Package ‘ncf’

May 3, 2018

Version 1.2-4
Date 2018-05-01
Title Spatial Covariance Functions
Author Ottar N. Bjornstad [aut, cre],
 Jun Cai [ctb]
Maintainer Ottar N. Bjornstad <onb1@psu.edu>
Depends R (>= 2.8.0)
Description R functions for analyzing spatial (cross-)covariance: the
 nonparametric (cross-)covariance function, the spline correlogram, the
 nonparametric phase coherence function, local indicators of spatial
 association (LISA), (Mantel) correlogram, (Partial) Mantel test.
License GPL (>= 2)
URL http://ento.psu.edu/directory/onb1
BugReports https://github.com/bjornsta/ncf/issues
NeedsCompilation no
RoxygenNote 6.0.1
Repository CRAN
Date/Publication 2018-05-03 21:23:35 UTC

R topics documented:

cc.offset .. 2
circ.cor2 .. 3
cor2 ... 4
correlog .. 4
correlog.nc ... 6
ff.filter .. 8
gather ... 9
gcdist ... 10
lbm ... 10
lisa ... 11
Function to calculate the distance at which the cross-correlation peaks for Sncf objects

Description

Alternative `summary` method for class "Sncf2D".

Usage

```r
cc.offset(object, xmax = NULL)
```

Arguments

- `object` an object of class "Sncf2D", usually, as a result of a call to `sncfRd` or `spline.correlog2D`.
- `xmax` the maximum distance to consider (default is no upper limit).
Value

An matrix of class "cc.offset" is returned with columns:

- **angle**: the cardinal angle (in degrees).
- **distance**: the distances (in the positive direction) to the mode of the (cross-) correlation function (with 95% confidence bounds).
- **correlation**: the correlation at the mode (with CI) for each of the cardinal angles.

See Also

`Sncf2D`, `summary.Sncf2D`, `plot.cc.offset`

circ.cor2

Circular correlation

description

A vectorized function to calculate a correlation matrix for panels of data.

Usage

```
circ.cor2(x, y = NULL)
```

Arguments

- **x**: a matrix.
- **y**: an optional second matrix.

Details

Missing values are not allowed.

Value

A correlation matrix is returned.

References

cor2

Description
Called by various functions to calculate Pearson or angular correlation matrices.

Usage
cor2(x, y = NULL, circ = FALSE)

Arguments
- x: a matrix.
- y: an optional second matrix.
- circ: If TRUE, the observations are assumed to be angular (in radians), and circular correlation is used. If FALSE, Pearson product moment correlations is returned.

Details
An auxiliary function to ease the maintenance.

Value
A correlation matrix is returned.

References

correlog

Description
correlog is the function to estimate spatial (cross-)correlograms. Either univariate or multivariate (time series) for each site can be used.

Usage
correlog(x, y, z, w = NULL, increment, resamp = 1000, latlon = FALSE, na.rm = FALSE, quiet = FALSE)
correlog

Arguments

- `x`: vector of length n representing the x coordinates (or longitude; see `latlon`).
- `y`: vector of length n representing the y coordinates (or latitude).
- `z`: vector of length n or matrix of dimension n x p representing p observation at each location.
- `w`: an optional second variable with identical dimension to z (to estimate cross-correlograms).
- `increment`: increment for the uniformly distributed distance classes.
- `resamp`: the number of permutations under the null to assess level of significance.
- `latlon`: If TRUE, coordinates are latitude and longitude.
- `na.rm`: If TRUE, NA's will be dealt with through pairwise deletion of missing values.
- `quiet`: If TRUE, the counter is suppressed during execution.

Details

The spatial (cross-)correlogram and Mantel (cross-)correlogram estimates the spatial dependence at discrete distance classes.

The regionwide similarity forms the reference line (the zero-line); the x-intercept is thus the distance at which objects are no more similar than that expected by chance alone across the region.

If the data are univariate, the spatial dependence is measured by Moran's I. If it is multivariate, it is measured by the centred Mantel statistic. (Use `correlog.nc` if the non-centered multivariate correlogram is desired).

Missing values are allowed – values are assumed missing at random.

Value

An object of class "correlog" is returned, consisting of the following components:

- `correlation`: the value for the Moran (or Mantel) similarity.
- `mean.of.class`: the actual average of the distances within each distance class.
- `nlok`: the number of pairs within each distance class.
- `x.intercept`: the interpolate x.intercept of Epperson (1993).
- `p`: the permutation two-sided p-value for each distance class.
- `corr0`: If a cross-correlogram is calculated, `corr0` gives the empirical cross-correlation at distance zero.

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>
References

See Also

plot.correlog, spline.correlog, correlog, correlog.nc

Examples

first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]

z data from an exponential random field
z <- cbind(
 rmvn.spa(x = x, y = y, p = 2, method = "exp"),
 rmvn.spa(x = x, y = y, p = 2, method = "exp")
)

w data from a gaussian random field
w <- cbind(
 rmvn.spa(x = x, y = y, p = 2, method = "gaus"),
 rmvn.spa(x = x, y = y, p = 2, method = "gaus")
)

Spatial correlogram
fit1 <- correlog(x = x, y = y, z = z[, 1], increment = 2, resamp = 0)
Not run: plot(fit1)

Mantel correlogram
fit2 <- correlog(x = x, y = y, z = z, increment = 2, resamp = 0)
Not run: plot(fit2)

Mantel cross-correlogram
fit3 <- correlog(x = x, y = y, z = z, w = w, increment = 2, resamp = 0)
Not run: plot(fit3)
correlog.nc

Description

correlog.nc is the function to estimate the non-centred (cross-)correlogram. The noncentred correlogram provides estimates of the spatial correlation for discrete distance classes. The function requires multiple observations at each location (use correlog otherwise).

Usage

correlog.nc(x, y, z, w = NULL, increment, resamp = 1000, na.rm = FALSE, latlon = FALSE, quiet = FALSE)

Arguments

- `x`: vector of length n representing the x coordinates (or longitude; see latlon).
- `y`: vector of length n representing the y coordinates (or latitude).
- `z`: a matrix of dimension n x p representing p (>1) observation at each location.
- `w`: an optional second variable with identical dimension to z (to estimate cross-correlograms).
- `increment`: increment for the uniformly distributed distance classes.
- `resamp`: the number of permutations under the null to assess level of significance.
- `na.rm`: If TRUE, NA's will be dealt with through pairwise deletion of missing values.
- `latlon`: If TRUE, coordinates are latitude and longitude.
- `quiet`: If TRUE, the counter is supressed during execution.

Details

The non-centred correlogram estimates spatial dependence at discrete distance classes. The method corresponds to the modified correlogram of Koenig & Knops (1998), but augmented to potentially estimate the cross-correlogram. The function requires multiple observations at each location. Missing values is allowed in the multivariate case (pairwise deletion will be used). Missing values are allowed – values are assumed missing at random.

