive_bayes".
- `...` not used.

Value

Coefficients extracted from the specialised Naive Bayes objects in form of a data frame.

Author(s)

Michal Majka, <michalmajka@hotmail.com>
gaussian_naive_bayes

See Also

bernoulli_naive_bayes, multinomial_naive_bayes, poisson_naive_bayes, gaussian_naive_bayes

Examples

data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

Train the Gaussian Naive Bayes
gnb <- gaussian_naive_bayes(x = M, y = y)

Extract coefficients
coef(gnb)

coef(gnb)[c(TRUE, FALSE)] # only means

coef(gnb)[c(FALSE, TRUE)] # only standard deviations

gaussian_naive_bayes Gaussian Naive Bayes Classifier

Description

gaussian_naive_bayes is used to fit the Gaussian Naive Bayes model in which all class conditional distributions are assumed to be Gaussian and be independent.

Usage

gaussian_naive_bayes(x, y, prior = NULL, ...)

Arguments

x matrix with metric predictors (only numeric matrix accepted).
y class vector (character/factor/logical).
prior vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.

... not used.

Details

This is a specialized version of the Naive Bayes classifier, in which all features take on real values (numeric/integer) and class conditional probabilities are modelled with the Gaussian distribution.

The Gaussian Naive Bayes is available in both, naive_bayes and gaussian_naive_bayes. The implementation of the specialized Naive Bayes provides more efficient performance though. The speedup comes from the restricting the data input to a numeric matrix and performing the linear
algebra as well vectorized operations on it. In other words, the efficiency comes at cost of the flexibility.

The gaussian_naive_bayes function is equivalent to the naive_bayes function when the numeric matrix or a data.frame contains only numeric variables.

The missing values (NAs) are omitted during the parameter estimation. The NAs in the newdata in predict.gaussian_naive_bayes are not included into the calculation of posterior probabilities; and if present an informative warning is given.

Value

gaussian_naive_bayes returns an object of class "gaussian_naive_bayes" which is a list with following components:

- data: list with two components: x (matrix with predictors) and y (class variable).
- levels: character vector with values of the class variable.
- params: list with two matrices, first containing the class conditional means and the second containing the class conditional standard deviations.
- prior: numeric vector with prior probabilities.
- call: the call that produced this object.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, predict.gaussian_naive_bayes, plot.gaussian_naive_bayes, tables, get_cond_dist, %class%

Examples

data(iris)
y <- iris[,5]
M <- as.matrix(iris[,-5])

Train the Gaussian Naive Bayes
gnb <- gaussian_naive_bayes(x = M, y = y)
summary(gnb)
head(predict(gnb, newdata = M, type = "prob"))

Equivalent calculation with general naive_bayes function.
nb <- naive_bayes(M, y)
head(predict(nb, type = "prob"))

Obtain probability tables
tables(gnb, which = 1)

coef(gnb)[c(TRUE, FALSE)] # Only means
get_cond_dist

Visualise class conditional Gaussian distributions
plot(gnb, which = "Sepal.Width", prob = "conditional")

Check the equivalence of the class conditional distributions
all(get_cond_dist(gnb) == get_cond_dist(nb))

get_cond_dist Obtain names of class conditional distribution assigned to features

Description

Auxiliary function for "naive_bayes", "*_naive_bayes" and "naive_bayes_tables" objects for obtaining names of class conditional distributions assigned to the features.

Usage

get_cond_dist(object)

Arguments

object object of class inheriting from "naive_bayes" or "*_naive_bayes" or "naive_bayes_tables".

Value

vector with names of class conditional distributions assigned to the features.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, bernoulli_naive_bayes, multinomial_naive_bayes, poisson_naive_bayes, gaussian_naive_bayes, tables

Examples

data(iris)
nb <- naive_bayes(Species ~ ., data = iris)
get_cond_dist(nb) # <--> attr(nb$tables, "cond_dist")
get_cond_dist(tables(nb))
Infix operators

Infix operators Predict Method for Family of Naive Bayes Objects

Description

The infix operators %class% and %prob% are shorthands for performing classification and obtaining posterior probabilities, respectively.

Usage

\[
\begin{align*}
\text{lhs} \ %\text{class}\% \ \text{rhs} \\
\text{lhs} \ %\text{prob}\% \ \text{rhs}
\end{align*}
\]

Arguments

<table>
<thead>
<tr>
<th>lhs</th>
<th>object of class inheriting from "naive_bayes" and "*_naive_bayes" family.</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhs</td>
<td>dataframe or matrix for "naive_bayes" objects OR matrix for all "*_naive_bayes" objects.</td>
</tr>
</tbody>
</table>

Details

If \text{lhs} is of class inheriting from the family of the Naive Bayes objects and \text{rhs} is either dataframe or matrix then the infix operators %class% and %prob% are equivalent to:

\[
\begin{align*}
\text{lhs} \ %\text{class}\% \ \text{rhs} & \iff \text{predict(lhs, newdata = rhs, type = "class", threshold = 0.001, eps = 0)} \\
\text{lhs} \ %\text{prob}\% \ \text{rhs} & \iff \text{predict(lhs, newdata = rhs, type = "prob", threshold = 0.001, eps = 0)}
\end{align*}
\]

Compared to predict(), both operators do not allow changing values of fine tuning parameters threshold and eps.

Value

\[
\begin{align*}
\%\text{class}\% & \quad \text{returns factor with class labels corresponding to the maximal conditional posterior probabilities.} \\
\%\text{prob}\% & \quad \text{returns a matrix with class label specific conditional posterior probabilities.}
\end{align*}
\]

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

\begin{verbatim}
predict.naive_bayes, predict.bernoulli_naive_bayes, predict.multinomial_naive_bayes, predict.poisson_naive_bayes, predict.gaussian_naive_bayes, predict.nonparametric_naive_bayes
\end{verbatim}
Examples

```r
### Fit the model
nb <- naive_bayes(Species ~ ., iris)

newdata <- iris[1:5,-5] # Let's pretend

### Classification
nb %>% class %>% predict(newdata, type = "class")

### Posterior probabilities
nb %>% prob %>% predict(newdata, type = "prob")
```

multinomial_naive_bayes
Multinomial Naive Bayes Classifier

Description

`multinomial_naive_bayes` is used to fit the Multinomial Naive Bayes model.

