Package ‘naniar’

May 1, 2020

Type Package
Title Data Structures, Summaries, and Visualisations for Missing Data
Version 0.5.1

Description Missing values are ubiquitous in data and need to be explored and handled in the initial stages of analysis. ‘naniar’ provides data structures and functions that facilitate the plotting of missing values and examination of imputations. This allows missing data dependencies to be explored with minimal deviation from the common work patterns of ‘ggplot2’ and tidy data. The work is fully discussed at Tierney & Cook (2018) <arXiv:1809.02264>.

License MIT + file LICENSE

LazyData TRUE

ByteCompile TRUE

Suggests knitr, rmarkdown, testthat (>= 2.1.0), rpart, rpart.plot, covr, gridExtra, wakefield, vdiffr, here, simputation, imputeTS, gdtools, Hmisc, spelling

VignetteBuilder knitr

Depends R (>= 3.1.2)

Imports dplyr, ggplot2, purrr, tidyrr, tibble (>= 2.0.0), magrittr, stats, visdat, forcats, viridis, glue, UpSetR

Collate 'add-cols.R' 'add-n-prop-miss.R' 'cast-shadows.R'
 'data-common-na-numbers.R' 'data-common-na-strings.R'
 'data-oceanbuoys.R' 'data-pedestrian.R' 'data-riskfactors.R'
 'legend-draw.R' 'geom-miss-point.R' 'geom2plotly.R'
 'gg-miss-case-cumsum.R' 'gg-miss-case.R' 'gg-miss-fct.R'
 'gg-miss-span.R' 'gg-miss-upset.R' 'gg-miss-var-cumsum.R'
 'gg-miss-var.R' 'gg-miss-which.R' 'helpers.R' 'impute-median.R'
 'impute_below.R' 'impute_mean.R' 'label-miss.R'
 'miss-complete-x-pct-prop.R' 'miss-prop-pct-summary.R'
 'miss-scan-count.R' 'miss-x-cumsum.R' 'miss-x-run.R'
 'miss-x-span.R' 'miss-x-summary.R' 'miss-x-table.R'
 'n-prop-miss-complete-rows.R' 'n-prop-miss-complete.R'
 'n-var-miss.R' 'nabular.R' 'naniar-ggproto.R'
 'naniar-package.R' 'prop-pct-var-case-miss-complete.R'
R topics documented:

URL: https://github.com/njtierney/naniar

BugReports https://github.com/njtierney/naniar/issues

Encoding UTF-8

RoxygenNote 7.1.0

Language en-US

NeedsCompilation no

Author Nicholas Tierney [aut, cre] (<https://orcid.org/0000-0003-1460-8722>),
Di Cook [aut] (<https://orcid.org/0000-0002-3813-7155>),
Miles McBain [aut] (<https://orcid.org/0000-0003-2865-2548>),
Colin Fay [aut] (<https://orcid.org/0000-0001-7343-1846>),
Mitchell O'Hara-Wild [ctb],
Jim Hester [ctb],
Luke Smith [ctb]

Maintainer Nicholas Tierney <nicholas.tierney@gmail.com>

Repository CRAN

Date/Publication 2020-04-30 22:00:11 UTC

R topics documented:

- `add_any_miss` .. 5
- `add_label_missings` ... 6
- `add_label_shadow` .. 7
- `add_miss_cluster` ... 8
- `add_n_miss` ... 8
- `add_prop_miss` .. 9
- `add_shadow` .. 10
- `add_shadow_shift` .. 11
- `add_span_counter` .. 12
- `all-is-miss-complete` ... 13
- `any-na` ... 13
- `any_row_miss` .. 14
- `as_shadow` ... 15
- `as_shadow.data.frame` ... 15
- `as_shadow_upset` ... 16
- `bind_shadow` .. 16
- `cast_shadow` .. 17
- `cast_shadow_shift` ... 18
- `cast_shadow_shift_label` ... 19
- `common_na_numbers` ... 20
- `common_na_strings` .. 21
gather_shadow . 22
GeomMissPoint . 22
geom_miss_case . 23
gg_miss_case . 25
gg_miss_case_cumsum . 26
gg_miss_fct . 26
gg_miss_span . 27
gg_miss_upset . 28
gg_miss_var . 29
gg_miss_var_cumsum . 30
gg_miss_which . 30
impute_below . 32
impute_below_all . 32
impute_below_at . 33
impute_below_if . 34
impute_mean . 35
impute_median . 36
is_shade . 37
is_shadow . 38
label_missings . 38
label_miss_1d . 39
label_miss_2d . 40
label_shadow . 41
miss-pct-prop-defunct . 41
miss_case_cumsum . 42
miss_case_summary . 43
miss_case_table . 44
miss_prop_summary . 44
miss_scan_count . 45
miss_summary . 46
miss_var_cumsum . 47
miss_var_run . 48
miss_var_span . 49
miss_var_summary . 50
miss_var_table . 51
miss_var_which . 52
n-var-case-complete . 53
n-var-case-miss . 53
nabular . 54
naniar . 55
new_nabular . 55
new_shade . 56
new_shadow . 56
n_complete . 57
n_complete_row . 57
n_miss . 58
n_miss_row . 59
R topics documented:

oceanbuoys .. 59
pct-miss-complete-case 61
pct-miss-complete-var 62
pct_complete .. 63
pct_miss .. 63
pedestrian ... 64
plotly Helpers ... 65
prop-miss-complete-case 66
prop-miss-complete-var 66
prop_complete ... 67
prop_complete_row 68
prop_miss ... 69
prop_miss_row .. 69
recode_shadow ... 70
replace_to_na ... 71
replace_with_na 71
replace_with_na_all 72
replace_with_na_at 73
replace_with_na_if 74
riskfactors ... 75
scoped-impute_mean 78
scoped-impute_median 80
shade ... 81
shadow_expand_relevel 82
shadow_long ... 83
shadow_shift .. 83
shadow_shift.numeric 84
stat_miss_point .. 85
test_if_dataframe .. 86
test_if_missing .. 87
test_if_null ... 87
unbinders .. 88
update_shadow .. 89
what_levels .. 90
where ... 90
where_na .. 91
which_are_shade 92
which_na .. 92

Index ... 94
add_any_miss

Add a column describing presence of any missing values

Description

This adds a column named "any_miss" (by default) that describes whether there are any missings in all of the variables (default), or whether any of the specified columns, specified using variables names or dplyr verbs, starts_with, contains, ends_with, etc. By default the added column will be called "any_miss_all", if no variables are specified, otherwise, if variables are specified, the label will be "any_miss_vars" to indicate that not all variables have been used to create the labels.

Usage

```r
add_any_miss(
  data,
  ..., label = "any_miss",
  missing = "missing",
  complete = "complete"
)
```

Arguments

- `data`
 data.frame

- `...`
 Variable names to use instead of the whole dataset. By default this looks at the whole dataset. Otherwise, this is one or more unquoted expressions separated by commas. These also respect the dplyr verbs starts_with, contains, ends_with, etc. By default will add ".all" to the label if left blank, otherwise will add ".vars" to distinguish that it has not been used on all of the variables.

- `label`
 label for the column, defaults to "any_miss". By default if no additional variables are listed the label col is "any_miss_all", otherwise it is "any_miss_vars", if variables are specified.

- `missing`
 character a label for when values are missing - defaults to "missing"

- `complete`
 character character a label for when values are complete - defaults to "complete"

Details

By default the prefix "any_miss" is used, but this can be changed in the `label` argument.

Value

data.frame with data and the column labelling whether that row (for those variables) has any missing values - indicated by "missing" and "complete".
add_label_missings

See Also
bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster()
add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

```r
airquality %>% add_label_missings()
airquality %>% add_label_missings(Ozone)
airquality %>% add_label_missings(Ozone, Solar.R)
```

Description
Add a column describing if there are any missings in the dataset

Usage

```r
add_label_missings(data, ..., missing = "Missing", complete = "Not Missing")
```

Arguments

- **data**: data.frame
- **...**: extra variable to label
- **missing**: character a label for when values are missing - defaults to "Missing"
- **complete**: character a label for when values are complete - defaults to "Not Missing"

Value

data.frame with a column "any_missing" that is either "Not Missing" or "Missing" for the purposes of plotting / exploration / nice print methods

See Also
bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster()
add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

```r
airquality %>% add_label_missings()
airquality %>% add_label_missings(Ozone)
airquality %>% add_label_missings(Ozone, Solar.R)
airquality %>% add_label_missings(Ozone, Solar.R, missing = "yes", complete = "no")
```
add_label_shadow

Add a column describing whether there is a shadow

Description

Instead of focussing on labelling whether there are missings, we instead focus on whether there have been any shadows created. This can be useful when data has been imputed and you need to determine which rows contained missing values when the shadow was bound to the dataset.

Usage

add_label_shadow(data, ..., missing = "Missing", complete = "Not Missing")

Arguments

data
data.frame

...
extra variable to label

missing
character a label for when values are missing - defaults to "Missing"

complete
character character a label for when values are complete - defaults to "Not Missing"

Value

data.frame with a column, "any_missing", which describes whether or not there are any rows that have a shadow value.

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

```R
  airquality %>%
  add_shadow(Ozone, Solar.R) %>%
  add_label_shadow()
```
add_miss_cluster

Add a column that tells us which "missingness cluster" a row belongs to

Description

A way to extract the cluster of missingness that a group belongs to. For example, if you use `vis_miss(airquality, cluster = TRUE)`, you can see some clustering in the data, but you do not have a way to identify the cluster. Future work will incorporate the seriation package to allow for better control over the clustering from the user.

Usage

```r
add_miss_cluster(data, cluster_method = "mcquitty", n_clusters = 2)
```

Arguments

data
 a dataframe
cluster_method
 character vector of the agglomeration method to use, the default is "mcquitty". Options are taken from `stats::hclust` helpfile, and options include: "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).
n_clusters
 numeric the number of clusters you expect. Defaults to 2.

See Also

`bind_shadow()` `add_any_miss()` `add_label_missings()` `add_label_shadow()` `add_miss_cluster()`
`add_n_miss()` `add_prop_miss()` `add_shadow_shift()` `cast_shadow()`

Examples

```r
add_miss_cluster(airquality)
add_miss_cluster(airquality, cluster_method = "ward.D")
add_miss_cluster(airquality, cluster_method = "ward.D", n_clusters = 3)
add_miss_cluster(airquality, n_clusters = 3)
```

add_n_miss

Add column containing number of missing data values

Description

It can be useful when doing data analysis to add the number of missing data points into your dataframe. `add_n_miss` adds a column named "n_miss", which contains the number of missing values in that row.
add_prop_miss

Usage

 add_n_miss(data, ..., label = "n_miss")

Arguments

data a dataframe

... Variable names to use instead of the whole dataset. By default this looks at the whole dataset. Otherwise, this is one or more unquoted expressions separated by commas. These also respect the dplyr verbs `starts_with`, `contains`, `ends_with`, etc. By default will add "_all" to the label if left blank, otherwise will add "_vars" to distinguish that it has not been used on all of the variables.

label character default is "n_miss".