Value

An object of class "correlog" is returned, consisting of the following components:

- `correlation`: the value for the Moran (or Mantel) similarity.
- `mean.of.class`: the actual average of the distances within each distance class.
- `nlok`: the number of pairs within each distance class.
- `x.intercept`: the interpolate x.intercept of Epperson (1993).
- `p`: the permutation p-value for each distance-class.
- `corr0`: If a cross-correlogram is calculated, corr0 gives the empirical within-patch cross-correlation.

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>
References

See Also

plot.correlog.correlog

Examples

first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]

z data from an exponential random field
z <- cbind(
 rmvn.spa(x = x, y = y, p = 2, method = "exp"),
 rmvn.spa(x = x, y = y, p = 2, method = "exp")
)

w data from a gaussian random field
w <- cbind(
 rmvn.spa(x = x, y = y, p = 2, method = "gaus"),
 rmvn.spa(x = x, y = y, p = 2, method = "gaus")
)

noncentered (Mantel) correlogram
fit1 <- correlog.nc(x = x, y = y, z = z, increment = 2, resamp = 500)
Not run: plot(fit1)

ff.filter

Fourier filter for c’fns

Description

Fourier filter to ensure positive semi-definite correlation functions. Called by various functions.

Usage

ff.filter(x)

Arguments

x

a vector.
Description

Called by various functions to calculate various intercepts.

Usage

`gather(u, v, w, moran, df, xpoints, filter, fw)`

Arguments

- **u**: a vector.
- **v**: a vector.
- **w**: a vector.
- **moran**: a matrix.
- **df**: a scalar.
- **xpoints**: a vector.
- **filter**: a logical.
- **fw**: a scalar

Details

An auxiliary function to ease maintenance.

Value

A list is returned.
gcdist

Great-circle distance

Description

Great-circle distance function to calculate spatial distance from lat-long data. Called by various functions.

Usage

gcdist(x, y)

Arguments

x vector of longitudes.
y vector of latitudes.

Value

The distance in km is returned

lbm

Spatio-temporal data panel of Larch Budmoth defoliation

Description

This is the data in Bjornstad et al. (2002).

Usage

data(lbm)

Format

A data-frame with 135 rows and 40 columns. The first two are the x- and y-coordinates (in m), the following 38 represents the defoliation in years 1961 through 1998.

References

lisa

Local indicator of spatial association

Description

`lisa` is a function to estimate the local indicators of spatial association. The function assumes univariate data at each location. For multivariate data use `lisa.nc`.

Usage

```r
lisa(x, y, z, neigh, resamp = 1000, latlon = FALSE, quiet = FALSE)
```

Arguments

- `x`: vector of length n representing the x coordinates (or latitude; see latlon).
- `y`: vector of length n representing the y coordinates (or longitude).
- `z`: vector of n representing the observation at each location.
- `neigh`: neighborhood size.
- `resamp`: number of resamples under the NULL to generate p-values.
- `latlon`: If TRUE, coordinates are latitude and longitude.
- `quiet`: If TRUE, the counter is suppressed during execution.

Details

This is the function to estimate the local indicators of spatial association modified form Anselin (1995). The statistic is the average autocorrelation within a neighborhood.

Value

An object of class "lisa" is returned, consisting of the following components:

- `correlation`: the autocorrelation within the neighborhood (neigh) of each observation measured using Moran’s I.
- `p`: the permutation two-sided p-value for each observation.
- `mean`: the mean of the observations inside each neighborhood within each neighborhood.
- `n`: the number of observations within each neighborhood.
- `dmean`: the actual mean distance within each neighborhood.
- `z`: the original observations.
- `coord`: a list with the x and y coordinates.

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>
lisa.nc

Non-centered indicators of spatial association

Description

lisa.nc is a function to estimate the (noncentred) multivariate local indicators of spatial association. The function requires multiple observations at each location. For single observations at each location use lisa.

Usage

lisa.nc(x, y, z, neigh, na.rm = FALSE, resamp = 1000, latlon = FALSE, quiet = FALSE)

Arguments

x
 vector of length n representing the x coordinates (or latitude; see latlon).
y
 vector of length n representing the y coordinates (or longitude).
z
 a matrix of dimension n x p representing p (>1) observation at each location.
neigh
 neighborhood size.
na.rm
 If TRUE, NA's will be dealt with through pairwise deletion of missing values.
resamp
 number of resamples under the NULL to generate p-values
latlon
 If TRUE, coordinates are latitude and longitude.
quiet
 If TRUE, the counter is suppressed during execution.

Examples

first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]

z data from an exponential random field
z <- rmvn.spa(x = x, y = y, p = 2, method = "gaus")

lisa analysis
fit1 <- lisa(x = x, y = y, z = z, neigh = 3, resamp = 500)
Not run: plot(fit1, neigh.mean=FALSE)
Details

This is the function to estimate the (non-centered) local indicators of spatial association modified form Anselin (1995). 'correlation' is the average correlation within a neighborhood. The function requires multiple observations at each location.

Missing values are allowed – values are assumed missing at random, and pairwise complete observations will be used.

Value

An object of class "lisa" is returned, consisting of the following components:

- correlation: the mean correlation within the neighborhood (neigh).
- p: the permutation two-sided p-value for each distance-class.
- n: the number of pairs within each neighborhood.
- dmean: the actual mean of distance within each neighborhood.
- coord: a list with the x and y coordinates.

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>

References

See Also

lisa

Examples

first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]

z data from an exponential random field
z <- cbind(
 rmvnormspa(x = x, y = y, p = 2, method = "exp"),
 rmvnormspa(x = x, y = y, p = 2, method = "exp")
)

lisa.nc analysis
fit1 <- lisa.nc(x = x, y = y, z = z, neigh = 3)
Not run: plot(fit1)
mantel.correlog Mantel (cross-)correlograms

Description

mantel.correlog is the function to calculate a Mantel (cross-)correlogram. The function requires two (or three) matrices.

Usage

mantel.correlog(dmat, zmat, wmat = NULL, increment, resamp = 1000, quiet = FALSE)

Arguments

dmat a matrix representing distance.
zmat a matrix representing similarity.
wmat an optional third matrix of similarities to calculate a Mantel cross-correlograms.
increment increment for the uniformly distributed distance classes.
resamp the number of permutations under the null to assess level of significance.
quiet If TRUE, the counter is suppressed during execution.

Details

The function calculates Mantel (cross-)correlograms at discrete distance classes from two (or three) matrices. The first is the matrix of distances and the second is a matrix of similarities. The optional third matrix is an additional similarity matrix to be used to calculate a Mantel cross-correlogram. Missing values are allowed – values are assumed missing at random.