Usage

```r
multinomial_naive_bayes(x, y, prior = NULL, laplace = 0.5, ...)
```

Arguments

- `x`: numeric matrix with integer predictors.
- `y`: class vector (character/factor/logical).
- `prior`: vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
- `laplace`: value used for Laplace smoothing (additive smoothing). Defaults to 0.5.
- `...`: not used.

Details

This is a specialized version of the Naive Bayes classifier, where the features represent the frequencies with which events have been generated by a multinomial distribution.

The Multinomial Naive Bayes is not available through the `naive_bayes` function.
multinomial_naive_bayes

Value

multinomial_naive_bayes returns an object of class "multinomial_naive_bayes" which is a list with the following components:

- **data**: list with two components: `x` (matrix with predictors) and `y` (class variable).
- **levels**: character vector with values of the class variable.
- **laplace**: amount of Laplace smoothing (additive smoothing).
- **params**: matrix with class conditional parameter estimates.
- **prior**: numeric vector with prior probabilities.
- **call**: the call that produced this object.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

References

See Also

- `predict.multinomial_naive_bayes`
- `tables`
- `get_cond_dist`
- `EclassE`
- `coef.multinomial_naive_bayes`

Examples

```r
### Simulate the data:
cols <- 10; rows <- 100
M <- matrix(sample(0:5, rows * cols, TRUE), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3, 0.7)))
colnames(M) <- paste0("v", seq_len(ncol(M)))
laplace <- 1

### Train the Multinomial Naive Bayes
mnb <- multinomial_naive_bayes(x = M, y = y, laplace = laplace)
summary(mnb)

# Classification
head(predict(mnb, newdata = M, type = "class"))
head(mnb %class% M)

# Posterior probabilities
head(predict(mnb, newdata = M, type = "prob"))
head(mnb %prob% M)

# Parameter estimates
coef(mnb)
```
Description

The naivebayes package provides an efficient implementation of the popular Naive Bayes classifier in R. It was developed and is now maintained based on three principles: it should be efficient, user friendly and written in Base R. The last implies no dependencies, however, it neither denies nor interferes with being efficient as many functions from the Base R distribution use highly efficient routines programmed in lower level languages, such as C or FORTRAN. In fact, the naivebayes package utilizes only such functions for resource-intensive calculations.

Details

The general function `naive_bayes()` detects the class of each feature in the dataset and, depending on the user choices, assumes possibly different distribution for each feature. It currently supports following class conditional distributions:

- categorical distribution for discrete features
- Poisson distribution for non-negative integers
- Gaussian distribution for continuous features
- non-parametrically estimated densities via Kernel Density Estimation for continuous features

In addition to that specialized functions are available which implement:

- Bernoulli Naive Bayes via `bernoulli_naive_bayes()`
- Multinomial Naive Bayes via `multinomial_naive_bayes()`
- Poisson Naive Bayes via `poisson_naive_bayes()`
- Gaussian Naive Bayes via `gaussian_naive_bayes()`
- Non-Parametric Naive Bayes via `nonparametric_naive_bayes()`

Extended documentation can be found on the website:

- https://majkamichal.github.io/naivebayes/

Bug reports:

- https://github.com/majkamichal/naivebayes/issues

Suggestions:

- michalmajka@hotmail.com
naive_bayes

Naive Bayes Classifier

Description

naive_bayes is used to fit Naive Bayes model in which predictors are assumed to be independent within each class label.

Usage

```r
## Default S3 method:
naive_bayes(x, y, prior = NULL, laplace = 0,
             usekernel = FALSE, usepoisson = FALSE, ...)

## S3 method for class 'formula'
naive_bayes(formula, data, prior = NULL, laplace = 0,
             usekernel = FALSE, usepoisson = FALSE,
             subset, na.action = stats::na.pass, ...)
```

Arguments

- **x**: matrix or dataframe with categorical (character/factor/logical) or metric (numeric) predictors.
- **y**: class vector (character/factor/logical).
- **formula**: an object of class "formula" (or one that can be coerced to "formula") of the form: class ~ predictors (class has to be a factor/character/logical).
- **data**: matrix or dataframe with categorical (character/factor/logical) or metric (numeric) predictors.
- **prior**: vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
- **laplace**: value used for Laplace smoothing (additive smoothing). Defaults to 0 (no Laplace smoothing).
- **usekernel**: logical; if TRUE, density is used to estimate the class conditional densities of metric predictors. This applies to vectors with class "numeric". For further details on interaction between usekernel and usepoisson parameters please see Note below.
- **usepoisson**: logical; if TRUE, Poisson distribution is used to estimate the class conditional PMFs of integer predictors (vectors with class "integer").
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process.
- **na.action**: a function which indicates what should happen when the data contain NAs. By default (na.pass), missing values are not removed from the data and are then omitted while constructing tables. Alternatively, na.omit can be used to exclude rows with at least one missing value before constructing tables.
other parameters to `density` when `usekernel = TRUE` (na.rm defaults to TRUE) (for instance adjust, kernel or bw).

Details

Numeric (metric) predictors are handled by assuming that they follow Gaussian distribution, given the class label. Alternatively, kernel density estimation can be used (`usekernel = TRUE`) to estimate their class-conditional distributions. Also, non-negative integer predictors (variables representing counts) can be modelled with Poisson distribution (`usepoisson = TRUE`); for further details please see Note below. Missing values are not included into constructing tables. Logical variables are treated as categorical (binary) variables.

Value

`naive_bayes` returns an object of class "naive_bayes" which is a list with following components:

- **data**: list with two components: `x` (dataframe with predictors) and `y` (class variable).
- **levels**: character vector with values of the class variable.
- **laplace**: amount of Laplace smoothing (additive smoothing).
- **tables**: list of tables. For each categorical predictor a table with class-conditional probabilities, for each integer predictor a table with Poisson mean (if `usepoisson = TRUE`) and for each metric predictor a table with a mean and standard deviation or `density` objects for each class. The object `tables` contains also an additional attribute "cond_dist" - a character vector with the names of conditional distributions assigned to each feature.
- **prior**: numeric vector with prior probabilities.
- **usekernel**: logical; TRUE, if the kernel density estimation was used for estimating class conditional densities of numeric variables.
- **usepoisson**: logical; TRUE, if the Poisson distribution was used for estimating class conditional PMFs of non-negative integer variables.
- **call**: the call that produced this object.