Value

a dataframe

See Also

`bind_shadow()`, `add_any_miss()`, `add_label_missings()`, `add_label_shadow()`, `add_miss_cluster()`, `add_prop_miss()`, `add_shadow_shift()`, `cast_shadow()`

Examples

 airquality %>% add_n_miss()
 airquality %>% add_n_miss(Ozone, Solar.R)
 airquality %>% add_n_miss(dplyr::contains("o"))

add_prop_miss Add column containing proportion of missing data values

Description

It can be useful when doing data analysis to add the proportion of missing data values into your dataframe. `add_prop_miss` adds a column named "prop_miss", which contains the proportion of missing values in that row. You can specify the variables that you would like to show the missingness for.

Usage

 add_prop_miss(data, ..., label = "prop_miss")
Arguments

- `data`
 a dataframe

 Variable names to use instead of the whole dataset. By default this looks at
 the whole dataset. Otherwise, this is one or more unquoted expressions sepa-
 rated by commas. These also respect the dplyr verbs `starts_with`, `contains`,
 `ends_with`, etc. By default will add "_all" to the label if left blank, otherwise
 will add "/vars" to distinguish that it has not been used on all of the variables.

- `label`
 character string of what you need to name variable

Value

a dataframe

See Also

- `bind_shadow()`
- `add_any_miss()`
- `add_label_missings()`
- `add_label_shadow()`
- `add_miss_cluster()`
- `add_prop_miss()`
- `add_shadow_shift()`
- `cast_shadow()`

Examples

```r
airquality %>% add_prop_miss()
airquality %>% add_prop_miss(Solar.R)
airquality %>% add_prop_miss(Solar.R, Ozone)
airquality %>% add_prop_miss(Solar.R, Ozone, label = "testing")

# this can be applied to model the proportion of missing data
# as in Tierney et al (doi: 10.1136/bmjopen-2014-007450)
library(rpart)
library(rpart.plot)

airquality %>%
  add_prop_miss() %>%
rpart(prop_miss_all ~ ., data = ., model = TRUE) %>%
  prp(type = 4,
      extra = 101,
      prefix = "prop_miss = ")
```

add_shadow
Add a shadow column to dataframe

Description

As an alternative to `bind_shadow()`, you can add specific individual shadow columns to a dataset. These also respect the dplyr verbs `starts_with`, `contains`, `ends_with`, etc.
Usage

 add_shadow(data, ...)

Arguments

data data.frame
... One or more unquoted variable names, separated by commas. These also respect
 the dplyr verbs starts_with, contains, ends_with, etc.

Value

data.frame

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster()
add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

 airquality %>% add_shadow(Ozone)
 airquality %>% add_shadow(Ozone, Solar.R)

Description

Shadow shift missing values using only the selected variables in a dataset, by specifying variable
names or use dplyr vars and dplyr verbs starts_with, contains, ends_with, etc.

Usage

 add_shadow_shift(data, ..., suffix = "shift")

Arguments

data data.frame
... One or more unquoted variable names separated by commas. These also respect
 the dplyr verbs starts_with, contains, ends_with, etc.
suffix suffix to add to variable, defaults to "shift"

Value

data with the added variable shifted named as var_suffix
add_span_counter

See Also
bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster()
add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples
pedestrian %>% add_shadow_shift(hourly_counts)
airquality %>% add_shadow_shift(Ozone, Solar.R)

add_span_counter

Add a counter variable for a span of dataframe

Description

Adds a variable, `span_counter` to a dataframe. Used internally to facilitate counting of missing values over a given span.

Usage

```
add_span_counter(data, span_size)
```

Arguments

- `data` (data.frame):
- `span_size` (integer):

Value

data.frame with extra variable "span_counter".

Examples

```
## Not run:
# add_span_counter(pedestrian, span_size = 100)
## End(Not run)
```
all-is-miss-complete Identify if all values are missing or complete

Description

This is shorthand for all(is.na(x)) and all(!is.na(x))

Usage

all_na(x)
all_miss(x)
all_complete(x)

Arguments

x an R object to be tested.

Examples

misses <- c(NA, NA, NA)
complete <- c(1, 2, 3)
mixture <- c(NA, 1, NA)

all_na(misses)
all_na(complete)
all_na(mixture)
all_complete(misses)
all_complete(complete)
all_complete(mixture)

any-na Identify if there are any missing or complete values

Description

It is useful to search for any instances of missing or complete values. There are two functions that do this in naniar - any_miss and its alias any_na. These bother under the hood call anyNA. any_complete is the complement to any_miss - it returns TRUE if there are any complete values.
any_row_miss

Usage

any_na(x)

any_miss(x)

any_complete(x)

Arguments

x an R object to be tested

See Also

all_miss() all_complete

Examples

anyNA(airquality)
any_na(airquality)
any_miss(airquality)
any_complete(airquality)

any_row_miss

Helper function to determine whether there are any missings

Description

Helper function to determine whether there are any missings

Usage

any_row_miss(x)

Arguments

x a vector

Value

logical vector TRUE = missing FALSE = complete
as_shadow

Create shadows

Description

Representing missing data structure is achieved using the shadow matrix, introduced in Swayne and Buja. The shadow matrix is the same dimension as the data, and consists of binary indicators of missingness of data values, where missing is represented as "NA", and not missing is represented as "!NA". Although these may be represented as 1 and 0, respectively.

Usage

as_shadow(data, ...)

Arguments

data dataframe
... selected variables to use

Value

appended shadow with column names

as_shadow.data.frame

Create shadow data

Description

Return a tibble in shadow matrix form, where the variables are the same but have a suffix _NA attached to distinguish them.

Usage

S3 method for class 'data.frame'
as_shadow(data, ...)

Arguments

data dataframe
... selected variables to use

Examples

as_shadow(airquality)
as_shadow_upset

Convert data into shadow format for doing an upset plot

Description

Upset plots are a way of visualising common sets, this function transforms the data into a format that feeds directly into an upset plot.

Usage

```r
as_shadow_upset(data)
```

Arguments

- `data`
 a data.frame

Value

a data.frame

Examples

```r
## Not run:
library(UpSetR)
airquality %>%
  as_shadow_upset() %>%
  upset()
## End(Not run)
```

bind_shadow

Bind a shadow dataframe to original data

Description

Binding a shadow matrix to a regular dataframe helps visualise and work with missing data.

Usage

```r
bind_shadow(data, only_miss = FALSE, ...)
```
cast_shadow

Arguments

data a dataframe
only_miss logical - if FALSE (default) it will bind a dataframe with all of the variables duplicated with their shadow. Setting this to TRUE will bind variables only those variables that contain missing values. See the examples for more details.

... extra options to pass to recode_shadow() - a work in progress.

Value

data with the added variable shifted and the suffix _NA

Examples

bind_shadow(airquality)

bind only the variables that contain missing values
bind_shadow(airquality, only_miss = TRUE)

aq_shadow <- bind_shadow(airquality)

explore missing data visually
library(ggplot2)

using the bounded shadow to visualise Ozone according to whether Solar Radiation is missing or not.

ggplot(data = aq_shadow,
 aes(x = Ozone)) +
 geom_histogram() +
 facet_wrap(~Solar.R_NA,
 ncol = 1)

cast_shadow

Add a shadow column to a dataset

Description

Casting a shadow shifted column performs the equivalent pattern to data %>% select(var) %>% shadow_shift(). This is a convenience function that makes it easy to perform certain visualisations, in line with the principle that the user should have a way to flexibly return data formats containing information about the missing data. It forms the base building block for the functions cast_shadow_shift, and cast_shadow_shift_label. It also respects the dplyr verbs starts_with, contains, ends_with, etc. to select variables.

Usage

cast_shadow(data, ...)
cast_shadow_shift

Add a shadow and a shadow_shift column to a dataset

Description

Shift the values and add a shadow column. It also respects the dplyr verbs starts_with, contains, ends_with, etc.

Usage

cast_shadow_shift(data, ...)

Arguments

data data.frame
... One or more unquoted variable names separated by commas. These respect the dplyr verbs starts_with, contains, ends_with, etc.
cast_shadow_shift_label

Value

data.frame with the shadow and shadow_shift vars

See Also

cast_shadow_shift(), cast_shadow_shift_label(), bind_shadow(), add_any_miss(), add_label_missings(), add_label_shadow(), add_miss_cluster(), add_prop_miss(), add_shadow_shift()

Examples

```r
airquality %>% cast_shadow_shift(Ozone)
airquality %>% cast_shadow_shift(Ozone, Temp)
airquality %>% cast_shadow_shift(dplyr::contains("o"))
```

cast_shadow_shift_label

Add a shadow column and a shadow shifted column to a dataset

Description

Shift the values, add shadow, add missing label

Usage

cast_shadow_shift_label(data, ...)

Arguments

data
data.frame

...
One or more unquoted expressions separated by commas. These also respect the dplyr verbs "starts_with", "contains", "ends_with", etc.

Value

data.frame with the shadow and shadow_shift vars, and missing labels

See Also

cast_shadow_shift(), cast_shadow_shift_label(), bind_shadow(), add_any_miss(), add_label_missings(), add_label_shadow(), add_miss_cluster(), add_prop_miss(), add_shadow_shift()
Examples

```r
airquality %>% cast_shadow_shift_label(Ozone)
airquality %>% cast_shadow_shift_label(Ozone, Solar.R)

# replicate the plot generated by geom_miss_point()

library(ggplot2)

airquality %>%
  cast_shadow_shift_label(Ozone, Solar.R) %>%
  ggplot(aes(x = Ozone_shift,
            y = Solar.R_shift,
            colour = any_missing)) +
  geom_point()
```

common_na_numbers

Common number values for NA

Description

This vector contains common number values of NA (missing), which is aimed to be used inside naniar functions `miss_scan_count()` and `replace_with_na()`. The current list of numbers can be found by printing out `common_na_numbers`. It is a useful way to explore your data for possible missings, but I strongly warn against using this to replace NA values without very carefully looking at the incidence for each of the cases. Common NA strings are in the data object `common_na_strings`.

Usage

```r
common_na_numbers
```

Format

An object of class numeric of length 8.

Note

original discussion here https://github.com/njtierney/naniar/issues/168

Examples

```r
dat_ms <- tibble::tribble(~x, ~y, ~z,
                         1, "A", -100,
                         3, "N/A", -99,
                         NA, NA, -98,
                         -99, "E", -101,
                         -98, "F", -1)
```
common_na_strings

miss_scan_count(dat_ms, -99)
miss_scan_count(dat_ms, c(-99, -98))
miss_scan_count(dat_ms, c("-99","-98","N/A"))
common_na_numbers
miss_scan_count(dat_ms, common_na_numbers)

common_na_strings
Common string values for NA

Description

This vector contains common values of NA (missing), which is aimed to be used inside naniar functions `miss_scan_count()` and `replace_with_na()`. The current list of strings used can be found by printing out `common_na_strings`. It is a useful way to explore your data for possible missings, but I strongly warn against using this to replace NA values without very carefully looking at the incidence for each of the cases. Please note that `common_na_strings` uses `\` around the `?", ",":"` and `"\"` characters to protect against using their wildcard features in grep. Common NA numbers are in the data object `common_na_numbers`.

Usage

`common_na_strings`

Format

An object of class character of length 24.

Note

original discussion here https://github.com/njtierney/naniar/issues/168

Examples

```r
dat_ms <- tibble::tribble(~x, ~y, ~z,
  1, "A", -100,
  3, "N/A", -99,
  NA, NA, -98,
  -99, "E", -101,
  -98, "F", -1)

miss_scan_count(dat_ms, -99)
miss_scan_count(dat_ms, c(-99, -98))
miss_scan_count(dat_ms, c("-99","-98","N/A"))
common_na_numbers
miss_scan_count(dat_ms, common_na_strings)
```
gather_shadow is a long-form representation of binding the shadow matrix to your data, producing variables named case, variable, and missing, where missing contains the missing value representation.