Value

An object of class "correlog" is returned, consisting of the following components:
correlation the value for the moran (or Mantel) similarity.
mean.of.class the actual average of the distances within each distance class.
nlok the number of pairs within each distance class.
x.intercept the interpolate x.intercept of Epperson (1993).
p the permutation two-sided p-value for each distance-class.
corr0 If a cross-correlogram is calculated, corr0 gives the empirical cross-correlation at distance zero.

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>
mantel.test

Mantel Test

Description

A simple function to do a permutation-based Mantel test. The data can either be two distance/similarity matrices or (x, y, z) data.

Usage

```r
mantel.test(M1 = NULL, M2 = NULL, x = NULL, y = NULL, z = NULL,
resamp = 1000, latlon = FALSE, quiet = FALSE)
```

Examples

```r
# first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]

# z data from an exponential random field
z <- cbind(
  rmvn.spa(x = x, y = y, p = 2, method = "exp"),
  rmvn.spa(x = x, y = y, p = 2, method = "exp")
)

# w data from a gaussian random field
w <- cbind(rmvn.spa(
  x = x, y = y, p = 2, method = "gaus"),
  rmvn.spa(x = x, y = y, p = 2, method = "gaus")
)

# Make distance and similarity matrices
zmat <- cor(t(z))
wmat <- cor(t(w))
dmat <- sqrt(outer(x, x, "+")^2 + outer(y, y, "+")^2)

# Mantel correlogram
fit1 <- mantel.correlog(dmat = dmat, zmat = zmat, increment = 2, quiet = TRUE, resamp = 0)
## not run: plot(fit1)

# Mantel cross-correlogram
fit2 <- mantel.correlog(dmat = dmat, zmat = zmat, wmat = wmat, increment = 2,
  quiet = TRUE, resamp = 0)
## not run: plot(fit2)
```

See Also

`plot.correlog`

mantel.test

Mantel Test

Description

A simple function to do a permutation-based Mantel test. The data can either be two distance/similarity matrices or (x, y, z) data.

Usage

```r
mantel.test(M1 = NULL, M2 = NULL, x = NULL, y = NULL, z = NULL,
resamp = 1000, latlon = FALSE, quiet = FALSE)
```
Arguments

- **M1**: similarity/distance matrix 1
- **M2**: similarity/distance matrix 2
- **x**: vector of length n representing the x coordinates (or longitude; see latlon).
- **y**: vector of length n representing the y coordinates (or latitude).
- **z**: matrix of dimension n x p representing p observation at each location.
- **resamp**: the number of resamples for the null distribution.
- **latlon**: If TRUE, coordinates are latitude and longitude.
- **quiet**: If TRUE, the counter is suppressed during execution.

Details

Typical usages are

```r
mantel.test(M1, M2, x = NULL, y = NULL, z = NULL, resamp = 1000,
            latlon = FALSE, quiet = FALSE)
mantel.test(x, y, z, M1 = NULL, M2 = NULL, resamp = 1000, latlon = FALSE,
            quiet = FALSE)
```

Missing values are treated through pairwise deletion.

Value

An object of class "Mantel" is returned, consisting of a list with two components:

- **correlation**: the value for the Mantel correlation.
- **p**: the randomization-based two-sided p-value.

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>

Examples

```r
# first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]
# z data from an exponential random field
z <- cbind(
  rmvnrspa(x = x, y = y, p = 2, method = "exp"),
  rmvnrspa(x = x, y = y, p = 2, method = "exp")
)

# the Mantel test
mantel.test(x = x, y = y, z = z[, 1], resamp = 500)
```
Description

mSynch is the function to estimate the mean (cross-)correlation in a spatiotemporal dataset as discussed in Bjornstad et al. (1999). The function requires multiple observations at each location.

Usage

mSynch(x, y = NULL, resamp = 1000, na.rm = FALSE, circ = FALSE, quiet = FALSE)

Arguments

x
matrix of dimension n x p representing p observation at each location (i.e. each row is a time series).

y
optional matrix of dimension m x p representing p observation at each location (i.e. each row is a time series). If provided, the mean cross-correlation between the two panels is computed.

resamp
the number of resamples for the bootstrap or the null distribution.

na.rm
If TRUE, NA's will be dealt with through pairwise deletion of missing values for each pair of time series – it will dump if any one pair has less than two (temporally) overlapping observations.

circ
If TRUE, the observations are assumed to be angular (in radians), and circular correlation is used.

quiet
If TRUE, the counter is supressed during execution.

Details

Missing values are allowed – values are assumed missing at random.

The circ argument computes a circular version of the Pearson’s product moment correlation (see cor2).

Value

An object of class "mSynch" is returned, consisting of a list with two components:

real
the regional average correlation.

boot
a vector of bootstrap resamples.

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>
References

See Also
print.mSynch

Examples
first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]
z data from an exponential random field
z <- cbind(
 rmvn.spa(x = x, y = y, p = 2, method = "exp"),
 rmvn.spa(x = x, y = y, p = 2, method = "exp")
)
mean correlation analysis
fit1 <- mSynch(x = z, resamp = 500)
print(fit1)

partial.mantel.test Partial Mantel test

Description
A simple function to calculate permutation-based partial mantel tests for three matrices, the partial mantel test is calculated to test for relationships between M1 and M2 (M3) controlling for M3 (M2). syntax and logic follows Legendre and Legendre (1998) pp 557-558.

Usage
partial.mantel.test(M1, M2, M3, resamp = 1000, method = "pearson", quiet = FALSE)

Arguments
M1 similarity/distance matrix 1
M2 similarity/distance matrix 2
M3 similarity/distance matrix 3
resamp the number of resamples for the null distribution.
method the method to be used for calculating the correlations.
quiet If TRUE, the counter is suppressed during execution.
Details

Missing values are treated through pairwise deletion.
The method must be one of pearson (default), spearman or kendall.

Value

An object of class "partial.Mantel" is returned, consisting of a list with two components:

- **mantelR** the vector of observed Mantel and partial Mantel correlations.
- **p** the vector of two-sided p-value under randomization (of M1).

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>

References

See Also

mantel.test

Examples

```r
# first generate some sample data and dissimilarity matrices
x <- rnorm(10)
y <- rnorm(10)
z <- rnorm(10)
M1 <- sqrt(outer(x, x, "-")^2)
M2 <- sqrt(outer(y, y, "-")^2)
M3 <- sqrt(outer(z, z, "-")^2)

partial.mantel.test(M1 = M1, M2 = M2, M3 = M3, resamp = 500)
```

plot.cc.offset

Plots the cc.offset summary of the anisotropic spatial correlation-functions

Description

‘plot’ method for class "cc.offset".