Note

The class "numeric" contains "double" (double precision floating point numbers) and "integer". Depending on the parameters `usekernel` and `usepoisson` different class conditional distributions are applied to columns in the dataset with the class "numeric":

- If `usekernel=FALSE` and `poisson=FALSE` then Gaussian distribution is applied to each "numeric" variable ("numeric"&"integer" or "numeric"&"double")
- If `usekernel=TRUE` and `poisson=FALSE` then kernel density estimation (KDE) is applied to each "numeric" variable ("numeric"&"integer" or "numeric"&"double")
- If `usekernel=FALSE` and `poisson=TRUE` then Gaussian distribution is applied to each "double" variable and Poisson to each "integer" variable. (Gaussian: "numeric" & "double"; Poisson: "numeric" & "integer")
• If usekernel=TRUE and poisson=TRUE then kernel density estimation (KDE) is applied to each "double" vector and Poisson to each "integer" vector. (KDE: "numeric" & "double"; Poisson: "numeric" & "integer")

By default usekernel=FALSE and poisson=FALSE, thus Gaussian is applied to each numeric variable.

On the other hand, "character", "factor" and "logical" variables are assigned to the Categorical distribution with Bernoulli being its special case.

Prior the model fitting the classes of columns in the data.frame "data" can be easily checked via:

• sapply(data, class)
• sapply(data, is.numeric)
• sapply(data, is.double)
• sapply(data, is.integer)

Author(s)
Michal Majka, <michalmajka@hotmail.com>

See Also
predict.naive_bayes, plot.naive_bayes, tables, get_cond_dist, %class%

Examples

```r
### Simulate example data
n <- 100
set.seed(1)
data <- data.frame(class = sample(c("classA", "classB"), n, TRUE),
                    bern = sample(LETTERS[1:2], n, TRUE),
                    cat = sample(letters[1:3], n, TRUE),
                    logical = sample(c(TRUE, FALSE), n, TRUE),
                    norm = rnorm(n),
                    count = rpois(n, lambda = c(5,15)))
train <- data[1:95, ]
test <- data[96:100, -1]

### 1) General usage via formula interface
nb <- naive_bayes(class ~ ., train)
summary(nb)

# Classification
predict(nb, test, type = "class")
nb %class% test

# Posterior probabilities
predict(nb, test, type = "prob")
nb %prob% test
```
naive_bayes

Helper functions
tables(nb, 1)
get_cond_dist(nb)

Note: all "numeric" (integer, double) variables are modelled
with Gaussian distribution by default.

2) General usage via matrix/data.frame and class vector
X <- train[-1]
class <- train$class
nb2 <- naive_bayes(x = X, y = class)
nb2 %prob% test

3) Model continuous variables non-parametrically
via kernel density estimation (KDE)
nb_kde <- naive_bayes(class ~ ., train, usekernel = TRUE)
summary(nb_kde)
get_cond_dist(nb_kde)
nb_kde %prob% test

Visualize class conditional densities
plot(nb_kde, "norm", arg.num = list(legend.cex = 0.9), prob = "conditional")
plot(nb_kde, "count", arg.num = list(legend.cex = 0.9), prob = "conditional")

?density and ?bw.nrd for further documentation

3.1) Change Gaussian kernel to biweight kernel
nb_kde_biweight <- naive_bayes(class ~ ., train, usekernel = TRUE,
kernel = "biweight")
nb_kde_biweight %prob% test
plot(nb_kde_biweight, c("norm", "count"),
arg.num = list(legend.cex = 0.9), prob = "conditional")

3.2) Change "nrd0" (Silverman's rule of thumb) bandwidth selector
nb_kde_SJ <- naive_bayes(class ~ ., train, usekernel = TRUE,
bw = "SJ")
nb_kde_SJ %prob% test
plot(nb_kde_SJ, c("norm", "count"),
arg.num = list(legend.cex = 0.9), prob = "conditional")

3.3) Adjust bandwidth
nb_kde_adjust <- naive_bayes(class ~ ., train, usekernel = TRUE,
adjust = 1.5)
nb_kde_adjust %prob% test
plot(nb_kde_adjust, c("norm", "count"),
arg.num = list(legend.cex = 0.9), prob = "conditional")
4) Model non-negative integers with Poisson distribution

```r
nb_pois <- naive_bayes(class = ., train, usekernel = TRUE, usepoisson = TRUE)
summary(nb_pois)
get_cond_dist(nb_pois)
```

- # Posterior probabilities
  ```r
  nb_pois %prob% test
  ```

- # Class conditional distributions
  ```r
  plot(nb_pois, "count", prob = "conditional")
  ```

- # Marginal distributions
  ```r
  plot(nb_pois, "count", prob = "marginal")
  ```

Not run:

```r
vars <- 10
rows <- 1000000
y <- sample(c("a", "b"), rows, TRUE)

# Only categorical variables
X1 <- as.data.frame(matrix(sample(letters[5:9], vars * rows, TRUE),
                           ncol = vars))
nb_cat <- naive_bayes(x = X1, y = y)
nb_cat
```

```
## End(Not run)
```

nonparametric_naive_bayes

Non-Parametric Naive Bayes Classifier

Description

`nonparametric_naive_bayes` is used to fit the Non-Parametric Naive Bayes model in which all class conditional distributions are non-parametrically estimated using kernel density estimator and are assumed to be independent.

Usage

```r
nonparametric_naive_bayes(x, y, prior = NULL, ...)
```

Arguments

- `x` matrix with metric predictors (only numeric matrix accepted).
- `y` class vector (character/factor/logical).
prior vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.

... other parameters to density (for instance adjust, kernel or bw).

Details

This is a specialized version of the Naive Bayes classifier, in which all features take on real values (numeric/integer) and class conditional probabilities are non-parametrically estimated with kernel density estimator. By default Gaussian kernel is used and the smoothing bandwidth is selected according to the Silverman’s ‘rule of thumb’. For more details, please see the references and the documentation of density and bw.nrd0.