Usage

gather_shadow(data)

Arguments

data a dataframe

Value

dataframe in long format, containing information about the missings

Examples

gather_shadow(airquality)

GeomMissPoint naniar-ggproto

Description

These are the stat and geom overrides using ggproto from ggplot2 that make naniar work.

Usage

StatMissPoint

Format

An object of class StatMissPoint (inherits from Stat, ggproto, gg) of length 6.
Description

`geom_miss_point` provides a way to transform and plot missing values in ggplot2. To do so it uses methods from ggobi to display missing data points on the same axis.

Usage

```r
geom_miss_point(
  mapping = NULL,
  data = NULL,
  prop_below = 0.1,
  jitter = 0.05,
  stat = "miss_point",
  position = "identity",
  colour = ..missing..,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  ...
)
```

Arguments

- **mapping**
 Set of aesthetic mappings created by `ggplot2::aes()` or `ggplot2::aes()`. If specified and `inherit.aes = TRUE` (the default), is combined with the default mapping at the top level of the plot. You only need to supply mapping if there isn’t a mapping defined for the plot.

- **data**
 A data frame. If specified, overrides the default data frame defined at the top level of the plot.

- **prop_below**
 the degree to shift the values. The default is 0.1

- **jitter**
 the amount of jitter to add. The default is 0.05

- **stat**
 The statistical transformation to use on the data for this layer, as a string.

- **position**
 Position adjustment, either as a string, or the result of a call to a position adjustment function.

- **colour**
 the colour chosen for the aesthetic

- **na.rm**
 If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values.

- **show.legend**
 logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.

- **inherit.aes**
 If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders.
... other arguments passed on to `ggplot2::layer()`. There are three types of arguments you can use here:

- Aesthetics: to set an aesthetic to a fixed value, like `color = "red"` or `size = 3`.
- Other arguments to the layer, for example you override the default `stat` associated with the layer.
- Other arguments passed on to the stat.

Details

Plot Missing Data Points

Note

Warning message if `na.rm = T` is supplied.

See Also

`[gg_miss_case()][gg_miss_case_cumsum()][gg_miss_fct()][gg_miss_span()][gg_miss_var()][gg_miss_var_cumsum()][gg_miss_which()]`

Examples

```r
library(ggplot2)

# using regular `geom_point()`
ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_point()

# using `geom_miss_point()`
ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_miss_point()

# using facets
ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_miss_point() + facet_wrap(~Month)
```


gg_miss_case

Plot the number of missings per case (row)

Description

This is a visual analogue to `miss_case_summary`. It draws a ggplot of the number of missings in each case (row). A default minimal theme is used, which can be customised as normal for ggplot.

Usage

`gg_miss_case(x, facet, order_cases = TRUE, show_pct = FALSE)`

Arguments

- `x` : data.frame
- `facet` : (optional) a single bare variable name, if you want to create a faceted plot.
- `order_cases` : logical Order the rows by missingness (default is FALSE - no order).
- `show_pct` : logical Show the percentage of cases

Value

a ggplot object depicting the number of missings in a given case.

See Also

- `geom_miss_point()`
- `gg_miss_case_cumsum()`
- `gg_miss_fct()`
- `gg_miss_span()`
- `gg_miss_var()`
- `gg_miss_var_cumsum()`
- `gg_miss_which()`

Examples

```r
gg_miss_case(airquality)
library(ggplot2)
gg_miss_case(airquality) + labs(x = "Number of Cases")
gg_miss_case(airquality, show_pct = TRUE)
gg_miss_case(airquality, order_cases = FALSE)
gg_miss_case(airquality, facet = Month)
gg_miss_case(airquality, facet = Month, order_cases = FALSE)
gg_miss_case(airquality, facet = Month, show_pct = TRUE)
```
gg_miss_case_cumsum
Plot of cumulative sum of missing for cases

Description
A plot showing the cumulative sum of missing values for cases, reading the rows from the top to bottom. A default minimal theme is used, which can be customised as normal for ggplot.

Usage
```
gg_miss_case_cumsum(x, breaks = 20)
```

Arguments
- `x` a dataframe
- `breaks` the breaks for the x axis default is 20

Value
a ggplot object depicting the number of missings

See Also
- `geom_miss_point()`
- `gg_miss_case()`
- `gg_miss_fct()`
- `gg_miss_span()`
- `gg_miss_var()`
- `gg_miss_var_cumsum()`
- `gg_miss_which()`

Examples
```
library(ggplot2)
# gg_miss_case_cumsum(airquality)
# gg_miss_case_cumsum(riskfactors, breaks = 50) + theme_bw()
```

gg_miss_fct
Plot the number of missings for each variable, broken down by a factor

Description
This function draws a ggplot plot of the number of missings in each column, broken down by a categorical variable from the dataset. A default minimal theme is used, which can be customised as normal for ggplot.

Usage
```
gg_miss_fct(x, fct)
```
gg_miss_span

Arguments

- **x** data.frame
- **fct** column containing the factor variable to visualise

Value

ggplot object depicting the % missing of each factor level for each variable.

See Also

- `geom_miss_point()` `gg_miss_case()` `gg_miss_case_cumsum()` `gg_miss_span()` `gg_miss_var()` `gg_miss_var_cumsum()` `gg_miss_which()`

Examples

```r
library(ggplot2)

gg_miss_fct(x = riskfactors, fct = marital) + labs(title = "NA in Risk Factors and Marital status")
```

gg_miss_span

Plot the number of missings in a given repeating span

Description

`gg_miss_span` is a replacement function to `imputeTS::plotNA.distributionBar(tsNH4,breaksize = 100)`, which shows the number of missings in a given span, or breaksize. A default minimal theme is used, which can be customised as normal for ggplot.

Usage

```r
gg_miss_span(data, var, span_every, facet)
```

Arguments

- **data** data.frame
- **var** a bare unquoted variable name from `data`
- **span_every** integer describing the length of the span to be explored
- **facet** (optional) a single bare variable name, if you want to create a faceted plot.

Value

ggplot2 showing the number of missings in a span (window, or breaksize)
Plot the pattern of missingness using an upset plot.

Description

Upset plots are a way of visualising common sets, gg_miss_upset shows the number of missing values for each of the sets of data. The default option of gg_miss_upset is taken from UpSetR::upset which is to use up to 5 sets and up to 40 interactions. We also set the ordering to by the frequency of the intersections. Setting nsets = 5 means to look at 5 variables and their combinations. The number of combinations or rather intersections is controlled by nintersects. If there are 40 intersections, there will be 40 combinations of variables explored. The number of sets and intersections can be changed by passing arguments nsets = 10 to look at 10 sets of variables, and nintersects = 50 to look at 50 intersections.

Usage

gg_miss_upset(data, order.by = "freq", ...)

Arguments

data: data.frame

order.by: (from UpSetR::upset) How the intersections in the matrix should be ordered by. Options include frequency (entered as "freq"), degree, or both in any order. See ?UpSetR::upset for more options

Value

a ggplot visualisation of missing data
Examples

```r
## Not run:
gg_miss_upset(airquality)
gg_miss_upset(riskfactors)
gg_miss_upset(riskfactors, nsets = 10)
gg_miss_upset(riskfactors, nsets = 10, nintersects = 10)
## End(Not run)
```

```
gg_miss_var

Plot the number of missings for each variable
```

Description

This is a visual analogue to `miss_var_summary`. It draws a ggplot of the number of missings in each variable, ordered to show which variables have the most missing data. A default minimal theme is used, which can be customised as normal for ggplot.

Usage

```r
gg_miss_var(x, facet, show_pct = FALSE)
```

Arguments

- `x` a dataframe
- `facet` (optional) bare variable name, if you want to create a faceted plot.
- `show_pct` logical shows the number of missings (default), but if set to TRUE, it will display the proportion of missings.

Value

a ggplot object depicting the number of missings in a given column

See Also

- `geom_miss_point()`
- `gg_miss_case()`
- `gg_miss_case_cumsum`
- `gg_miss_fct()`
- `gg_miss_span()`
- `gg_miss_var()`
- `gg_miss_var_cumsum()`
- `gg_miss_which()`

Examples

```r
gg_miss_var(airquality)
library(ggplot2)
gg_miss_var(airquality) + labs(y = "Look at all the missing ones")
gg_miss_var(airquality, Month)
gg_miss_var(airquality, Month, show_pct = TRUE)
gg_miss_var(airquality, Month, show_pct = TRUE) + ylim(0, 100)
```
gg_miss_var_cumsum Plot of cumulative sum of missing value for each variable

Description
A plot showing the cumulative sum of missing values for each variable, reading columns from the left to the right of the initial dataframe. A default minimal theme is used, which can be customised as normal for ggplot.

Usage
gg_miss_var_cumsum(x)

Arguments
x a data.frame

Value
a ggplot object showing the cumulative sum of missings over the variables

See Also
geom_miss_point() gg_miss_case() gg_miss_case_cumsum gg_miss_fct() gg_miss_span() gg_miss_var() gg_miss_which()

Examples
gg_miss_var_cumsum(airquality)

gg_miss_which Plot which variables contain a missing value

Description
This plot produces a set of rectangles indicating whether there is a missing element in a column or not. A default minimal theme is used, which can be customised as normal for ggplot.

Usage
gg_miss_which(x)

Arguments
x a dataframe
group_by_fun

Value

a ggplot object of which variables contains missing values

See Also

geom_miss_point() gg_miss_case() gg_miss_case_cumsum gg_miss_fct() gg_miss_span() gg_miss_var() gg_miss_var_cumsum() gg_miss_which()

Examples

```r
gg_miss_which(airquality)
library(ggplot2)
```

group_by_fun
Group By Helper

Description

This is a wrapper to facilitate the grouped_df S3 method.

Usage

```r
group_by_fun(data, .fun, ...)
```

Arguments

- `data`
data.frame, which will be grouped
- `fun`
a function to apply
- `...`
additional arguments to be passed to `map`

Value

a dataframe with the function applied to each group

Examples

```r
# Not run:
miss_case_table.grouped_df <- function(data){
group_by_fun(data,.fun = miss_case_table)
}
airquality %>%
group_by(Month) %>%
miss_case_table()

# End(Not run)
```
impute_below

Impute data with values shifted 10 percent below range.

Description

It can be useful in exploratory graphics to impute data outside the range of the data. `impute_below` imputes all variables with missings to have values 10 percent below the range for numeric values, and for character or factor values adds a new string or label. It is powered by `shadow_shift`, so please see the documentation for `shadow_shift()` to full details on the different implementations.

Usage

```r
impute_below(...) 
```

Arguments

...

extra arguments to pass - see `shadow_shift()` for discussion on this.

impute_below_all

Impute data with values shifted 10 percent below range.

Description

It can be useful in exploratory graphics to impute data outside the range of the data. `impute_below_all` imputes all variables with missings to have values 10\% values adds a new string or label.