Usage

```r
## S3 method for class 'cc.offset'
plot(x, dmax = NULL, inches = NULL, ...)
```
Arguments

- **x**: an object of class "cc.offset", usually, as a result of applying cc.offset to an object of class Sncf2D.
- **dmax**: the maximal distance for radial plot. If NULL, the maximum distance in the data will be used.
- **inches**: the size of the symbols. If NULL, default is 0.1.
- **...**: other arguments

Value

A radial ‘symbol’ plot results. The radius represents the distance to peak correlation (the mode) of the correlation function (in the positive direction). The size of the symbol represents the magnitude of the correlation at the mode for the given cardinal direction.

See Also

cc.offset, Sncf2D, plot.Sncf2D

plot.correlog

Plots spatial correlograms

Description

'plot' method for class "correlog".

Usage

```r
## S3 method for class 'correlog'
plot(x, ...)
```

Arguments

- **x**: an object of class "correlog", usually, as a result of a call to correlog or correlog.nc.
- **...**: other arguments

Value

A spatial or Mantel (cross-correlogram) is plotted.

If a permutation test was performed, values significant at a nominal (two-sided) 5%-level will be represented by filled circles and non-significant values by open circles.

See Also

correlog, correlog.nc
plot.lisa
Plots local indicators of spatial association

Description

‘plot’ method for class "lisa".

Usage

```r
## S3 method for class 'lisa'
plot(x, neigh.mean = FALSE, add = FALSE, inches = 0.2, ...)
```

Arguments

- `x`: an object of class "lisa", usually, as a result of a call to `lisa`.
- `neigh.mean`: If TRUE, size of symbols represents average observation in each neighborhood; If FALSE, size of symbols represents the original observation.
- `add`: If TRUE, a lisa-plot will be added to a pre-existing plot.
- `inches`: scales the size of the symbols.
- `...`: other arguments.

Value

A bubble-plot of observations against spatial coordinates is produced. Below mean values are signified by squares. Above mean values are signified by squares.

If a permutation test was performed, observations for which the associated LISA statistic is positive and significant at a nominal (two-sided) 5%-level will be represented by filled symbols and non-significant values by open symbols. Thus spatial hot-spots are represented by red filled circles and cold-spots by black filled squares.

See Also

`lisa`, `lisa.nc`

plot.Nncf
Plots nonparametric spatial correlation-functions

Description

‘plot’ method for class "Nncf".

Usage

```r
## S3 method for class 'Nncf'
plot(x, xmax = 0, ylim = c(-1, 1), add = FALSE, ...)
```
Arguments

- `x`: an object of class "Sncf", usually, as a result of a call to Sncf (or Snncf.srf).
- `xmax`: the maximal distance to be plotted on the x-axis. If set to zero the maximum distance in the data will be used.
- `ylim`: limits for the y-axis (default: -1, 1).
- `add`: If TRUE the plot is added on to the previous graph.
- `...`: other arguments

Value

A plot of the nonparametric spatial covariance function (with CI’s if boostrapps are available)

See Also

Sncf.plot.Sncf, Sncf.srf, summary.Sncf

plot.Sncf.cov

Plots nonparametric spatial covariance functions

Description

'plot' method for class "Sncf.cov".

Usage

```r
## S3 method for class 'Sncf.cov'
plot(x, xmax = 0, ...)```

Arguments

- `x`: an object of class "Sncf.cov", usually, as a result of a call to Sncf.srf (with `corr` = FALSE).
- `xmax`: the maximal distance to be plotted on the x-axis. If set to zero the maximum distance in the data will be used.
- `...`: other arguments

Value

A plot of the nonparametric spatial covariance function (with CI’s if boostrapps are available)

See Also

Sncf.srf, plot.Sncf
Description

'plot' method for class "Sncf2D".

Usage

## S3 method for class 'Sncf2D'
plot(xL xmax = 0L ylim = c(-1L, 1L), detail = FALSE, ...)  

Arguments

x an object of class "Sncf2D", usually, as a result of a call to Sncf2D.
xmax the maximal distance to be plotted on the x-axis. If set to zero the maximum 
distance in the data will be used.
ylim limits for the y-axis (default: -1, 1).
detail If TRUE, a separate plot is made for each direction (including confidence en-
velopes; see plotSncf for details. If FALSE, all correlation functions are su-
perimposed on the same plot.

Value

A plot or panel-plot results. These represents the xy-plot of distance against spatial (cross-)correlation 
for each cardinal direction.

See Also

Sncf2D, plotSncf

Description

'plot' method for class "spline.correlog".

Usage

## S3 method for class 'spline.correlog'
plot(x, xmax = 0L, ylim = c(-1L, 1L), ...)
print.mSynch

Arguments

x an object of class "spline.correlog", usually, as a result of a call to spline.correlog.
xmax the maximal distance to be plotted on the x-axis. If set to zero the maximum distance in the data will be used.
ylim limits for the y-axis (default: -1, 1).

Value

A plot of the spline correlogram function against distance is produced. 95% pointwise confidence (or null) envelopes are superimposed (if available).

See Also

spline.correlog, summary.spline.correlog

Description

'print' method for class "mSynch".

Usage

## S3 method for class 'mSynch'
print(x, verbose = FALSE, ...)

Arguments

x an object of class "mSynch", usually, as a result of a call to mSynch.
verbose If TRUE, a raw listing of the object is produced. If FALSE, a summary list is produced
...
other arguments

Value

If verbose is FALSE, a list summarizing the regional correlation is produced:

mean the regional mean correlation.
Squantile the quantile distribution from the resampling for the regional correlation.

See Also

mSynch
### print.Sncf

**Print function for Sncf objects**

#### Description

‘print’ method for class "Sncf".

#### Usage

```r
S3 method for class 'Sncf'
print(x, ...)
```

#### Arguments

- **x**: an object of class "Sncf", usually, as a result of a call to Sncf or related.

- **...**: other arguments

#### Value

The function-call is printed to screen.

**See Also**

- [Sncf](#)

---

### print.Sncf2D

**Print function for Sncf2D objects**

#### Description

‘print’ method for class "Sncf2D".

#### Usage