The Non-Parametric Naive Bayes is available in both, naive_bayes() and nonparametric_naive_bayes(). This specialized implementation of the Naive Bayes does not provide a substantial speed-up over the general naive_bayes() function but it should be more transparent and user friendly.

The nonparametric_naive_bayes function is equivalent to naive_bayes() when the numeric matrix or a data.frame contains only numeric variables and usekernel = TRUE.

The missing values (NAs) are omitted during the parameter estimation. The NAs in the newdata in predict.nonparametric_naive_bayes() are not included into the calculation of posterior probabilities; and if present an informative warning is given.

Value

nonparametric_naive_bayes returns an object of class "nonparametric_naive_bayes" which is a list with following components:

data list with two components: x (matrix with predictors) and y (class variable).

levels character vector with values of the class variable.

dens nested list containing density objects for each feature and class.

prior numeric vector with prior probabilities.

call the call that produced this object.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

References

See Also

predict.nonparametric_naive_bayes, plot.nonparametric_naive_bayes, tables, get_cond_dist, %class%
Examples

data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

Train the Non-Parametric Naive Bayes
nnb <- nonparametric_naive_bayes(x = M, y = y)
head(predict(nnb, newdata = M, type = "prob"))

Equivalent calculation with general naive_bayes function:
nb <- naive_bayes(M, y, usekernel = TRUE)
head(predict(nb, type = "prob"))

Change kernel
nnb_kernel <- nonparametric_naive_bayes(x = M, y = y, kernel = "biweight")
plot(nnb_kernel, 1, prob = "conditional")

Adjust bandwidth
nnb_adjust <- nonparametric_naive_bayes(M, y, adjust = 1.5)
plot(nnb_adjust, 1, prob = "conditional")

Change bandwidth selector
nnb_bw <- nonparametric_naive_bayes(M, y, bw = "SJ")
plot(nnb_bw, 1, prob = "conditional")

Obtain tables with conditional densities
tables(nnb, which = 1)

plot.bernoulli_naive_bayes

plot.bernoulli_naive_bayes

Plot Method for bernoulli_naive_bayes Objects

Description

Plot method for objects of class "bernoulli_naive_bayes" designed for a quick look at the class marginal distributions or class conditional distributions of 0-1 valued predictors.

Usage

```r
# S3 method for class 'bernoulli_naive_bayes'
plot(x, which = NULL, ask = FALSE, arg.cat = list(),
     prob = c("marginal", "conditional"), ...)
```

Arguments

- `x`: object of class inheriting from "bernoulli_naive_bayes".
- `which`: variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables.
plot.bernoulli_naive_bayes

ask logical; if TRUE, the user is asked before each plot, see par(ask=).
arg.cat other parameters to be passed as a named list to mosaicplot.
prob character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal".

Details

Class conditional or class conditional distributions are visualised by mosaicplot.

The parameter prob controls the kind of probabilities to be visualized for each individual predictor X_i. It can take on two values:

- "marginal": $P(X_i|\text{class}) \times P(\text{class})$

- "conditional": $P(X_i|\text{class})$

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, bernoulli_naive_bayes, predict.bernoulli_naive_bayes, tables, get_cond_dist

Examples

Simulate data
cols <- 10; rows <- 100; probs <- c("0" = 0.4, "1" = 0.1)
M <- matrix(sample(c(0:1), rows * cols, TRUE, probs), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3,0.7)))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0.5

Train the Bernoulli Naive Bayes model
bnb <- bernoulli_naive_bayes(x = M, y = y, laplace = laplace)

Visualize class marginal probabilities corresponding to the first feature
plot(bnb, which = 1)

Visualize class conditional probabilities corresponding to the first feature
plot(bnb, which = 1, prob = "conditional")
plot.gaussian_naive_bayes

Plot Method for gaussian_naive_bayes Objects

Description

Plot method for objects of class "gaussian_naive_bayes" designed for a quick look at the class marginal or conditional Gaussian distributions of metric predictors.

Usage

```r
## S3 method for class 'gaussian_naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
     legend.box = FALSE, arg.num = list(),
     prob = c("marginal", "conditional"), ...)
```

Arguments

- **x**: object of class inheriting from "gaussian_naive_bayes".
- **which**: variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables.
- **ask**: logical; if TRUE, the user is asked before each plot, see `par(ask=.)`.
- **legend**: logical; if TRUE a `legend` will be be plotted.
- **legend.box**: logical; if TRUE a box will be drawn around the legend.
- **arg.num**: other parameters to be passed as a named list to `matplot`.
- **prob**: character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal".
- **...**: not used.

Details

Class marginal and class conditional Gaussian distributions are visualised by `matplot`.

The parameter `prob` controls the kind of probabilities to be visualized for each individual predictor X_i. It can take on two values:

- "marginal": $P(X_i|\text{class}) \times P(\text{class})$
- "conditional": $P(X_i|\text{class})$

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

`naive_bayes`, `gaussian_naive_bayes`, `predict.gaussian_naive_bayes`, `tables`, `get_cond_dist`
plot.naive_bayes

Examples

```r
data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

# # Train the Gaussian Naive Bayes with custom prior
gnb <- gaussian_naive_bayes(x = M, y = y, prior = c(0.1,0.3,0.6))

# Visualize class marginal Gaussian distributions corresponding
# to the first feature
plot(gnb, which = 1)

# Visualize class conditional Gaussian distributions corresponding
# to the first feature
plot(gnb, which = 1, prob = "conditional")
```

plot.naive_bayes
Plot Method for naive_bayes Objects

Description

Plot method for objects of class "naive_bayes" designed for a quick look at the class marginal distributions or class conditional distributions of predictor variables.