Usage

```r
impute_below_all(.tbl, prop_below = 0.1, jitter = 0.05, ...) 
```

Arguments

- **.tbl**
 a data.frame
- **prop_below**
 the degree to shift the values. default is
- **jitter**
 the amount of jitter to add. default is 0.05
- ...
 additional arguments

Value

an dataset with values imputed
Examples

you can impute data like so:
airquality %>%
impute_below_all()

However, this does not show you WHERE the missing values are.
to keep track of them, you want to use `bind_shadow()` first.

airquality %>%
binder_shadow() %>%
impute_below_all()

This identifies where the missing values are located, which means you
can do things like this:
Not run:
library(ggplot2)
airquality %>%
binder_shadow() %>%
impute_below_all() %>%
identify where there are missings across rows.
add_label_shadow() %>%
ggplot(aes(x = Ozone,
 y = Solar.R,
 colour = any_missing)) +
geom_point()
Note that this ^^ is a long version of `geom_miss_point()`.
End(Not run)

impute_below_at

Scoped variants of impute_below

Description

impute_below operates on all variables. To only impute variables that satisfy a specific condition,
use the scoped variants, impute_below_at, and impute_below_if. To use _at effectively, you
must know that _at` affects variables selected with a character vector, or with vars().

Usage

impute_below_at(.tbl, .vars, prop_below = 0.1, jitter = 0.05, ...)

Arguments

.tbl a data.frame
.vars variables to impute
prop_below: the degree to shift the values. Default is 0.1.

jitter: the amount of jitter to add. Default is 0.05.

... extra arguments

Value

an dataset with values imputed

Examples

select variables starting with a particular string.
library(dplyr)
impute_below_at(airquality,
 .vars = c("Ozone", "Solar.R"))

impute_below_at(airquality,
 .vars = 1:2)
#
impute_below_at(airquality,
 .vars = vars(Ozone))

Not run:
library(ggplot2)
airquality %>%
 bind_shadow() %>%
impute_below_at(vars(Ozone, Solar.R)) %>%
 add_label_shadow() %>%
ggplot(aes(x = Ozone,
 y = Solar.R,
 colour = any_missing)) +
geom_point()

End(Not run)

impute_below_if

Scoped variants of impute_below

Description

impute_below operates on all variables. To only impute variables that satisfy a specific condition, use the scoped variants, impute_below_at, and impute_below_if.

Usage

impute_below_if(.tbl, .predicate, prop_below = 0.1, jitter = 0.05, ...)

impute_mean

Arguments

- `.tbl` data.frame
- `.predicate` A predicate function (such as `is.numeric`)
- `prop_below` the degree to shift the values. default is
- `jitter` the amount of jitter to add. default is 0.05
- `...` extra arguments

Value

an dataset with values imputed

Examples

```r
airquality %>%
impute_below_if(.predicate = is.numeric)
```

impute_mean
Impute the mean value into a vector with missing values

Description

Impute the mean value into a vector with missing values

Usage

```r
impute_mean(x)
```

Default S3 method:
impute_mean(x)

S3 method for class 'factor'
impute_mean(x)

Arguments

- `x` vector

Value

vector with mean values replaced
Examples

```r
vec <- rnorm(10)
vec[sample(1:10, 3)] <- NA
impute_median(vec)
```

impute_median

Impute the median value into a vector with missing values

Description

Impute the median value into a vector with missing values

Usage

```r
impute_median(x)
```

Arguments

- `x` vector

Value

vector with median values replaced

Examples

```r
vec <- rnorm(10)
vec[sample(1:10, 3)] <- NA
impute_median(vec)
```
Description

This tells us if this column is a shade

Usage

is_shade(x)
are_shade(x)
any_shade(x)

Arguments

x a vector you want to test if is a shade

Value

logical - is this a shade?

Examples

xs <- shade(c(NA, 1, 2, "3"))

is_shade(xs)
are_shade(xs)
any_shade(xs)

aq_s <- as_shadow(airquality)

is_shade(aq_s)
are_shade(aq_s)
any_shade(aq_s)
any_shade(airquality)
is_shadow

Test if input is or are shadow variables

Description

Shadow matrix or "nabular" data is a useful way to store missing data to facilitate missing data visualisation. This data can be created using bind_shadow. is_shadow tells us if there are any shadow variables.

Usage

is_shadow(x)

Arguments

x a vector or data.frame

Value

logical vector of length 1

Examples

aq_sh <- as_shadow(airquality)
aq_bind <- bind_shadow(airquality)

is_shadow(aq_sh)
is_shadow(airquality)
is_shadow(aq_bind)
is_nabular(aq_bind)

label_missings

Is there a missing value in the row of a dataframe?

Description

Creates a character vector describing presence/absence of missing values

Usage

label_missings(data, ..., missing = "Missing", complete = "Not Missing")
label_miss_1d

Arguments

- data: a dataframe or set of vectors of the same length
- ...: extra variable to label
- missing: character a label for when values are missing - defaults to "Missing"
- complete: character a label for when values are complete - defaults to "Not Missing"

Value

character vector of "Missing" and "Not Missing".

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster()
add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

label_missings(airquality)

library(dplyr)

airquality %>%
 mutate(is_missing = label_missings(airquality)) %>%
 head()

airquality %>%
 mutate(is_missing = label_missings(airquality,
 missing = "definitely missing",
 complete = "absolutely complete")) %>%
 head()

label_miss_1d

Label a missing from one column

Description

Label whether a value is missing in a row of one columns.

Usage

label_miss_1d(x1)

Arguments

- x1: a variable of a dataframe
Value

A vector indicating whether any of these rows had missing values.

Note

Can we generalise `label_miss` to work for any number of variables?

See Also

`add_any_miss()` `add_label_missings()` `add_label_shadow()`

Examples

```r
label_miss_1d(airquality$Ozone)

label_miss_2d(airquality$Ozone, airquality$Solar.R)
```

Description

Label whether a value is missing in either row of two columns.

Usage

```r
label_miss_2d(x1, x2)
```

Arguments

- `x1`: A variable of a dataframe.
- `x2`: Another variable of a dataframe.

Value

A vector indicating whether any of these rows had missing values.

Examples

```r
label_miss_2d(airquality$Ozone, airquality$Solar.R)
```
label_shadow

Label shadow values as missing or not missing

Description

Powers add_label_shadow. For the moment it is an internal function.

Usage

```r
label_shadow(data, ..., missing = "Missing", complete = "Not Missing")
```

Arguments

- `data`: data.frame
- `...`: extra variable to label
- `missing`: character a label for when values are missing - defaults to "Missing"
- `complete`: character a label for when values are complete - defaults to "Not Missing"

Value

"Missing" or "Not Missing"

miss-pct-prop-defunct

Proportion of variables containing missings or complete values

Description

Defunct. Please see `prop_miss_var()`, `prop_complete_var()`, `pct_miss_var()`, `pct_complete_var()`, `prop_miss_case()`, `prop_complete_case()`, `pct_miss_case()`, `pct_complete_case()`.

Usage

```r
miss_var_prop(...)
complete_var_prop(...)
miss_var_pct(...)
complete_var_pct(...)
miss_case_prop(...)
complete_case_prop(...)
```
miss_case_cumsum

miss_case_pct(...) complete_case_pct(...)

Arguments

... arguments

miss_case_cumsum \textit{Summarise the missingness in each case}

Description

Provide a data.frame containing each case (row), the number and percent of missing values in each case.

Usage

miss_case_cumsum(data)

Arguments

data a dataframe

Value

a tibble containing the number and percent of missing data in each case

Examples

miss_case_cumsum(airquality)

library(dplyr)

airquality %>%
group_by(Month) %>%
miss_case_cumsum()
miss_case_summary

Summarise the missingness in each case

Description

Provide a summary for each case in the data of the number, percent missings, and cumulative sum of missings of the order of the variables. By default, it orders by the most missings in each variable.

Usage

```r
miss_case_summary(data, order = TRUE, add_cumsum = FALSE, ...)
```

Arguments

- `data`: a data.frame
- `order`: a logical indicating whether or not to order the result by n_miss. Defaults to TRUE. If FALSE, order of cases is the order input.
- `add_cumsum`: logical indicating whether or not to add the cumulative sum of missings to the data. This can be useful when exploring patterns of nonresponse. These are calculated as the cumulative sum of the missings in the variables as they are first presented to the function.
- `...`: extra arguments

Value

a tibble of the percent of missing data in each case.

See Also

- `pct_miss_case()`, `prop_miss_case()`, `pct_miss_var()`, `prop_miss_var()`, `pct_complete_case()`, `prop_complete_case()`, `pct_complete_var()`, `prop_complete_var()`, `miss_case_summary()`, `miss_case_table()`, `miss_summary()`, `miss_prop_summary()`, `miss_var_prop()`, `miss_var_run()`, `miss_var_span()`, `miss_var_summary()`, `miss_var_table()`, `n_complete()`, `n_complete_row()`, `n_miss()`, `n_miss_row()`, `pct_complete()`, `prop_complete()`, `prop_complete_row()`, `prop_miss()`

Examples

```r
# works with group_by from dplyr
library(dplyr)

airquality <- airquality %>%
  group_by(Month) %>%
  miss_case_summary()

miss_case_summary(airquality)
```
Description

Provide a tidy table of the number of cases with 0, 1, 2, up to n, missing values and the proportion of the number of cases those cases make up.

Usage

miss_case_table(data)

Arguments

data a dataframe

Value

a dataframe

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case()
prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary()
mis_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary()
mis_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete()
pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

miss_case_table(airquality)
library(dplyr)
airquality %>%
 group_by(Month) %>%
mis_case_table()
Usage

`miss_scan_count(data)`

Arguments

- `data`: a dataframe

Value

a dataframe

See Also

`pct_miss_case()`, `prop_miss_case()`, `pct_miss_var()`, `prop_miss_var()`, `pct_complete_case()`, `prop_complete_case()`, `pct_complete_var()`, `prop_complete_var()`, `miss_prop_summary()`, `miss_case_summary()`, `miss_case_table()`, `miss_summary()`, `miss_var_run()`, `miss_var_span()`, `miss_var_summary()`, `miss_var_table()`

Examples

```r
miss_prop_summary(airquality)
library(dplyr)
airquality %>% group_by(Month) %>% miss_prop_summary()
```

miss_scan_count

Search and present different kinds of missing values

Description

Searching for different kinds of missing values is really annoying. If you have values like -99 in your data, when they shouldn’t be there, or they should be encoded as missing, it can be difficult to ascertain if they are there, and if so, where they are. `miss_scan_count` makes it easier for users to search for particular occurrences of these values across their variables.

Usage

`miss_scan_count(data, search)`

Arguments

- `data`: data
- `search`: values to search for

Value

a dataframe of the occurrences of the values you searched for
See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case()
prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary()
miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary()
miss_var_table()

Examples

```r
dat_ms <- tibble::tribble(~x, ~y, ~z,
                           1, "A", -100,
                           3, "N/A", -99,
                           NA, NA, -98,
                           -99, "E", -101,
                           -98, "F", -1)

miss_scan_count(dat_ms,-99)
misScanCount(dat_ms,c(-99,-98))
miss_scan_count(dat_ms,c("-99","-98","N/A"))
misScanCount(dat_ms,common_na_strings)
```

miss_summary

Collate summary measures from naniar into one tibble

Description

miss_summary performs all of the missing data helper summaries and puts them into lists within a
tibble

Usage

miss_summary(data, order = TRUE)

Arguments

data a dataframe
order whether or not to order the result by n_miss

Value

a tibble of missing data summaries

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case()
prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary()
miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary()
miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete()
pct_miss() prop_complete() prop_complete_row() prop_miss()
Examples

s_miss <- miss_summary(airquality)
s_miss$miss_df_prop
s_miss$miss_case_table
s_miss$miss_var_summary
etc, etc, etc.

library(dplyr)
s_miss_group <- group_by(airquality, Month) %>% miss_summary()
s_miss_group$miss_df_prop
s_miss_group$miss_case_table
etc, etc, etc.

miss_var_cumsum

Cumulative sum of the number of missings in each variable

Description

Calculate the cumulative sum of number & percentage of missingness for each variable.