```r
S3 method for class 'Sncf2D'
print(x, ...)
```

#### Arguments

- **x**: an object of class "Sncf2D", usually, as a result of a call to Sncf2D or spline.correlog2D).

- **...**: other arguments

#### Value

The function-call is printed to screen.
See Also
sncfRd

print.spline.correlog  Print function for spline.correlog objects

Description
‘print’ method for class "spline.correlog".

Usage

## S3 method for class 'spline.correlog'
print(x, ...)

Arguments

x an object of class "spline.correlog", usually, as a result of a call to spline.correlog or related).

... other arguments

Value
The function-call is printed to screen.

See Also
spline.correlog

rmvn.spa  Simulate spatial data

Description
Function to generate spatially autocorrelated random normal variates using the eigendecomposition method. Spatial covariance can follow either an exponential or Gaussian model.

Usage

rmvn.spa(x, y, p, method = "exp", nugget = 1)
**Arguments**

- **x**: vector of length n representing the x coordinates (or latitude; see latlon).
- **y**: vector of length n representing the y coordinates (or longitude).
- **p**: the range of the spatial models.
- **method**: correlation function "exp" (exponential) or "gaus" (gaussian). Exponential is the default.
- **nugget**: correlation at the origin (defaults to one)

**Details**

A target covariance matrix A between the n units is generated by calculating the distances between the locations and thereafter evaluating the covariance function in each pairwise distance. A vector, Z, of spatially correlated normal data with the target covariance is subsequently generated using the eigendecomposition method (Ripley, 1987).

**Value**

A vector of spatially correlated random normal variates with zero mean and unit variance is returned.

**Author(s)**

Ottar N. Bjornstad <onb1@psu.edu>

**References**


**See Also**

- mSynch

---

**Sncf**

*Nonparametric (cross-)correlation function for spatio-temporal data*

**Description**

Sncf is the function to estimate the nonparametric (cross-)correlation function using a smoothing spline as an equivalent kernel. The function requires multiple observations at each location (use spline.correlog otherwise).

**Usage**

Sncf(x, y, z, w = NULL, df = NULL, type = "boot", resamp = 1000, npoints = 300, save = FALSE, filter = FALSE, fw = 0, max.it = 25, xmax = FALSE, na.rm = FALSE, latlon = FALSE, circ = FALSE, quiet = FALSE)
Arguments

- **x**: vector of length n representing the x coordinates (or longitude; see latlon).
- **y**: vector of length n representing the y coordinates (or latitude).
- **z**: matrix of dimension n x p representing p observation at each location.
- **w**: an optional second matrix of dimension n x p for species 2 (to estimate the spatial cross-correlation function).
- **df**: degrees of freedom for the spline. Default is sqrt(n).
- **type**: takes the value "boot" (default) to generate a bootstrap distribution or "perm" to generate a null distribution for the estimator.
- **resamp**: the number of resamples for the bootstrap or the null distribution.
- **npoints**: the number of points at which to save the value for the spline function (and confidence envelope / null distribution).
- **save**: If TRUE, the whole matrix of output from the resampling is saved (an resamp x npoints dimensional matrix).
- **filter**: If TRUE, the Fourier filter method of Hall and coworkers is applied to ensure positive semidefiniteness of the estimator. (more work may be needed on this.)
- **fw**: If filter is TRUE, it may be useful to truncate the function at some distance w sets the truncation distance. when set to zero no truncation is done.
- **max.it**: the maximum iteration for the Newton method used to estimate the intercepts.
- **xmax**: If FALSE, the max observed in the data is used. Otherwise all distances greater than xmax is omitted.
- **na.rm**: If TRUE, NA's will be dealt with through pairwise deletion of missing values for each pair of time series – it will dump if any one pair has less than two (temporally) overlapping observations.
- **latlon**: If TRUE, coordinates are latitude and longitude.
- **circ**: If TRUE, the observations are assumed to be angular (in radians), and circular correlation is used.
- **quiet**: If TRUE, the counter is supressed during execution.

Details

Missing values are allowed – values are assumed missing at random.

The circ argument computes a circular version of the Pearson’s product moment correlation (see cor2). This option is to calculate the ‘nonparametric phase coherence function’ (Grenfell et al. 2001)

Value

An object of class "Sncf" is returned, consisting of the following components:

- **real**: the list of estimates from the data.
- **$cbar**: the regional average correlation.
The lowest value at which the function is $= 0$. If correlation is initially negative, the distance is given as negative.

The lowest value at which the function $1/e$.

The extrapolated value at $x=0$ (nugget).

Distance at which regional average correlation is reached.

The $x$-axes for the fitted covariance function.

The values for the covariance function.

A list with the analogous output from the bootstrap or null distribution.

Gives the full vector of output for the $x$, $y$, $e$, $cbar$, $intercept$, $cbar$ and a quantile summary for the resampling distribution.

If save=TRUE, the full raw matrices from the resampling is saved.

The maximum spatial distance considered.

Author(s)
Ottar N. Bjornstad <onb1@psu.edu>

References


Grenfell, B.T., Bjornstad, O.N., & Kappey, J. (2001) Travelling waves and spatial hierarchies in measles epidemics. Nature 414:716-723. [https://doi.org/10.1038/414716a](https://doi.org/10.1038/414716a)

See Also

summary.Sncf, plot.Sncf, Sncf2D, Sncf.srf
Examples

```r
first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]
z data from an exponential random field
z <- cbind(
 rmvnNspa(x = x, y = y, p = 2, method = "exp"),
 rmvnNspa(x = x, y = y, p = 2, method = "exp")
)
w data from a gaussian random field
w <- cbind(
 rmvnNspa(x = x, y = y, p = 2, method = "gaus"),
 rmvnNspa(x = x, y = y, p = 2, method = "gaus")
)
multivariate nonparametric covariance function
fit1 <- Sncf(x = x, y = y, z = z, resamp = 0)
Not run: plot.Sncf(fit1)
summary(fit1)
multivariate nonparametric cross-covariance function
fit2 <- Sncf(x = x, y = y, z = z, w = w, resamp = 0)
Not run: plot(fit2)
summary(fit2)
```

---

**Sncf.srf**  
*Nonparametric (Cross-)Covariance Function from stationary random fields*

**Description**

`Sncf.srf` is the function to estimate the nonparametric for spatio-temporal data from fully stationary random fields (i.e. marginal expectation and variance identical for all locations; use `Sncf` otherwise).

**Usage**