Usage

```r
## S3 method for class 'naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
     legend.box = FALSE, arg.num = list(), arg.cat = list(),
     prob = c("marginal", "conditional"), ...)
```

Arguments

- `x`: object of class inheriting from "naive_bayes".
- `which`: variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables.
- `ask`: logical; if TRUE, the user is asked before each plot, see `par(ask=.)`.
- `legend`: logical; if TRUE a legend will be be plotted.
- `legend.box`: logical; if TRUE a box will be drawn around the legend.
- `arg.num`: other parameters to be passed as a named list to `matplot`.
- `arg.cat`: other parameters to be passed as a named list to `mosaicplot`.
- `prob`: character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal".
- `...`: not used.
Details
Probabilities are visualised by `matplot` (for numeric (metric) predictors) and `mosaicplot` (for categorical predictors). In case of non-parametric estimation of densities, the bandwidths are reported for each class. Nothing is returned. For numeric (metric) predictors position of the legend can be adjusted changed via `arg.num(..., legend.position = "topright")`. `legend.position` can be one of "topright", "topleft", "bottomright", "bottomleft". In order to adjust the legend size following argument can be used: `arg.num(..., legend.cex = 0.9).
The parameter `prob` controls the kind of probabilities to be visualized for each individual predictor X_i. It can take on two values:

- "marginal": $P(X_i|\text{class}) \times P(\text{class})$
- "conditional": $P(X_i|\text{class})$

Author(s)
Michal Majka, <michalmajka@hotmail.com>

See Also
`naive_bayes`, `predict.naive_bayes`, `%class%`, `tables`, `get_cond_dist`

Examples
```r
data(iris)
iris2 <- cbind(iris, New = sample(letters[1:3], 150, TRUE))

# Fit the model with custom prior probabilities
nb <- naive_bayes(Species ~ ., data = iris2, prior = c(0.1, 0.3, 0.6))

# Visualize marginal distributions of two predictors
plot(nb, which = c("Sepal.Width", "Sepal.Length"), ask = TRUE)

# Visualize class conditional distributions corresponding to the first predictor
# with customized settings
plot(nb, which = 1, ask = FALSE, prob = "conditional",
     arg.num = list(col = 1:3, lty = 1,
     main = "Naive Bayes Plot", legend.position = "topright",
     legend.cex = 0.55))

# Visualize class marginal distributions corresponding to the first predictor
# with customized settings
plot(nb, which = 1, ask = FALSE, prob = "marginal",
     arg.num = list(col = 1:3, lty = 1,
     main = "Naive Bayes Plot", legend.position = "topright",
     legend.cex = 0.55))

# Visualize class marginal distribution corresponding to the predictor "new"
# with custom colours
plot(nb, which = "New", arg.cat = list(color = gray.colors(3)))
```
Description

Plot method for objects of class "nonparametric_naive_bayes" designed for a quick look at the estimated class marginal or class conditional densities of metric predictors.

Usage

```r
def S3 method for class 'nonparametric_naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
     legend.box = FALSE, arg.num = list(),
     prob = c("marginal", "conditional"), ...)
```

Arguments

- `x`: object of class inheriting from "nonparametric_naive_bayes".
- `which`: variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables.
- `ask`: logical; if TRUE, the user is asked before each plot, see `par(ask=.)`.
- `legend`: logical; if TRUE a `legend` will be be plotted.
- `legend.box`: logical; if TRUE a box will be drawn around the legend.
- `arg.num`: other parameters to be passed as a named list to `matplot`.
- `prob`: character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, `prob="marginal"`.
- `...`: not used.

Details

Estimated class marginal or class conditional densities are visualised by `matplot`.

The parameter `prob` controls the kind of probabilities to be visualized for each individual predictor X_i. It can take on two values:

- "marginal": $P(X_i|\text{class}) \ast P(\text{class})$
- "conditional": $P(X_i|\text{class})$

Author(s)

Michal Majka, <michalmajka@hotmail.com>
See Also

naive_bayes, nonparametric_naive_bayes predict.nonparametric_naive_bayes, tables, get_cond_dist

Examples

data(iris)
y <- iris[,5]
M <- as.matrix(iris[,1:5])

Train the Non-Parametric Naive Bayes with custom prior
prior <- c(0.1, 0.3, 0.6)
nmb <- nonparametric_naive_bayes(x = M, y = y, prior = prior)
nmb2 <- nonparametric_naive_bayes(x = M, y = y, prior = prior, adjust = 1.5)
nmb3 <- nonparametric_naive_bayes(x = M, y = y, prior = prior, bw = "ucv")

Visualize estimated class conditional densities corresponding
to the first feature
plot(nmb, which = 1, prob = "conditional")
plot(nmb2, which = 1, prob = "cond")
plot(nmb3, which = 1, prob = "c")

Visualize estimated class marginal densities corresponding
to the first feature
plot(nmb, which = 1)
plot(nmb2, which = 1)
plot(nmb3, which = 1)

plot.poisson_naive_bayes

Plot Method for poisson_naive_bayes Objects

Description

Plot method for objects of class "poisson_naive_bayes" designed for a quick look at the class marginal or class conditional Poisson distributions of non-negative integer predictors.

Usage

S3 method for class 'poisson_naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
 legend.box = FALSE, arg.num = list(),
 prob = c("marginal", "conditional"), ...)
plot.poisson_naive_bayes

ask logical; if TRUE, the user is asked before each plot, see `par(ask=.)`

legend logical; if TRUE a `legend` will be be plotted.

legend.box logical; if TRUE a box will be drawn around the legend.

arg.num other parameters to be passed as a named list to `matplot`.

prob character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal".

... not used.

Details

Class marginal or class conditional Poisson distributions are visualised by `matplot`.

The parameter `prob` controls the kind of probabilities to be visualized for each individual predictor X_i. It can take on two values:

- "marginal": $P(X_i|\text{class}) \times P(\text{class})$
- "conditional": $P(X_i|\text{class})$

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

`naive_bayes`, `poisson_naive_bayes`, `predict.poisson_naive_bayes`, `tables`, `get_cond_dist`

Examples

cols <- 10; rows <- 100
M <- matrix(rpois(rows * cols, lambda = 3), nrow = rows, ncol = cols)
is.integer(M) # [1] TRUE
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0

Train the Poisson Naive Bayes
pnb <- poisson_naive_bayes(x = M, y = y, laplace = laplace)

Visualize class conditional Poisson distributions corresponding
to the first feature
plot(pnb, which = 1, prob = "conditional")

Visualize class marginal Poisson distributions corresponding
to the first feature
plot(pnb, which = 1)
Description

`poisson_naive_bayes` is used to fit the Poisson Naive Bayes model in which all class conditional distributions are assumed to be Poisson and be independent.