Usage

miss_var_cumsum(data)

Arguments

data

a data.frame

Value

a tibble of the cumulative sum of missing data in each variable

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table()
respects dplyr::group_by

```r
airquality %>%
group_by(Month) %>%
miss_var_cumsum()
```

Description

It is useful to find the number of missing values that occur in a single run. The function, `miss_var_run()`, returns a dataframe with the column names "run_length" and "is_na", which describe the length of the run, and whether that run describes a missing value.

Usage

```r
miss_var_run(data, var)
```

Arguments

- **data**: data.frame
- **var**: a bare variable name

Value

Dataframe with column names "run_length" and "is_na", which describe the length of the run, and whether that run describes a missing value.

See Also

- `pct_miss_case()`
- `prop_miss_case()`
- `pct_miss_var()`
- `prop_miss_var()`
- `pct_complete_case()`
- `prop_complete_case()`
- `pct_complete_var()`
- `prop_complete_var()`
- `miss_prop_summary()`
- `miss_case_summary()`
- `miss_case_table()`
- `miss_summary()`
- `miss_var_prop()`
- `miss_var_run()`
- `miss_var_span()`
- `miss_var_summary()`
- `miss_var_table()`
- `n_complete()`
- `n_complete_row()`
- `n_miss()`
- `n_miss_row()`
- `pct_complete()`
- `pct_complete_row()`
- `prop_complete()`
- `prop_complete_row()`
- `prop_miss()`

Examples

```r
miss_var_run(pedestrian, hourly_counts)
library(dplyr)
# find the number of runs missing/complete for each month
pedestrian %>%
group_by(month) %>%
```
miss_var_span

```
miss_var_run(hourly_counts)

library(ggplot2)

# explore the number of missings in a given run
miss_var_run(pedestrian, hourly_counts) %>%
  filter(is_na == "missing") %>%
  count(run_length) %>%
  ggplot(aes(x = run_length,
             y = n)) +
  geom_col()

# look at the number of missing values and the run length of these.
miss_var_run(pedestrian, hourly_counts) %>%
  ggplot(aes(x = is_na,
             y = run_length)) +
  geom_boxplot()

# using group_by
pedestrian %>%
  group_by(month) %>%
  miss_var_run(hourly_counts)
```

miss_var_span
Summary the number of missings for a given repeating span on a variable

Description

To summarise the missing values in a time series object it can be useful to calculate the number of missing values in a given time period. `miss_var_span` takes a data.frame object, a variable, and a `span_every` argument and returns a dataframe containing the number of missing values within each span.

Usage

```
miss_var_span(data, var, span_every)
```

Arguments

- `data` data.frame
- `var` bare unquoted variable name of interest.
- `span_every` integer describing the length of the span to be explored

Value

dataframe with variables `n_miss`, `n_complete`, `prop_miss`, and `prop_complete`, which describe the number, or proportion of missing or complete values within that given time span.
See Also

- `pct_miss_case()`
- `prop_miss_case()`
- `prop_miss_var()`
- `pct_miss_var()`
- `pct_complete_case()`
- `prop_complete_case()`
- `prop_complete_var()`
- `pct_complete_var()`
- `miss_prop_summary()`
- `miss_case_summary()`
- `miss_case_table()`
- `miss_summary()`
- `miss_var_prop()`
- `miss_var_run()`
- `miss_var_span()`
- `miss_var_summary()`
- `miss_var_table()`

Examples

```r
mmiss_var_span(data = pedestrian,
               var = hourly_counts,
               span_every = 168)

library(dplyr)
pedestrian %>%
group_by(month) %>%
  miss_var_span(var = hourly_counts,
               span_every = 168)
```

Value

A tibble of the percent of missing data in each variable

Description

Provide a summary for each variable of the number, percent missings, and cumulative sum of missings of the order of the variables. By default, it orders by the most missings in each variable.

Usage

```r
miss_var_summary(data, order = FALSE, add_cumsum = FALSE, ...)
```

Arguments

- `data` - A data.frame
- `order` - A logical indicating whether to order the result by `n_miss`. Defaults to TRUE. If FALSE, order of variables is the order input.
- `add_cumsum` - Logical indicating whether or not to add the cumulative sum of missings to the data. This can be useful when exploring patterns of nonresponse. These are calculated as the cumulative sum of the missings in the variables as they are first presented to the function.
- `...` - Extra arguments
miss_var_table

Note

n_miss_cumsum is calculated as the cumulative sum of missings in the variables in the order that they are given in the data when entering the function.

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_var_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() pct_miss() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() prop_complete() prop_complete_row() prop_miss()

Examples

miss_var_summary(airquality)
miss_var_summary(oceanbuoys, order = TRUE)

works with group_by from dplyr
library(dplyr)
airquality %>%
 group_by(Month) %>%
 miss_var_summary()

miss_var_table

Tabulate the missings in the variables

Description

Provide a tidy table of the number of variables with 0, 1, 2, up to n, missing values and the proportion of the number of variables those variables make up.

Usage

miss_var_table(data)

Arguments

data a dataframe

Value

a dataframe
See Also

- `pct_miss_case()`: prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case()
- `prop_complete_case()`: prop_complete_var() miss_complete_case() miss_case_summary()
- `miss_case_table()`: miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary()
- `miss_var_table()`: n_complete() n_complete_row() n_miss() n_miss_row() pct_complete()
- `pct_miss()`: prop_complete() prop_complete_row() prop_miss()

Examples

```r
miss_var_table(airquality)
library(dplyr)
airquality %>%
  group_by(Month) %>%
  miss_var_table()
```

`miss_var_which`

Which variables contain missing values?

It can be helpful when writing other functions to just return the names of the variables that contain missing values. `miss_var_which` returns a vector of variable names that contain missings. It will return NULL when there are no missings.

Usage

```r
miss_var_which(data)
```

Arguments

- `data`: a data.frame

Value

- character vector of variable names

Examples

```r
miss_var_which(airquality)
miss_var_which(iris)
```
n-var-case-complete

The number of variables with complete values

Description

This function calculates the number of variables that contain a complete value.

Usage

```r
n_var_complete(data)
n_case_complete(data)
```

Arguments

- `data` : data.frame

Value

integer number of complete values

See Also

`n_var_miss()`

Examples

```r
# how many variables contain complete values?
n_var_complete(airquality)
n_case_complete(airquality)
```

n-var-case-miss

The number of variables or cases with missing values

Description

This function calculates the number of variables or cases that contain a missing value.

Usage

```r
n_var_miss(data)
n_case_miss(data)
```
Arguments

data data.frame

Value

integer, number of missings

See Also

n_var_complete()

Examples

how many variables contain missing values?
n_var_miss(airquality)
n_case_miss(airquality)

nabular

Convert data into nabular form by binding shade to it

Description

Binding a shadow matrix to a regular dataframe converts it into nabular data, which makes it easier to visualise and work with missing data.

Usage

nabular(data, only_miss = FALSE, ...)

Arguments

data a dataframe

only_miss logical - if FALSE (default) it will bind a dataframe with all of the variables duplicated with their shadow. Setting this to TRUE will bind variables only those variables that contain missing values. See the examples for more details.

... extra options to pass to recode_shadow() - a work in progress.

Value

data with the added variable shifted and the suffix _NA

See Also

bind_shadow()
naniar

Examples

```r
aq_nab <- nabular(airquality)
aq_s <- bind_shadow(airquality)

all.equal(aq_nab, aq_s)
```

Description

naniar is a package to make it easier to summarise and handle missing values in R. It strives to do this in a way that is as consistent with tidyverse principles as possible.

See Also

`add_any_miss()` `add_label_missings()` `add_label_shadow()` `add_miss_cluster()` `add_n_miss()` `add_prop_miss()` `add_shadow()` `add_shadow_shift()` `as_shadow()` `bind_shadow()` `cast_shadow()` `cast_shadow_shift()` `cast_shadow_shift_label()` `draw_key_missing_point()` `gather_shadow()` `geom_miss_point()` `gg_miss_case()` `gg_miss_case_cumsum()` `gg_miss_fct()` `gg_miss_span()` `gg_miss_var()` `gg_miss_var_cumsum()` `gg_miss_which()` `label_miss_1d()` `label_miss_2d()` `label_missings()` `pct_miss_case()` `prop_miss_case()` `pct_miss_var()` `prop_miss_var()` `pct_complete_case()` `prop_complete_case()` `pct_complete_var()` `prop_complete_var()` `miss_case_summary()` `miss_case_table()` `miss_summary()` `miss_var_prop()` `miss_var_run()` `miss_var_span()` `miss_var_summary()` `miss_var_table()` `n_complete()` `n_complete_row()` `n_miss()` `n_miss_row()` `pct_complete()` `pct_miss()` `prop_complete()` `prop_complete_row()` `prop_miss()` `prop_miss_row()` `replace_to_na()` `replace_with_na()` `replace_with_na_all()` `replace_with_na_at()` `replace_with_na_if()` `shadow_shift()` `stat_miss_point()` `vis_miss()` `where_na()`

new_nabular

Create a new nabular format

Description

Create a new nabular format

Usage

`new_nabular(x)`

Arguments

x a data.frame
new_shade

Value

object with class "nabular", inheriting from it’s original class

Usage

new_shade(x, extra_levels = NULL)

Arguments

- x: a factor to convert into a shade object
- extra_levels: the extra levels to give to shade objects, such as "broken_machine" and so on, which get converted into "NA_broken_machine".

Value

a new shade, which is built upon a factor

new_shadow

Description

Create a new shadow

Usage

new_shadow(x)

Arguments

- x: a data.frame

Value

object with class "shadow", inheriting from it’s original class
n_complete

Return the number of complete values

Description
A complement to n_miss

Usage
n_complete(x)

Arguments

- `x`
 a vector

Value

numeric number of complete values

Examples

```r
n_complete(airquality)
n_complete(airquality$Ozone)
```

n_complete_row

Return a vector of the number of complete values in each row

Description
Substitute for rowSums(!is.na(data)) but it also checks if input is NULL or is a dataframe

Usage
n_complete_row(data)

Arguments

- `data`
 a dataframe

Value

numeric vector of the number of complete values in each row
n_miss

Return the number of missing values

Description

Substitute for `sum(is.na(data))`

Usage

```r
n_miss(x)
```

Arguments

- `x` a vector

Value

numeric the number of missing values

Examples

```r
n_miss(airquality)
n_miss(airquality$Ozone)
```
n_miss_row

Return a vector of the number of missing values in each row

Description
Substitute for rowSums(is.na(data)), but it also checks if input is NULL or is a dataframe

Usage
n_miss_row(data)

Arguments

data a dataframe

Value
numeric vector of the number of missing values in each row

See Also

cart miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case()
prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary()
misc_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary()
miscVar_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete()
pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

n_miss_row(airquality)

oceanbuoys

Description
Real-time data from moored ocean buoys for improved detection, understanding and prediction of El Ni’o and La Ni’a. The data is collected by the Tropical Atmosphere Ocean project (http: //www.pmel.noaa.gov/tao/index.shtml).