```r
Sncf.srf(x, y, z, w = NULL, avg = NULL, avg2 = NULL, corr = TRUE,
df = NULL, type = "boot", resamp = 0, npoints = 300, save = FALSE,
filter = FALSE, fw = 0, max.it = 25, xmax = FALSE, jitter = FALSE,
quiet = FALSE)
```

**Arguments**

- `x` vector of length n representing the x coordinates (or longitude; see latlon).
- `y` vector of length n representing the y coordinates (or latitude).
- `z` matrix of dimension n x p representing p observation at each location.
- `w` an optional second matrix of dimension n x p for variable 2 (to estimate the spatial cross-correlation function).
avg supplies the marginal expectation of the Markov random field; if TRUE, the sample mean (across the markovian field) is used.

avg2 optionally supplies the marginal expectation of the Markov random field for optional variable 2; if TRUE, the sample mean is used.

corr If TRUE, the covariance function is standardized by the marginal variance (across the markovian field) to return a correlation function (alternatively the covariance function is returned).

df degrees of freedom for the spline. Default is sqrt(n).

type takes the value "boot" (default) to generate a bootstrap distribution or "perm" to generate a null distribution for the estimator

resamp the number of resamples for the bootstrap or the null distribution.

npoints the number of points at which to save the value for the spline function (and confidence envelope / null distribution).

save If TRUE, the whole matrix of output from the resampling is saved (an resamp x npoints dimensional matrix).

filter If TRUE, the Fourier filter method of Hall and coworkers is applied to ensure positive semidefiniteness of the estimator. (more work may be needed on this.)

fw If filter is TRUE, it may be useful to truncate the function at some distance w sets the truncation distance. When set to zero no truncation is done.

max.it the maximum iteration for the Newton method used to estimate the intercepts.

xmax If FALSE, the max observed in the data is used. Otherwise all distances greater than xmax is omitted.

jitter If TRUE, jitters the distance matrix, to avoid problems associated with fitting the function to data on regular grids.

quiet If TRUE, the counter is supressed during execution.

Details

If corr = F, an object of class "Sncf.cov" is returned. Otherwise the class is "Sncf".

Sncf.srf is a function to estimate the nonparametric (cross-)covariance function (as discussed in Bjornstad and Bascompte 2001) for data from a fully stationary random fields. I have found it useful to estimate the (cross-)covariance functions in synthetic data.

Value

An object of class "Sncf" (or "Sncf.cov") is returned. See Sncf for details.

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>

References

See Also

Sncf.summary, Sncf.plot, Sncf.plot.Sncf.plot, Sncf.cov

Examples

# first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]

# z data from an exponential random field
z <- cbind(
  rmvnormspa(x = x, y = y, p = 2, method = "exp"),
  rmvnormspa(x = x, y = y, p = 2, method = "exp")
)

# w data from a gaussian random field
w <- cbind(
  rmvnormspa(x = x, y = y, p = 2, method = "gaus"),
  rmvnormspa(x = x, y = y, p = 2, method = "gaus")
)

# multivariate nonparametric covariance function
fit1 <- Sncf.srf(x = x, y = y, z = z, avg = NULL, corr = TRUE, resamp = 0)
# Not run: plot(fit1)
summary(fit1)

# multivariate nonparametric cross-covariance function (with known
# marginal expectation of zero for both z and w
fit2 <- Sncf.srf(x = x, y = y, z = z, w = w, avg = 0, avg2 = 0, corr = FALSE,
  resamp = 0)
# Not run: plot(fit2)
summary(fit2)

Sncf2D

Anisotropic nonparametric (cross-)correlation function for spatio-temporal data

Description

Sncf2D is the function to estimate the anisotropic nonparametric correlation function in 8 (or arbitrary) directions (North - Southeast). Correlation functions are calculated for each different bearing. The function requires multiple observations at each location. (use spline.correlog2D otherwise.

Usage

Sncf2D(x, y, z, w = NULL, df = NULL, type = "boot", resamp = 1000,
  npoints = 300, save = FALSE, maxit = 25, xmax = FALSE,
  na.rm = FALSE, jitter = FALSE, quiet = FALSE, angle = c(0, 22.5, 45,
  67.5, 90, 112.5, 135, 157.5))
Arguments

- **x**: vector of length n representing the x coordinates.
- **y**: vector of length n representing the y coordinates.
- **z**: matrix of dimension n x p representing p observation at each location.
- **w**: an optional second matrix of dimension n x p for variable 2 (to estimate spatial or lagged cross-correlation functions).
- **df**: degrees of freedom for the spline. Default is sqrt(n).
- **type**: takes the value "boot" (default) to generate a bootstrap distribution or "perm" to generate a null distribution for the estimator.
- **resamp**: the number of resamples for the bootstrap or the null distribution.
- **npoints**: the number of points at which to save the value for the spline function (and confidence envelope / null distribution).
- **save**: If TRUE, the whole matrix of output from the resampling is saved (an resamp x npoints dimensional matrix).
- **max.it**: the maximum iteration for the Newton method used to estimate the intercepts.
- **xmax**: If FALSE, the max observed in the data is used. Otherwise all distances greater than xmax is omitted.
- **na.rm**: If TRUE, NA's will be dealt with through pairwise deletion of missing values for each pair of time series – it will dump if any one pair has less than two (temporally) overlapping observations.
- **jitter**: If TRUE, jitters the distance matrix, to avoid problems associated with fitting the function to data on regular grids.
- **quiet**: If TRUE, the counter is suppressed during execution.
- **angle**: specifies number of cardinal directions and angles for which to calculate correlation functions. Default are 8 directions between 0 and 180.

Details

Correlation functions are calculated on projected distances onto the different bearings so ALL data are used for each direction. The (obsolete?) oldncf2D used the alternative of slizing up the data like pieces of a pie.

Latitude-longitude coordinates can NOT be used.

Missing values are allowed - values are assumed missing at random.

I have implemented an optional argument: jitter if TRUE this jitters the distance matrix, to avoid some problems I’ve had with spline-smoothing data from regular grid-data.

Value

An object of class "Sncf2D" is returned, consisting of a list of estimates for each cardinal direction:

- **real**: the list of estimates from the data.
- **Dcbar**: the regional average correlation.
$x.intercept$  the lowest value at which the function is = 0. If correlation is initially negative, the distance is given as negative.

$e.intercept$  the lowest value at which the function 1/e.

$y.intercept$  the extrapolated value at x=0 (nugget).

$cbar.intercept$  distance at which regional average correlation is reach.

$predicted$x$  the x-axes for the fitted covariance function.

$predicted$y$  the values for the covariance function.

boot  a list with the analogous output from the bootstrap or null distribution.

summary  gives the full vector of output for the x.intercept, y.intercept, e.intercept, cbar.intercept, and the cbar and a quantile summary for the resampling distribution.

$boot$  If save=TRUE, the full raw matrices from the resampling is saved.

angle  a vector with the cardinal directions.

max.distance  the maximum spatial distance.

Note

The function to estimate the anisotropic nonparametric (cross-)correlation function in arbitrary directions. In particular it was developed to calculate the lagged cross-correlation function (Bjornstad et al. 2002).

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>

References


See Also

summary.Sncf2D, plot.Sncf2D, cc.offset, Sncf, spline.correlog2D

Examples

# first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]
# z data from an exponential random field
z <- cbind(
  rmvn.spa(x = x, y = y, p = 2, method = "exp"),
  rmvn.spa(x = x, y = y, p = 2, method = "exp")
)
# anisotopic nonparametric covariance function at 30 and 60 degrees
fit1 <- Sncf2D(x = x, y = y, z = z, resamp = 0, angle = c(30, 60))
spatial.plot

### Not run: plot(fit1)
summary(fit1)

# What distance is the peak in correlation
cc.offset(fit1)

---

spatial.plot  

*Simple wrapper around symbols to visualize spatial data*

**Description**

spatial.plot is a quick function to visualize spatial data using bubble plots

**Usage**

```r
spatial.plot(x, y, z, ctr = TRUE, add = FALSE, inches = 0.2, ...)```

Arguments

- `x`: vector of length n representing the x coordinates.
- `y`: vector of length n representing the y coordinates.
- `z`: vector of n representing the observation at each location.
- `ctr`: If TRUE, observations will be centered before plotting (zero-sized symbols represent average observations); if FALSE, the original observations are used.
- `add`: If TRUE, a lisa-plot will be added to a pre-existing plot.
- `inches`: scales the size of the symbols
- `...`: other arguments

Details

This is a simple function to visualize spatial data. Positive (or above average) observations are shown by red circles, Negative (or below average) observations are shown as black squares. For hot/coldspot analysis using Local indicators of spatial association use `lisa`.