Usage

```r
poisson_naive_bayes(x, y, prior = NULL, laplace = 0, ...)
```

Arguments

- `x`: matrix with non-negative integer predictors (only numeric matrix is accepted).
- `y`: class vector (character/factor/logical).
- `prior`: vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
- `laplace`: value used for Laplace smoothing (additive smoothing). Defaults to 0 (no Laplace smoothing).
- `...`: not used.

Details

This is a specialized version of the Naive Bayes classifier, in which all features take on non-negative integers (numeric/integer) and class conditional probabilities are modelled with the Poisson distribution.

The Poisson Naive Bayes is available in both, `naive_bayes` and `poisson_naive_bayes`. The implementation of the specialized Naive Bayes provides more efficient performance though. The speedup comes from the restricting the data input to a numeric matrix and performing the linear algebra as well vectorized operations on it.

The `poisson_naive_bayes` function is equivalent to the `naive_bayes` function when the numeric matrix or a data.frame contains only non-negative integer variables and each is of class "integer".

The missing values (NAs) are omitted during the parameter estimation. The NAs in the newdata in `predict.poisson_naive_bayes` are not included into the calculation of posterior probabilities; and if present an informative warning is given.

Value

`poisson_naive_bayes` returns an object of class "poisson_naive_bayes" which is a list with following components:

- `data`: list with two components: `x` (matrix with predictors) and `y` (class variable).
- `levels`: character vector with values of the class variable.
laplace amount of Laplace smoothing (additive smoothing).
params matrix containing the class conditional means.
prior numeric vector with prior probabilities.
call the call that produced this object.

Note
When the parameter laplace is set to positive constant c then this amount is added to all counts. This leads to the ("global") Bayesian estimation with an improper prior. In each case, the estimate is the expected value of the posterior which is given by the gamma distribution with parameters: cell count + c and number of observations in the cell.

If in one cell there is a zero count and laplace = 0 then one pseudo-count is automatically to each such cell. This corresponds to the "local" Bayesian estimation with uniform prior.

Author(s)
Michal Majka, <michalmajka@hotmail.com>

See Also

predict.poisson_naive_bayes, plot.poisson_naive_bayes, tables, get_cond_dist, %class%,
coef.poisson_naive_bayes

Examples

Simulate data
cols <- 10; rows <- 100
M <- matrix(rpois(rows * cols, lambda = 3), nrow = rows, ncol = cols)
is.integer(M) # [1] TRUE
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0

Train the Poisson Naive Bayes
pnb <- poisson_naive_bayes(x = M, y = y, laplace = laplace)
summary(pnb)
head(predict(pnb, newdata = M, type = "prob"))

Equivalent calculation with general naive_bayes function.
nb <- naive_bayes(M, y, usepoisson = TRUE, laplace = laplace)
head(predict(nb, type = "prob"))

Obtain probability tables
tables(pnb, which = 1)
tables(nb, "V1")
coef(pnb)

Visualise class conditional Poisson distributions
plot(pnb, which = "V1", prob = "conditional")
predict.bernoulli_naive_bayes

Description
Classification based on the Bernoulli Naive Bayes model.

Usage
```r
## S3 method for class 'bernoulli_naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"), ...)
```

Arguments
- `object`: object of class inheriting from "bernoulli_naive_bayes".
- `newdata`: matrix with numeric 0-1 predictors.
- `type`: if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
- `...`: not used.

Details
This is a specialized version of the Naive Bayes classifier, in which all features take on numeric 0-1 values and class conditional probabilities are modelled with the Bernoulli distribution.

Class posterior probabilities are calculated using the Bayes’ rule under the assumption of independence of predictors. If no newdata is provided, the data from the object is used.

The Bernoulli Naive Bayes is available in both, naive_bayes and bernoulli_naive_bayes. The implementation of the specialized Naive Bayes provides more efficient performance though. The speedup comes from the restricting the data input to a numeric 0-1 matrix and performing the linear algebra as well as vectorized operations on it. In other words, the efficiency comes at cost of the flexibility.

The NAs in the newdata are not included into the calculation of posterior probabilities; and if present an informative warning is given.

The bernoulli_naive_bayes function is equivalent to the naive_bayes function with the numeric 0-1 matrix being coerced, for instance, to the "0"-"1" character matrix.
predict.gaussian_naive_bayes

Value

predict.bernoulli_naive_bayes returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, bernoulli_naive_bayes, plot.bernoulli_naive_bayes, tables, get_cond_dist, %class%

Examples

cols <- 10; rows <- 100; probs <- c("0" = 0.4, "1" = 0.1)
M <- matrix(sample(0:1, rows * cols, TRUE, probs), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3, 0.7)))
colnames(M) <- paste0("v", seq_len(ncol(M)))
laplace <- 0.5

Train the Bernoulli Naive Bayes
bnb <- bernoulli_naive_bayes(x = M, y = y, laplace = laplace)

Classification
head(predict(bnb, newdata = M, type = "class"))
head(bnb %class% M)

Posterior probabilities
head(predict(bnb, newdata = M, type = "prob"))
head(bnb %prob% M)

predict.gaussian_naive_bayes

Predict Method for gaussian_naive_bayes Objects

Description

Classification based on the Gaussian Naive Bayes model.

Usage

```r
# S3 method for class 'gaussian_naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"),
        threshold = 0.001, eps = 0, ...)
```
predict.gaussian_naive_bayes

Arguments

- object: object of class inheriting from "gaussian_naive_bayes".
- newdata: matrix with metric predictors (only numeric matrix accepted).
- type: if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
- threshold: value by which zero probabilities or probabilities within the epsilon-range corresponding to metric variables are replaced (zero probabilities corresponding to categorical variables can be handled with Laplace (additive) smoothing).
- eps: value that specifies an epsilon-range to replace zero or close to zero probabilities by threshold. It applies to metric variables.
- ...: not used.

Details

This is a specialized version of the Naive Bayes classifier, in which all features take on real values and class conditional probabilities are modelled with the Gaussian distribution.

Class posterior probabilities are calculated using the Bayes’ rule under the assumption of independence of predictors. If no newdata is provided, the data from the object is used.

