Package ‘nakagami’

October 13, 2022

Type Package

Title Functions for the Nakagami Distribution

Version 1.1.0

Description Density, distribution function, quantile function and random
generation for the Nakagami distribution of Nakagami (1960)

License MIT + file LICENSE

Encoding UTF-8

Imports assertthat

Suggests testthat, knitr, covr, rmarkdown

RoxygenNote 7.1.1

URL https://github.com/JonasMoss/nakagami

BugReports https://github.com/JonasMoss/nakagami/issues

NeedsCompilation no

Author Jonas Moss [aut, cre] (<https://orcid.org/0000-0002-6876-6964>)

Maintainer Jonas Moss <jonas.gjertsen@gmail.com>

Repository CRAN

Date/Publication 2021-09-14 08:10:02 UTC

R topics documented:

Nakagami .. 2
suppress_olw .. 3

Index 4
The Nakagami Density

Description

Density, distribution function, quantile function and random generation for the Nakagami distribution with parameters shape and scale.

Usage

dnaka(x, shape, scale, log = FALSE)
pnaka(q, shape, scale, lower.tail = TRUE, log.p = FALSE)
qnaka(p, shape, scale, lower.tail = TRUE, log.p = FALSE)
rnaka(n, shape, scale)

Arguments

x, q
vector of quantiles.
shape
vector of positive shape parameters.
scale
vector of positive scale parameters.
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x].
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required.

Details

The Nakagami distribution (Nakagami, 1960) with shape m and scale Ω has density

$$2m^m/\Gamma(m)\Omega^m x^{(2m-1)}e^{-(m/\Omega x^2)}$$

for $x \geq 0$, $m > 0$ and $\Omega > 0$.

If Y is Gamma distributed with $shape = m$ and $rate = m/\Omega$ then $X = \sqrt{Y}$ is Nakagami distributed with $shape = m$ and $scale = \Omega$.

Sometimes, specifically in radio channels modeling, the parameter m is constrained to $m \geq 1/2$, but the density is defined for any $m > 0$ (Kolar et al., 2004).
Value

dnaka gives the density, pnaka gives the distribution function, qnaka gives the quantile function and rnaka generates random deviates.

The length of the result is determined by n for rnaka, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result.

References

See Also

The Gamma distribution is closed related to the Nakagami distribution.

suppress_olw

Suppress object length incompatibility warnings

Description

Suppress object length incompatibility warnings

Usage

`suppress_olw(expr)`

Arguments

`expr` expression to be evaluated.
Index

dnaka (Nakagami), 2
Gamma, 2, 3
Nakagami, 2
pnaka (Nakagami), 2
qnaka (Nakagami), 2
rnaka (Nakagami), 2
suppress_olw, 3