Value

A bubble-plot of the spatial data is produced.

Author(s)

Ottar N. Bjornstad <onb1@psu.edu>

References

spline.correlog

uni- and multivariate spline correlograms

Description

spline.correlog is the function to estimate the spline (cross-)correlogram from spatial data. Either univariate or multivariate (time series) for each site can be used.

Usage

spline.correlog(x, y, z, w = NULL, df = NULL, type = "boot", resamp = 1000, npoints = 300, save = FALSE, filter = FALSE, fw = 0, max.it = 25, xmax = FALSE, latlon = FALSE, na.rm = FALSE, quiet = FALSE)

Arguments

x
vector of length n representing the x coordinates (or longitude; see latlon).

y
vector of length n representing the y coordinates (or latitude).

z
vector of length n or matrix of dimension n x p representing p observation at each location.

w
an optional second variable with identical dimension to z (to estimate cross-correlograms).

df
degrees of freedom for the spline. Default is sqrt(n).

type
takes the value "boot" (default) to generate a bootstrap distribution or "perm" to generate a null distribution for the estimator.

resamp
the number of resamples for the bootstrap or the null distribution.

npoints
the number of points at which to save the value for the spline function (and confidence envelope / null distribution).

Examples

first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]

z data from an exponential random field
z <- rmvnspa(x = x, y = y, p = 2, method = "gaus")

plot data
Not run: spatial.plot(x = x, y = y, z = z, ctr = FALSE)
save
If TRUE, the whole matrix of output from the resampling is saved (an resamp x npoints dimensional matrix).

filter
If TRUE, the Fourier filter method of Hall and coworkers is applied to ensure positive semidefiniteness of the estimator.

fw
If filter is TRUE, it may be useful to truncate the function at some distance w sets the truncation distance. When set to zero, no truncation is done.

max.it
the maximum iteration for the Newton method used to estimate the intercepts.

xmax
If FALSE, the max observed in the data is used. Otherwise all distances greater than xmax is omitted.

latlon
If TRUE, coordinates are latitude and longitude.

na.rm
If TRUE, NA's will be dealt with through pairwise deletion of missing values.

quiet
If TRUE, the counter is suppressed during execution.

Details
If observations are univariate the spline (cross-)correlogram represents the generalization of the spatial (cross-)correlogram; if observations are multivariate the spline (cross-)correlogram represents the generalization of the Mantel (cross-)correlogram.

The spline (cross-)correlogram differs from the spatial correlogram (and Mantel correlogram) in that it estimated spatial dependence as a continuous functions of distance (rather than binning into distance classes). The spline correlogram differs from the nonparametric (cross-)correlation function in that the zero-correlation reference line in the former corresponds to the regionwide correlation reference line in the latter. The x-intercept in the spline correlogram is the distance at which object are no more similar than that expected by-chance-alone across the region.

Missing values are allowed – values are assumed missing at random.

Value
An object of class "spline.correlog" is returned, consisting of the following components:

real
the list of estimates from the data.

x.intercept
the lowest value at which the function is = 0. If correlation is initially negative, the distance is given as negative.

e.intercept
the lowest value at which the function 1/e.

y.intercept
the extrapolated value at x=0 (nugget).

predicted$x
the x-axes for the fitted covariance function.

predicted$y
the values for the covariance function.

boot
a list with the analogous output from the bootstrap or null distribution.

summary
gives the full vector of output for the x.intercept, y.intercept, e.intercept, and a quantile summary for the resampling distribution.

boot
If save=TRUE, the full raw matrices from the resampling is saved.

max.distance
the maximum spatial distance considered.
Author(s)
Ottar N. Bjornstad <onb1@psu.edu>

References

See Also
summary.spline.correlog, plot.spline.correlog, Sncf, spline.correlog2D, correlog

Examples
first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]

z data from an exponential random field
z <- cbind(
 rmvn.spa(x = x, y = y, p = 2, method = 'exp'),
 rmvn.spa(x = x, y = y, p = 2, method = 'exp'))

w data from a gaussian random field
w <- cbind(
 rmvn.spa(x = x, y = y, p = 2, method = 'gaus'),
 rmvn.spa(x = x, y = y, p = 2, method = 'gaus'))

univariate spline correlogram
fit1 <- spline.correlog(x = x, y = y, z = z[, 1], resamp = 100)
Not run: plot.spline.correlog(fit1)
summary(fit1)

multivariate spline correlogram
fit2 <- spline.correlog(x = x, y = y, z = z, resamp = 100)
Not run: plot.spline.correlog(fit2)
summary(fit2)

multivariate spline cross-correlogram
fit3 <- spline.correlog(x = x, y = y, z = z, w = w, resamp = 100)
Not run: plot.spline.correlog(fit3)
summary(fit3)
spline.correlog2D

Description

spline.correlog2D is the function to estimate the anisotropic nonparametric correlation function in 8 (or arbitrary) directions (North - Southeast) for univariate data. Correlation functions are calculated for each different bearing. The function assumes univariate observations at each location. (use Sncf2D otherwise).

Usage

spline.correlog2D(x, y, z, w = NULL, df = NULL, type = "boot", resamp = 1000, npoints = 300, save = FALSE, max.it = 25, xmax = FALSE, na.rm = FALSE, jitter = FALSE, quiet = FALSE, angle = c(0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5))

Arguments

x vector of length n representing the x coordinates.
y vector of length n representing the y coordinates.
z vector of length n representing the observation at each location.
w an optional second vector of length n for variable 2 (to estimate spatial or lagged cross-correlation functions).
df degrees of freedom for the spline. Default is sqrt(n).
type takes the value "boot" (default) to generate a bootstrap distribution or "perm" to generate a null distribution for the estimator
resamp the number of resamples for the bootstrap or the null distribution.
npoints the number of points at which to save the value for the spline function (and confidence envelope / null distribution).
save If TRUE, the whole matrix of output from the resampling is saved (an resamp x npoints dimensional matrix).
max.it the maximum iteration for the Newton method used to estimate the intercepts.
xmax If FALSE, the max observed in the data is used. Otherwise all distances greater than xmax is omitted.
na.rm If TRUE, NA's will be dealt with through pairwise deletion of missing values for each pair of time series – it will dump if any one pair has less than two (temporally) overlapping observations.
jitter If TRUE, jitters the distance matrix to avoid problems associated with fitting the function to data on regular grids.
quiet If TRUE, the counter is suppressed during execution.
angle specifies number of cardinal directions and angles for which to calculate correlation functions. Default are 8 directions between 0 and 180.