The Gaussian Naive Bayes is available in both, naive_bayes and gaussian_naive_bayes. The implementation of the specialized Naive Bayes provides more efficient performance though. The speedup comes from the restricting the data input to a numeric matrix and performing the linear algebra as well vectorized operations on it. In other words, the efficiency comes at cost of the flexibility.

The NAs in the newdata are not included into the calculation of posterior probabilities; and if present an informative warning is given.

The gaussian_naive_bayes function is equivalent to the naive_bayes function with the numeric matrix or a data.frame containing only numeric variables.

Value

predict.gaussian_naive_bayes returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

naive_bayes, gaussian_naive_bayes, plot.gaussian_naive_bayes, tables, get_cond_dist, %class%
Examples

```r
data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

### Train the Gaussian Naive Bayes
gnb <- gaussian_naive_bayes(x = M, y = y)

### Classification
head(predict(gnb, newdata = M, type = "class"))
head(gnb %class% M)

### Posterior probabilities
head(predict(gnb, newdata = M, type = "prob"))
head(gnb %prob% M)
```

predict.multinomial_naive_bayes

Predict Method for multinomial_naive_bayes Objects

Description

Classification based on the Multinomial Naive Bayes model.

Usage

```r
## S3 method for class 'multinomial_naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"), ...)
```

Arguments

- **object**: object of class inheriting from "multinomial_naive_bayes".
- **newdata**: matrix with non-negative integer predictors (only numeric matrix is accepted).
- **type**: if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
- **...**: not used.

Details

This is a specialized version of the Naive Bayes classifier, where the features represent the frequencies with which events have been generated by a multinomial distribution.

The Multinomial Naive Bayes is not available through the `naive_bayes` function.

The NAs in the newdata are not included into the calculation of posterior probabilities; and if present an informative warning is given.
Value

predict.multinomial_naive_bayes returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

References

See Also

multinomial_naive_bayes, tables, get_cond_dist, coef.multinomial_naive_bayes

Examples

Simulate the data:
```
cols <- 10; rows <- 100
M <- matrix(sample(0:5, rows * cols, TRUE), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3, 0.7)))
colnames(M) <- paste("v", seq_len(ncol(M)))
laplace <- 1
```

Train the Multinomial Naive Bayes
```
mnb <- multinomial_naive_bayes(x = M, y = y, laplace = laplace)
```

Classification
```
head(predict(mnb, newdata = M, type = "class"))
head(mnb %class% M)
```

Posterior probabilities
```
head(predict(mnb, newdata = M, type = "prob"))
head(mnb %prob% M)
```
Arguments

- **object**: object of class inheriting from "naive_bayes".
- **newdata**: matrix or dataframe with categorical (character/factor/logical) or metric (numeric) predictors.
- **type**: if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
- **threshold**: value by which zero probabilities or probabilities within the epsilon-range corresponding to metric variables are replaced (zero probabilities corresponding to categorical variables can be handled with Laplace (additive) smoothing).
- **eps**: value that specifies an epsilon-range to replace zero or close to zero probabilities by threshold. It applies to metric variables.
- **...**: not used.

Details

Computes conditional posterior probabilities for each class label using the Bayes’ rule under the assumption of independence of predictors. If no new data is provided, the data from the object is used. Logical variables are treated as categorical (binary) variables. Predictors with missing values are not included into the computation of posterior probabilities.

Value

`predict.naive_bayes` returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

`naive_bayes`, `plot.naive_bayes`, `tables`, `get_cond_dist`, `%class%`

Examples

```r
### Simulate example data
n <- 100
set.seed(1)
data <- data.frame(class = sample(c("classA", "classB"), n, TRUE),
                   bern = sample(LETTERS[1:2], n, TRUE),
                   cat = sample(letters[1:3], n, TRUE),
                   logical = sample(c(TRUE,FALSE), n, TRUE),
                   norm = rnorm(n),
                   count = rpois(n, lambda = c(5,15)))
train <- data[1:95, ]
test <- data[96:100, -1]

### Fit the model with default settings
nb <- naive_bayes(class ~ ., train)
```
Classification
predict(nb, test, type = "class")
nb %>% class %>% test

Posterior probabilities
predict(nb, test, type = "prob")
nb %>% prob %>% test

Not run:
vars <- 10
rows <- 1000000
y <- sample(c("a", "b"), rows, TRUE)

Only categorical variables
X1 <- as.data.frame(matrix(sample(letters[5:9], vars * rows, TRUE),
 ncol = vars))
nb_cat <- naive_bayes(x = X1, y = y)
nb_cat
system.time(pred2 <- predict(nb_cat, X1))

End(Not run)

Predict Method for nonparametric_naive_bayes Objects

Description

Classification based on the Non-Parametric Naive Bayes model.

Usage

```R
## S3 method for class 'nonparametric_naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"),
         threshold = 0.001, eps = 0, ...)
```

Arguments

- **object**: object of class inheriting from "nonparametric_naive_bayes".
- **newdata**: matrix with metric predictors (only numeric matrix accepted).
- **type**: if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
- **threshold**: value by which zero probabilities or probabilities within the epsilon-range corresponding to metric variables are replaced (zero probabilities corresponding to categorical variables can be handled with Laplace (additive) smoothing).
predict.nonparametric_naive_bayes

eps
t value that specifies an epsilon-range to replace zero or close to zero probabilities by threshold. It applies to metric variables.

Details
This is a specialized version of the Naive Bayes classifier, in which all features take on real values (numeric/integer) and class conditional probabilities are non-parametrically estimated with kernel density estimator. By default Gaussian kernel is used and the smoothing bandwidth is selected according to the Silverman’s ‘rule of thumb’. For more details, please see the references and the documentation of `density` and `bw.nrd0`.

The Non-Parametric Naive Bayes is available in both, `naive_bayes()` and `nonparametric_naive_bayes()`. This specialized implementation of the Naive Bayes does not provide a substantial speed-up over the general `naive_bayes()` function but it should be more transparent and user friendly.

The `nonparametric_naive_bayes` function is equivalent to `naive_bayes()` when the numeric matrix or a data.frame contains only numeric variables and `usekernel = TRUE`.