Usage
data(oceanbuoys)
Format

An object of class tbl_df (inherits from tbl.data.frame) with 736 rows and 8 columns.

Details

Format: a data frame with 736 observations on the following 8 variables.

ty.xтар A numeric with levels 1993 1997.
latitude A numeric with levels -5 -2 0.
longitude A numeric with levels -110 -95.
sea_temp_c Sea surface temperature(degree Celsius), measured by the TAO buoys at one meter below the surface.
air_temp_c Air temperature(degree Celsius), measured by the TAO buoys three meters above the sea surface.
humidity Relative humidity(%), measured by the TAO buoys 3 meters above the sea surface.
wind_ew The East-West wind vector components(M/s). TAO buoys measure the wind speed and direction four meters above the sea surface. If it is positive, the East-West component of the wind is blowing towards the East. If it is negative, this component is blowing towards the West.
wind_ns The North-South wind vector components(M/s). TAO buoys measure the wind speed and direction four meters above the sea surface. If it is positive, the North-South component of the wind is blowing towards the North. If it is negative, this component is blowing towards the South.

Source

http://www.pmel.noaa.gov/tao/data_deliv/deliv.html

See Also

library(MissingDataGUI) (data named "tao")

Examples

explore the missingness with vis_miss
library(naniar)
vis_miss(oceanbuoys)

Look at the missingness in the variables
miss_var_summary(oceanbuoys)

Look at the missingness in air temperature and humidity
library(ggplot2)
p <-
ggplot(oceanbuoys,
aes(x = air_temp_c,
y = humidity) + geom_miss_point()

p

for each year?
p + facet_wrap(~year)

this shows that there are more missing values in humidity in 1993, and more air temperature missing values in 1997

what if we explore the value of air temperature and humidity based on the missingness of each

oceanbuoys %>%
 bind_shadow() %>%
 ggplot(aes(x = air_temp_c,
 fill = humidity_NA)) +
 geom_histogram()

oceanbuoys %>%
 bind_shadow() %>%
 ggplot(aes(x = humidity,
 fill = air_temp_c_NA)) +
 geom_histogram()

pct-miss-complete-case

Percentage of cases that contain a missing or complete values.

Description

Calculate the percentage of cases (rows) that contain a missing or complete value.

Usage

```r
pct_mis_case(data)
```

```r
pct_complete_case(data)
```

Arguments

- data a dataframe

Value

numeric the percentage of cases that contain a missing or complete value
pct-miss-complete-var

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case()
prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary()
mis_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary()
mis_var_table()

Examples

pct_miss_case(airquality)
pct_complete_case(airquality)

pct-miss-complete-var Percentage of variables containing missing or complete values

Description

Calculate the percentage of variables that contain a single missing or complete value.

Usage

pct_miss_var(data)
pct_complete_var(data)

Arguments

data a dataframe

Value

numeric the percent of variables that contain missing or complete data

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case()
prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary()
mis_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary()
mis_var_table()

Examples

prop_miss_var(riskfactors)
prop_miss_var(oceanbuoys)
prop_complete_var(riskfactors)
prop_complete_var(oceanbuoys)
pct_complete
Return the percent of complete values

Description
The complement to `pct_miss`

Usage
`pct_complete(x)`

Arguments
x
vector or data.frame

Value
numeric percent of complete values

Examples
```
pct_complete(airquality)
pct_complete(airquality$Ozone)
```

pct_miss
Return the percent of missing values

Description
This is shorthand for `mean(is.na(x)) * 100`

Usage
`pct_miss(x)`

Arguments
x
vector or data.frame

Value
numeric the percent of missing values in x
Examples

```r
pct_miss(airquality)
pct_miss(airquality$Ozone)
```

Description

This dataset contains hourly counts of pedestrians from 4 sensors around Melbourne: Birrarung Marr, Bourke Street Mall, Flagstaff station, and Spencer St-Collins St (south), recorded from January 1st 2016 at 00:00:00 to December 31st 2016 at 23:00:00. The data is made free and publicly available from https://data.melbourne.vic.gov.au/Transport-Movement/Pedestrian-volume-updated-monthly-b2ak-trbp

Usage

```r
data(pedestrian)
```

Format

A tibble with 37,700 rows and 9 variables:

- **hourly_counts** (integer) the number of pedestrians counted at that sensor at that time
- **date_time** (POSIXct, POSIXt) The time that the count was taken
- **year** (integer) Year of record
- **month** (factor) Month of record as an ordered factor (1 = January, 12 = December)
- **month_day** (integer) Full day of the month
- **week_day** (factor) Full day of the week as an ordered factor (1 = Sunday, 7 = Saturday)
- **hour** (integer) The hour of the day in 24 hour format
- **sensor_id** (integer) the id of the sensor
- **sensor_name** (character) the full name of the sensor

Source

Examples

```r
## Not run:
# explore the missingness with vis_miss
library(naniar)

vis_miss(pedestrian)

# Look at the missingness in the variables
miss_var_summary(pedestrian)

# There is only missingness in hourly_counts
# Look at the missingness over a rolling window
library(ggplot2)
gg_miss_span(pedestrian, hourly_counts, span_every = 3000)

## End(Not run)
```

plotly_helpers

Plotly helpers (Convert a geom to a "basic" geom.)

Description

Helper functions to make it easier to automatically create plotly charts. This function makes it possible to convert ggplot2 geoms that are not included with ggplot2 itself. Users shouldn’t need to use this function. It exists purely to allow other package authors to write their own conversion method(s).

Usage

to_basic.GeomMissPoint(data, prestats_data, layout, params, p, ...)

Arguments

data the data returned by `ggplot2::ggplot_build()`.
prestats_data the data before statistics are computed.
layout the panel layout.
params parameters for the geom, statistic, and 'constant' aesthetics
p a ggplot2 object (the conversion may depend on scales, for instance).
... currently ignored
prop-miss-complete-case

Proportion of cases that contain a missing or complete values.

Description

Calculate the proportion of cases (rows) that contain missing or complete values.

Usage

```r
table(prop_missing_case(data))

prop_complete_case(data)
```

Arguments

- `data`: a dataframe

Value

numeric the proportion of cases that contain a missing or complete value

See Also

- `pct_miss_case()`
- `prop_miss_case()`
- `pct_miss_var()`
- `prop_miss_var()`
- `pct_complete_case()`
- `prop_complete_case()`
- `pct_complete_var()`
- `prop_complete_var()`
- `miss_prop_summary()`
- `miss_case_summary()`
- `miss_case_table()`
- `miss_summary()`
- `miss_var_prop()`
- `miss_var_run()`
- `miss_var_span()`
- `miss_var_summary()`
- `miss_var_table()`

Examples

```r
prop_missing_case(airquality)

prop_complete_case(airquality)
```

prop-miss-complete-var

Proportion of variables containing missings or complete values

Description

Calculate the proportion of variables that contain a single missing or complete values.
prop_complete

Usage

prop_miss_var(data)

prop_complete_var(data)

Arguments

data a dataframe

Value

numeric the proportion of variables that contain missing or complete data

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case()
prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary()
miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary()
miss_var_table()

Examples

prop_miss_var(riskfactors)
prop_miss_var(oceanbuoys)
prop_complete_var(riskfactors)
prop_complete_var(oceanbuoys)

prop_complete Return the proportion of complete values

Description

The complement to prop_miss

Usage

prop_complete(x)

Arguments

x vector or data.frame

Value

numeric proportion of complete values
Examples

```r
prop_complete(airquality)
prop_complete(airquality$Ozone)
```

Description

Return a vector of the proportion of missing values in each row.

Substitute for `rowMeans(!is.na(data))`, but it also checks if input is NULL or is a dataframe.

Usage

```r
prop_complete_row(data)
```

Arguments

- `data`: a dataframe

Value

numeric vector of the proportion of missing values in each row

See Also

- `pct_miss_case()`, `prop_miss_case()`, `pct_miss_var()`, `prop_miss_var()`
- `pct_complete_case()`, `prop_complete_case()`, `pct_complete_var()`, `prop_complete_var()`
- `miss_prop_summary()`, `miss_case_summary()`, `miss_var_prop()`, `miss_var_summary()`
- `miss_case_table()`, `miss_summary()`, `miss_var_run()`, `miss_var_span()`
- `n_complete()`, `n_complete_row()`, `n_miss()`, `n_miss_row()`, `pct_complete()`

Examples

```r
prop_complete_row(airquality)
```
prop_miss

Return the proportion of missing values

Description

This is shorthand for `mean(is.na(x))`

Usage

`prop_miss(x)`

Arguments

- `x`: vector or data.frame

Value

numeric the proportion of missing values in x

Examples

```
prop_miss(airquality)
prop_miss(airquality$Ozone)
```

prop_miss_row

Return a vector of the proportion of missing values in each row

Description

Substitute for `rowMeans(is.na(data))`, but it also checks if input is NULL or is a dataframe

Usage

`prop_miss_row(data)`

Arguments

- `data`: a dataframe

Value

numeric vector of the proportion of missing values in each row
recode_shadow

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case()
prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary()
miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary()
miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete()
pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

prop_miss_row(airquality)

recode_shadow

| Add special missing values to the shadow matrix |

Description

It can be useful to add special missing values, nanair supports this with the recode_shadow function.

Usage

recode_shadow(data, ...)

Arguments

data | data.frame

... | A sequence of two-sided formulas as in dplyr::case_when, but when a wrapper function .where written around it.

Value

a dataframe with altered shadows

Examples

```r
## Not run:
df <- tibble::tribble(
  ~wind, ~temp,
  -99,  45,
  68,   NA,
  72,   25
)
dfs <- bind_shadow(df)
```
dfs

recode_shadow(dfs, temp = .where(wind == -99 ~ "bananas"))

need to debug this

recode_shadow(dfs, temp = .where(wind == -99 ~ "bananas"))
recode_shadow(wind = .where(wind == -99 ~ "apples"))

End(Not run)

replace_to_na
Replace values with missings

Description

This function is Defunct, please see `replace_with_na()`.

Usage

`replace_to_na(...)`

Arguments

`...`
additional arguments for methods.

Value

values replaced by NA

replace_with_na
Replace values with missings

Description

Specify variables and their values that you want to convert to missing values. This is a complement to `tidyr::replace_na`.

Usage

`replace_with_na(data, replace = list(), ...)`
Arguments

data A data.frame
replace A named list given the NA to replace values for each column
... additional arguments for methods. Currently unused

Value

Dataframe with values replaced by NA.

See Also

replace_with_na() replace_with_na_all() replace_with_na_at() replace_with_na_if()

Examples

dat_ms <- tibble::tribble(~x, ~y, ~z,
 1, "A", -100,
 3, "N/A", -99,
 NA, NA, -98,
 -99, "E", -101,
 -98, "F", -1)

replace_with_na(dat_ms,
 replace = list(x = -99))

replace_with_na(dat_ms,
 replace = list(x = -99))

replace_with_na(dat_ms,
 replace = list(x = c(-99, -98)))

replace_with_na(dat_ms,
 replace = list(x = c(-99, -98),
 y = c("N/A")))

replace_with_na(dat_ms,
 replace = list(x = c(-99, -98),
 y = c("N/A"),
 z = c(-101)))

replace_with_na_all

Replace all values with NA where a certain condition is met

Description

This function takes a dataframe and replaces all values that meet the condition specified as an NA value, following a special syntax.
Usage

```
replace_with_na_all(data, condition)
```

Arguments

data A dataframe

condition A condition required to be TRUE to set NA. Here, the condition is specified with a formula, following the syntax: \(~.x \{condition\}\). For example, writing \(~.x < 20\) would mean "where a variable value is less than 20, replace with NA".