The missing values (NAs) are omitted during the parameter estimation. The NAs in the newdata in `predict.nonparametric_naive_bayes()` are not included into the calculation of posterior probabilities; and if present an informative warning is given.

Value
`predict.nonparametric_naive_bayes` returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)
Michal Majka, <michalmajka@hotmail.com>

References

See Also
`naive_bayes`, `nonparametric_naive_bayes`, `plot.nonparametric_naive_bayes`, `tables`, `get_cond_dist`, `naive_bayes.%class%`

Examples
```r
data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

### Train the Non-Parametric Naive Bayes
nnb <- nonparametric_naive_bayes(x = M, y = y, bw = "SJ")

### Classification
```
predict.poisson_naive_bayes

Predict Method for poisson_naive_bayes Objects

Description

Classification based on the Poisson Naive Bayes model.

Usage

S3 method for class 'poisson_naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"),
 threshold = 0.001, eps = 0, ...)

Arguments

object object of class inheriting from "poisson_naive_bayes".
newdata matrix with non-negative integer predictors (only numeric matrix is accepted).
type if "class", new data points are classified according to the highest posterior probabilities. If "prob", the posterior probabilities for each class are returned.
threshold value by which zero probabilities or probabilities within the epsilon-range corresponding to metric variables are replaced (zero probabilities corresponding to categorical variables can be handled with Laplace (additive) smoothing).
eps value that specifies an epsilon-range to replace zero or close to zero probabilities by threshold.
... not used.

Details

This is a specialized version of the Naive Bayes classifier, in which all features are non-negative integers and class conditional probabilities are modelled with the Poisson distribution.

Class posterior probabilities are calculated using the Bayes’ rule under the assumption of independence of predictors. If no newdata is provided, the data from the object is used.

The Poisson Naive Bayes is available in both, naive_bayes and poisson_naive_bayes. The implementation of the specialized Naive Bayes provides more efficient performance though. The speedup comes from the restricting the data input to a numeric matrix and performing the linear algebra as well vectorized operations on it.

The NAs in the newdata are not included into the calculation of posterior probabilities; and if present an informative warning is given.
The `poisson_naive_bayes` function is equivalent to the `naive_bayes` function with `usepoisson=TRUE` and a numeric matrix or a data.frame containing only non-negative integer valued features (each variable has class "integer").

Value

`predict.poisson_naive_bayes` returns either a factor with class labels corresponding to the maximal conditional posterior probabilities or a matrix with class label specific conditional posterior probabilities.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

`poisson_naive_bayes`, `plot.poisson_naive_bayes`, `tables`, `get_cond_dist`, `%class%`, `coef.poisson_naive_bayes`

Examples

```r
cols <- 10; rows <- 100
M <- matrix(rpois(rows * cols, lambda = 3), nrow = rows, ncol = cols)
# is.integer(M) # [1] TRUE
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE))
colnames(M) <- paste0("v", seq_len(ncol(M)))
laplace <- 0

### Train the Poisson Naive Bayes
pnb <- poisson_naive_bayes(x = M, y = y, laplace = laplace)

### Classification
head(predict(pnb, newdata = M, type = "class"))
head(pnb %class% M)

### Posterior probabilities
head(predict(pnb, newdata = M, type = "prob"))
head(pnb %prob% M)
```

tables

Browse Tables of Naive Bayes Classifier

Description

Auxiliary function for "naive_bayes" and ".naive_bayes" objects for easy browsing tables.

Usage

```
tables(object, which = NULL)
```
Arguments

object: object of class inheriting from: "naive_bayes", "bernoulli_naive_bayes".
which: tables to be showed (all by default). This can be any valid indexing vector or vector containing names of variables.

Details

Default print method for "naive_bayes" and "*_naive_bayes" objects shows at most five first tables. This auxiliary function `tables` returns by default all tables and allows easy subsetting via indexing variables.

Value

list with tables.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

`naive_bayes, bernoulli_naive_bayes, multinomial_naive_bayes, poisson_naive_bayes, gaussian_naive_bayes, tables, get_cond_dist`

Examples

data(iris)
b <- naive_bayes(Species ~ ., data = iris)
tables(b, "Sepal.Length")
tables(b, c("Sepal.Length", "Sepal.Width"))
tabs <- tables(b, 1:2)
tabs
tabs[1]
Index

%class%(Infix operators), 8
%prob%(Infix operators), 8
%class%, 3, 6, 10, 14, 17, 22, 27, 29, 30, 32, 33, 35, 37
bernoulli_naive_bayes, 2, 5, 7, 19, 29, 38
bw.nrd0, 17, 35
coef, 3, 4
coef.multinomial_naive_bayes, 10, 32
coef.poisson_naive_bayes, 27, 37
density, 12, 13, 17, 35
gaussian_naive_bayes, 5, 5, 7, 20, 30, 38
get_cond_dist, 3, 6, 7, 10, 14, 17, 19, 20, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38

Infix operators, 8

legend, 20, 21, 23, 25

matplot, 20–23, 25
mosaicplot, 19, 21, 22
multinomial_naive_bayes, 5, 7, 9, 32, 38

na.omit, 12
na.pass, 12
naive_bayes, 3, 6, 7, 9, 12, 19, 20, 22, 24, 25, 29–31, 33, 35, 38
naivebayes, 11
nativebayes-package (naivebayes), 11

nonparametric_naive_bayes, 16, 24, 35

par, 19–21, 23, 25
plot.bernoulli_naive_bayes, 3, 18, 29
plot.gaussian_naive_bayes, 6, 20, 30
plot.naive_bayes, 14, 21, 33
plot.nonparametric_naive_bayes, 17, 23, 35

plot.poisson_naive_bayes, 24, 27, 37

poisson_naive_bayes, 5, 7, 25, 26, 37, 38
predict.bernoulli_naive_bayes, 3, 8, 19, 28
predict.gaussian_naive_bayes, 6, 8, 20, 29
predict.multinomial_naive_bayes, 8, 10, 31
predict.naive_bayes, 8, 14, 22, 32
predict.nonparametric_naive_bayes, 8, 17, 24, 34
predict.poisson_naive_bayes, 8, 25, 27, 36

tables, 3, 6, 7, 10, 14, 17, 19, 20, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 39