Examples

dat_ms <- tibble::tribble(~x, ~y, ~z,
 1, "A", -100,
 3, "N/A", -99,
 NA, NA, -98,
 -99, "E", -101,
 -98, "F", -1)

dat_ms
replace all instances of -99 with NA
replace_with_na_all(data = dat_ms,
 condition = ~.x == -99)

replace all instances of -98 with NA
replace_with_na_all(data = dat_ms,
 condition = ~.x == -98)

replace all instances of -99 or -98 with NA
replace_with_na_all(dat_ms,
 condition = ~.x %in% c(-99, -98))

replace all instances of -99 or -98, or "N/A" with NA
replace_with_na_all(dat_ms,
 condition = ~.x %in% c(-99, -98, "N/A"))

replace all instances of common na strings
replace_with_na_all(dat_ms,
 condition = ~.x %in% common_na_strings)

where works with functions
replace_with_na_all(airquality, ~ sqrt(.x) < 5)

replace_with_na_at

Replace specified variables with NA where a certain condition is met

Description

Replace specified variables with NA where a certain condition is met
Usage

replace_with_na_at(data, .vars, condition)

Arguments

data dataframe
.vars A character string of variables to replace with NA values
.condition A condition required to be TRUE to set NA. Here, the condition is specified with
 a formula, following the syntax: ~.x {condition}. For example, writing ~.x < 20
 would mean "where a variable value is less than 20, replace with NA".

Value

a dataframe

Examples

dat_ms <- tibble::tribble(~x, ~y, ~z,
 1, "A", -100,
 3, "N/A", -99,
 NA, NA, -98,
 -99, "E", -101,
 -98, "F", -1)

dat_ms

replace_with_na_at(data = dat_ms,
 .vars = "x",
 condition = ~.x == -99)

replace_with_na_at(data = dat_ms,
 .vars = c("x","z"),
 condition = ~.x == -99)

replace using values in common_na_strings
replace_with_na_at(data = dat_ms,
 .vars = c("x","z"),
 condition = ~.x %in% common_na_strings)

replace_with_na_if

Replace values with NA based on some condition, for variables that
meet some predicate

Description

Replace values with NA based on some condition, for variables that meet some predicate
Usage

 replace_with_na_if(data, .predicate, condition)

Arguments

data Dataframe
.predicate A predicate function to be applied to the columns or a logical vector.
.condition A condition required to be TRUE to set NA. Here, the condition is specified with a
 formula, following the syntax: ~(condition). For example, writing ~.x < 20 would mean "where a variable value is less than 20, replace with NA".

Value

 Dataframe

Examples

dat_ms <- tibble::tribble(~x, ~y, ~z,
 1, "A", -100,
 3, "N/A", -99,
 NA, NA, -98,
 -99, "E", -101,
 -98, "F", -1)

dat_ms

 replace_with_na_if(data = dat_ms,
 .predicate = is.character,
 condition = ~(x == "N/A"))

 replace_with_na_if(data = dat_ms,
 .predicate = is.character,
 condition = ~.x %in% common_na_strings)

 replace_with_na(dat_ms,
 to_na = list(x = c(-99, -98),
 y = c("N/A"),
 z = c(-101)))

Description

The data is a subset of the 2009 survey from BRFSS, an ongoing data collection program designed to measure behavioral risk factors for the adult population (18 years of age or older) living in households.
Usage

data(riskfactors)

Format

An object of class tbl_df (inherits from tbl.data.frame) with 245 rows and 34 columns.

Source

https://www.cdc.gov/brfss/annual_data/annual_2009.htm

See Also

deep永不

format: a data frame with 245 observations on the following 34 variables.

state A factor with 52 levels. The labels and states corresponding to the labels are as follows:

sex A factor with levels Male Female.

age A numeric vector from 7 to 97.

weight_lbs The weight without shoes in pounds.

height_inch The weight without shoes in inches.

bmi Body Mass Index (BMI). Computed by weight in Kilogram / (height in Meters * height in Meters). Missing if any of weight or height is missing.

marital A factor with levels Married Divorced Widowed Separated Never Married Unmarried Couple.

pregnant Whether pregnant now with two levels Yes and No.

children A numeric vector giving the number of children less than 18 years of age in household.

education A factor with the education levels 1 2 3 4 5 6 as 1: Never attended school or only kindergarten; 2: Grades 1 through 8 (Elementary); 3: Grades 9 through 11 (Some high school); 4: Grade 12 or GED (High school graduate); 5: College 1 year to 3 years (Some college or technical school); 6: College 4 years or more (College graduate).

employment A factor showing the employment status with levels 1 2 3 4 5 7 8. The labels mean – 1: Employed for wages; 2: Self-employed; 3: Out of work for more than 1 year; 4: Out of work for less that 1 year; 5: A homemaker; 6: A student; 7: Retired; 8: Unable to work.

income The annual household income from all sources with levels <10k 10-15k 15-20k 20-25k 25-35k 35-50k 50-75k >75k Don’t know Refused.
veteran A factor with levels 1 2 3 4 5. The question for this variable is: Have you ever served on active duty in the United States Armed Forces, either in the regular military or in a National Guard or military reserve unit? Active duty does not include training for the Reserves or National Guard, but DOES include activation, for example, for the Persian Gulf War. And the labels are meaning: 1: Yes, now on active duty; 2: Yes, on active duty during the last 12 months, but not now; 3: Yes, on active duty in the past, but not during the last 12 months; 4: No, training for Reserves or National Guard only; 5: No, never served in the military.

hispanic A factor with levels Yes No corresponding to the question: are you Hispanic or Latino?

health_general Answer to question "in general your health is" with levels Excellent VeryGood Good Fair Poor Refused.

health_physical The number of days during the last 30 days that the respondent’s physical health was not good. -7 is for "Don’t know/Not sure", and -9 is for "Refused".

health_mental The number of days during the last 30 days that the respondent’s mental health was not good. -7 is for "Don’t know/Not sure", and -9 is for "Refused".

health_poor The number of days during the last 30 days that poor physical or mental health keep the respondent from doing usual activities, such as self-care, work, or recreation. -7 is for "Don’t know/Not sure", and -9 is for "Refused".

health_cover Whether having any kind of health care coverage, including health insurance, pre-paid plans such as HMOs, or government plans such as Medicare. The answer has two levels: Yes and No.

provide_care Whether providing any such care or assistance to a friend or family member during the past month, with levels Yes and No.

activity_limited Whether being limited in any way in any activities because of physical, mental, or emotional problems, with levels Yes and No.

drink_any Whether having had at least one drink of any alcoholic beverage such as beer, wine, a malt beverage or liquor during the past 30 days, with levels Yes and No.

drink_days The number of days during the past 30 days that the respondent had at least one drink of any alcoholic beverage. -7 is for "Don’t know/Not sure", and -9 is for "Refused".

drink_avg The number of drinks on the average the respondent had on the days when he/she drank, during the past 30 days. -7 is for "Don’t know/Not sure", and -9 is for "Refused".

smoke_100 Whether having smoked at least 100 cigarettes in the entire life, with levels Yes and No.

smoke_days The frequency of days now smoking, with levels Everyday Somedays and NotAtAll(not at all).

smoke_stop Whether having stopped smoking for one day or longer during the past 12 months because the respondent was trying to quit smoking, with levels Yes and No.

smoke_last A factor with levels 3 4 5 6 7 8 corresponding to the question: how long has it been since last smoking cigarettes regularly? The labels mean: 3: Within the past 6 months (3 months but less than 6 months ago); 4: Within the past year (6 months but less than 1 year ago); 5: Within the past 5 years (1 year but less than 5 years ago); 6: Within the past 10 years (5 years but less than 10 years ago); 7: 10 years or more; 8: Never smoked regularly.

diet_fruit The number of fruit the respondent eat every year, not counting juice. -7 is for "Don’t know/Not sure", and -9 is for "Refused".
diet_salad The number of servings of green salad the respondent eat every year. -7 is for "Don’t know/Not sure", and -9 is for "Refused".

diet_potato The number of servings of potatoes, not including french fries, fried potatoes, or potato chips, that the respondent eat every year. -7 is for "Don’t know/Not sure", and -9 is for "Refused".

diet_carrot The number of carrots the respondent eat every year. -7 is for "Don’t know/Not sure", and -9 is for "Refused".

diet_vegetable The number of servings of vegetables the respondent eat every year, not counting carrots, potatoes, or salad. -7 is for "Don’t know/Not sure", and -9 is for "Refused".

diet_juice The number of fruit juices such as orange, grapefruit, or tomato that the respondent drink every year. -7 is for "Don’t know/Not sure", and -9 is for "Refused".

library(MissingDataGUI) (named brfss)

Examples

explore the missingness with vis_miss
library(naniar)

vis_miss(riskfactors)

Look at the missingness in the variables
miss_var_summary(riskfactors)

and now as a plot
gg_miss_var(riskfactors)

Look at the missingness in bmi and poor health
library(ggplot2)
p <-
ggplot(riskfactors,
 aes(x = health_poor,
 y = bmi)) +
 geom_miss_point()

p

for each sex?
p + facet_wrap(~sex)
for each education bracket?
p + facet_wrap(~education)
Description

impute_mean imputes the mean for a vector. To get it to work on all variables, use impute_mean_all. To only impute variables that satisfy a specific condition, use the scoped variants, impute_below_at, and impute_below_if. To use _at effectively, you must know that _at` affects variables selected with a character vector, or with vars()`.

Usage

```r
impute_mean_all(.tbl)
impute_mean_at(.tbl, .vars)
impute_mean_if(.tbl, .predicate)
```

Arguments

- `.tbl` a data.frame
- `.vars` variables to impute
- `.predicate` variables to impute

Value

an dataset with values imputed

Examples

```r
# select variables starting with a particular string.
library(dplyr)
impute_mean_all(airquality)

impute_mean_at(airquality, .vars = c("Ozone", "Solar.R"))
impute_mean_at(airquality, .vars = vars(Ozone))
impute_mean_if(airquality, .predicate = is.numeric)
```

Not run:

```r
library(ggplot2)
airquality %>%
  bind_shadow() %>%
  impute_mean_all() %>%
  add_label_shadow() %>%
  ggplot(aes(x = Ozone, y = Solar.R, colour = any_missing)) +
  geom_point()
```
Scoped variants of `impute_median`

Description

`impute_median` imputes the median for a vector. To get it to work on all variables, use `impute_median_all`. To only impute variables that satisfy a specific condition, use the scoped variants, `impute_below_at` and `impute_below_if`. To use `at` effectively, you must know that `at` affects variables selected with a character vector, or with `vars()`.

Usage

```r
impute_median_all(.tbl)

impute_median_at(.tbl, .vars)

impute_median_if(.tbl, .predicate)
```

Arguments

- `.tbl` a data.frame
- `.vars` variables to impute
- `.predicate` variables to impute

Value

an dataset with values imputed

Examples

```r
# select variables starting with a particular string.
library(dplyr)
impute_median_all(airquality)
impute_median_at(airquality, .vars = c("Ozone", "Solar.R"))
impute_median_at(airquality, .vars = vars(Ozone))
impute_median_if(airquality, .predicate = is.numeric)

## Not run:
library(ggplot2)
```
shade

```
airquality %>%
  bind_shadow() %>%
   impute_median_all() %>%
     add_label_shadow() %>%
       ggplot(aes(x = Ozone,
                   y = Solar.R,
                   colour = any_missing)) +
       geom_point()

## End(Not run)
```
shadow_expand_relevel Expand and relevel a shadow column with a new suffix

Description

Internal function to handle appropriate expansion and releveling of shadow variables.

Usage

shadow_expand_relevel(.var, suffix)

Arguments

.var a variable in a data.frame
suffix a character suffix to add to NA_, e.

Value

a factor with expanded levels

Examples

```r
## Not run:
df <- tibble::tribble(
  ~wind, ~temp,
  -99, 45,
  68, NA,
  72, 25
)
dfs <- bind_shadow(df)
test_shade <- dfs$wind_NA
shadow_expand_relevel(test_shade, "weee")
dfs %>%
  mutate(temp_NA = shadow_expand_relevel(temp_NA, "weee"))

# test that this breaks
shadow_expand_relevel(airquality, "weee")

## End(Not run)
```
shadow_long

Reshape shadow data into a long format

Description

Once data is in nabular form, where the shadow is bound to the data, it can be useful to reshape it into a long format with the columns

Usage

shadow_long(shadow_data, ..., only_main_vars = TRUE)

Arguments

shadow_data a data.frame
... bare name of variables that you want to focus on
only_main_vars logical - do you want to filter down to main variables?

Value
data in long format, with columns variable, value, variable_NA, and value_NA.

Examples

aq_shadow <- bind_shadow(airquality)
shadow_long(aq_shadow)

then filter only on Ozone
shadow_long(aq_shadow, Ozone)

shadow_long(aq_shadow, Ozone, Solar.R)

shadow_shift

Shift missing values to facilitate missing data exploration/visualisation

Description

shadow_shift transforms missing values to facilitate visualisation, and has different behaviour for different types of variables. For numeric variables, the values are shifted to 10% below the minimum value for a given variable plus some jittered noise, to separate repeated values, so that missing values can be visualised along with the rest of the data.
Usage

shadow_shift(x, ...)

Arguments

x a variable of interest to shift
...

extra arguments to pass

See Also

add_shadow_shift() cast_shadow_shift() cast_shadow_shift_label()

Examples

airquality$Ozone
shadow_shift(airquality$Ozone)
library(dplyr)
airquality %>%
 mutate(Ozone_shift = shadow_shift(Ozone))

shadow_shift.numeric Shift (impute) numeric values for graphical exploration

Description

Shift (impute) numeric values for graphical exploration

Usage

S3 method for class 'numeric'
shadow_shift(
 x,
 prop_below = 0.1,
 jitter = 0.05,
 seed_shift = 2017 - 7 - 1 - 1850,
 ...
)

Arguments

x a variable of interest to shift
prop_below the degree to shift the values. default is
jitter the amount of jitter to add. default is 0.05
seed_shift a random seed to set, if you like
...

extra arguments to pass
Description

stat_miss_point adds a geometry for displaying missingness to geom_point

Usage

```r
stat_miss_point(
  mapping = NULL,
  data = NULL,
  prop_below = 0.1,
  jitter = 0.05,
  geom = "point",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  ...
)
```

Arguments

- **mapping**: Set of aesthetic mappings created by `ggplot2::aes()` or `ggplot2::aes_()`. If specified and `inherit.aes = TRUE` (the default), is combined with the default mapping at the top level of the plot. You only need to supply mapping if there isn’t a mapping defined for the plot.
- **data**: A data frame. If specified, overrides the default data frame defined at the top level of the plot.
- **prop_below**: the degree to shift the values. The default is 0.1
- **jitter**: the amount of jitter to add. The default is 0.05
- **geom**: stat Override the default connection between geom_point and stat_point.
- **position**: Position adjustment, either as a string, or the result of a call to a position adjustment function
- **na.rm**: If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values.
- **show.legend**: logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
- **inherit.aes**: If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders.
- **...**: other arguments passed on to `ggplot2::layer()`. There are three types of arguments you can use here:
test_if_dataframe

Test if input is a data.frame

description

Test if input is a data.frame

Usage

test_if_dataframe(x)

Arguments

x object

Value

an error if input (x) is a data.frame

Examples

Not run:
success
test_if_dataframelairquality)
#fail
my_test <- matrix(10)
test_if_dataframe(my_test)

End(Not run)
test_if_missing

Description
Test if the input is Missing

Usage
test_if_missing(x)

Arguments
x object

Value
an error if input (x) is not specified

Examples
Not run:
success
my_test <- x
test_if_null(my_test)
fail
test_if_missing()

End(Not run)

test_if_null

Description
Test if the input is NULL

Usage
test_if_null(x)

Arguments
x object
unbinders

Unbind (remove) shadow from data, and vice versa

Description

Remove the shadow variables (which end in _NA) from the data, or vice versa. This will also remove the nabular class from the data.

Usage

unbind_shadow(data)
unbind_data(data)

Arguments

data data.frame containing shadow columns (created by bind_shadow())

Value

data.frame without shadow columns if using unbind_shadow(), or without the original data, if using unbind_data().

Examples

bind shadow columns
aq_sh <- bind_shadow(airquality)

print data
aq_sh

remove shadow columns
unbind_shadow(aq_sh)
remove data
unbind_data(aq_sh)

errors when you don't use data with shadows
Not run:
unbind_data(airquality)
unbind_shadow(airquality)

End(Not run)

update_shadow

Expand all shadow levels

Description

Internal function to appropriately expand and relevel all shadow variables to include a new suffix

Usage

`update_shadow(data, suffix)`

Arguments

- `data`: data.frame
- `suffix`: character vector

Value

data.frame with adjusted levels

Examples

```r
## Not run:
df <- tibble::tribble(~wind, ~temp,
                     -99,  45,
                     68,   NA,
                     72,   25)
dfs <- bind_shadow(df)
update_shadow(dfs, "weee")
update_shadow(dfs, "weee") %>% what_levels()

## End(Not run)
```
what_levels

check the levels of many things

Description

this function is used internally to check what the levels are of the dataframe.

Usage

```
what_levels(x)
```

Arguments

- `x` data.frame, usually

Value

a list containing the levels of everything

where

Split a call into two components with a useful verb name

Description

This function is used inside `recode_shadow` to help evaluate the formula call effectively. `.where` is a special function designed for use in `recode_shadow`, and you shouldn’t use it outside of it.

Usage

```
.where(...)  # case_when style formula
```

Arguments

- `...` case_when style formula

Value

a list of "condition" and "suffix" arguments
where_na

Examples

```r
## Not run:
df <- tibble::tribble(
  ~wind, ~temp,
  -99, 45,
  68, NA,
  72, 25
)

dfs <- bind_shadow(df)

recode_shadow(dfs, 
  temp = .where(wind == -99 ~ "bananas"))

## End(Not run)
```

where_na Which rows and cols contain missings?

Description

Internal function that is short for `which(is.na(x), arr.ind = TRUE)`. Creates array index locations of missing values in a dataframe.

Usage

`where_na(x)`

Arguments

`x` a dataframe

Value

a matrix with columns "row" and "col", which refer to the row and column that identify the position of a missing value in a dataframe

See Also

`which_na()`

Examples

`where_na(airquality)`
`where_na(oceanbuoys$sea_temp_c)`
which_are_shade

Which variables are shades?

Description
This function tells us which variables contain shade information

Usage
which_are_shade(.tbl)

Arguments
.tbl a data.frame or tbl

Value
numeric - which column numbers contain shade information

Examples

df_shadow <- bind_shadow(airquality)

which_are_shade(df_shadow)

which_na

Which elements contain missings?

Description
Equivalent to which(is.na()) - returns integer locations of missing values.

Usage
which_na(x)

Arguments
x a dataframe

Value
integer locations of missing values.
which_na

See Also

`where_na()`

Examples

`which_na(airquality)`
Index

Topic **datasets**
- common_na_numbers, 20
- common_na_strings, 21
- GeomMissPoint, 22
- oceanbuoys, 59
- pedestrian, 64
- riskfactors, 75
- where (where), 90
- add_any_miss, 5
- add_any_miss(), 6–12, 18, 19, 39, 55
- add_label_missings, 6
- add_label_missings(), 6–12, 18, 19, 39, 40, 55
- add_label_shadow, 7
- add_label_shadow(), 6–12, 18, 19, 39, 40, 55
- add_miss_cluster, 8
- add_miss_cluster(), 6–12, 18, 19, 39, 55
- add_n_miss, 8
- add_n_miss(), 6–8, 11, 12, 39, 55
- add_prop_miss, 9
- add_prop_miss(), 6–12, 18, 19, 39, 55
- add_shadow, 10
- add_shadow(), 55
- add_shadow_shift, 11
- add_shadow_shift(), 6–12, 18, 19, 39, 55, 84
- add_span_counter, 12
- all-is-miss-complete, 13
- all_complete, 14
- all_complete(all-is-miss-complete), 13
- all_miss(all-is-miss-complete), 13
- all_miss(), 14
- all_na(all-is-miss-complete), 13
- any-na, 13
- any_complete(any-na), 13
- any_miss(any-na), 13
- any_na(any-na), 13
- any_row_miss, 14
- any_shade(is_shade), 37
- are_shade(is_shade), 37
- as_shadow, 15
- as_shadow(), 55
- as_shadow.data.frame, 15
- as_shadow_upset, 16
- bind_shadow, 16
- bind_shadow(), 6–12, 18, 19, 39, 54, 55, 88
- cast_shadow, 17
- cast_shadow(), 6–12, 39, 55
- cast_shadow_shift, 18
- cast_shadow_shift(), 18, 19, 55, 84
- cast_shadow_shift_label, 19
- cast_shadow_shift_label(), 18, 19, 55, 84
- common_na_numbers, 20
- common_na_strings, 21
- complete_case_pct
 - (miss-pct-prop-defunct), 41
- complete_case_prop
 - (miss-pct-prop-defunct), 41
- complete_var_pct
 - (miss-pct-prop-defunct), 41
- complete_var_prop
 - (miss-pct-prop-defunct), 41
- draw_key_missing_point(), 55
- gather_shadow, 22
- gather_shadow(), 55
- geom_miss_point, 23
- geom_miss_point(), 25–31, 55
- GeomMissPoint, 22
- gg_miss_case, 25
- gg_miss_case(), 26–31, 55
- gg_miss_case_cumsum, 25, 26, 27–31
- gg_miss_case_cumsum(), 55
- gg_miss_fct, 26
- gg_miss_fct(), 25, 26, 28–31, 55
- gg_miss_span, 27
- gg_miss_span(), 25–27, 29–31, 55
unbind_data (unbinders), 88
unbind_data(), 88
unbind_shadow (unbinders), 88
unbind_shadow(), 88
unbinders, 88
update_shadow, 89

vis_miss(), 55

what_levels, 90
where, 90
where_na, 91
where_na(), 55, 93
which_are_shade, 92
which_na, 92
which_na(), 91