Details

see Sncf2D
Value

An object of class "Sncf2D" is returned. See Sncf2D for details.

Note

The function to estimate the UNIvariate anisotropic nonparametric (cross-)correlation function in arbitrary directions. In particular it was developed to calculate the univariate lagged cross-correlation function used in (Humston et al. 2005). Note that this 2D spline correlogram does the anisotopic analysis NOT by doing the angle-with-tolerance-wedge-style of Oden and Sokal (1986) but by projecting the the spatial coordinates of all locations on a sequence of cardinal angles (a la Sncf2D). Hence, all data points are used every time, it is only their relative distances that are changed. For example (0, 0) and (0, 10) are distance zero in the zero-degree direction but at distance 10 in the 90-degree direction.

References

See Also

Sncf2D

summary.Sncf

Summarizing nonparametric spatial correlation-functions

Description

‘s’ method for class "Sncf".

Usage

S3 method for class 'Sncf'
summary(object, ...)
Value

A list summarizing the nonparametric (cross-)covariance function is returned.

- Regional synch: the regional mean (cross-)correlation.
- Squantile: the quantile distribution from the resampling for the regional correlation.
- Estimates: a vector of benchmark statistics:
 - x: is the lowest value at which the function is = 0. If correlation is initially negative, the distance calculated appears as a negative measure.
 - e: is the lowest value at which the function is <= 1/e.
 - y: is the extrapolated value at x=0.
 - $cbar$: is the shortest distance at which function is = regional mean correlation.
- Quantiles: a matrix summarizing the quantiles in the bootstrap (or null) distributions of the benchmark statistics.

See Also

Sncf, plot.Sncf

summary.Sncf2D

Summarizing anisotropic spatial correlation-functions

Description

‘summary’ method for class "Sncf2D".

Usage

S3 method for class 'Sncf2D'
summary(object, ...)

Arguments

- object: an object of class "Sncf2D", usually, as a result of a call to Sncf2D.
- ...: other arguments

Value

A list summarizing the nonparametric covariance function in each cardinal direction results, each with the entires as in summary.Sncf.

See Also

Sncf2D, cc.offset, summary.Sncf
Description

‘summary’ method for class "spline.correlog".

Usage

S3 method for class 'spline.correlog'
summary(object, ...)

Arguments

object an object of class "spline.correlog", usually, as a result of a call to \texttt{spline.correlog}.
...
other arguments

Value

A list summarizing spline correlograms is returned.

estimates a vector of benchmark statistics:
\$x is the lowest value at which the function is = 0. If correlation is initially negative, the distance calculated appears as a negative measure.
\$e is the lowest value at which the function is <= 1/e.
\$y is the extrapolated value at x=0.
quantiles a matrix summarizing the quantiles in the bootstrap (or null) distributions of the benchmark statistics.

See Also

\texttt{spline.correlog.plot.spline.correlog}
Index

*Topic **datasets**
 lbm, 10

*Topic **export**
 print.mSynch, 24

*Topic **misc**
 circ.cor2, 3
cor2, 4
 ff.filter, 8
 gather, 9
gcdist, 10

*Topic **regression**
 cc.offset, 2
 plot.Sncf, 21
 plot.Sncf.cov, 22
 plot.Sncf2D, 23
 plot.spline.correlog, 23
 print.mSynch, 24
 rmvn.spa, 26
 Sncf, 27
 Sncf.srf, 30
 Sncf2D, 32
 spline.correlog2D, 38
 summary.Sncf, 40
 summary.Sncf2D, 41
 summary.spline.correlog, 42

*Topic **smooth**
 cc.offset, 2
 plot.Sncf, 21
 plot.Sncf.cov, 22
 plot.Sncf2D, 23
 plot.spline.correlog, 23
 print.mSynch, 24
 rmvn.spa, 26
 Sncf, 27
 Sncf.srf, 30
 Sncf2D, 32
 spline.correlog, 36
 spline.correlog2D, 38
 summary.Sncf, 40
 summary.Sncf2D, 41
 summary.spline.correlog, 42
 cc.offset, 2, 20, 34, 41
 circ.cor2, 3
 cor2, 4, 17, 28
 correlog, 4, 7, 8, 20, 38
 correlog.nc, 5, 6, 20
 ff$filter, 8
 gather, 9
gcdist, 10
 lbm, 10
 lisa, 11, 13, 21, 35, 36
 lisa.nc, 11, 12, 21
 mantel.correlog, 14
 mantel.test, 15, 19
 mSynch, 17, 24, 27
 partial.mantel.test, 18
 plot.cc.offset, 3, 19
 plot.correlog, 6, 8, 15, 20
 plot.lisa, 12, 21
 plot.Sncf, 21, 22, 23, 29, 32, 41

 summary.Sncf2D, 41
 summary.spline.correlog, 42
*Topic **spatial**
correlog, 4
correlog.nc, 6
lisa, 11
lisa.nc, 12
mantel.correlog, 14
mantel.test, 15
mSynch, 17
partial.mantel.test, 18
plot.correlog, 20
plot.lisa, 21
Sncf, 27
spatial.plot, 35
spline.correlog, 36
cc.offset, 2, 20, 34, 41
circ.cor2, 3
cor2, 4, 17, 28
correlog, 4, 7, 8, 20, 38
correlog.nc, 5, 6, 20
ff.filter, 8
gather, 9
gcdist, 10
lbm, 10
lisa, 11, 13, 21, 35, 36
lisa.nc, 11, 12, 21
mantel.correlog, 14
mantel.test, 15, 19
mSynch, 17, 24, 27
partial.mantel.test, 18
plot.cc.offset, 3, 19
plot.correlog, 6, 8, 15, 20
plot.lisa, 12, 21
plot.Sncf, 21, 22, 23, 29, 32, 41

43
plot.Sncf.cov, 22, 32
plot.Sncf2D, 20, 23, 34
plot.spline.correlog, 23, 38, 42
print.mSynch, 18, 24
print.Sncf, 25
print.Sncf2D, 25
print.spline.correlog, 26

rmvn.spa, 26

Sncf, 9, 22, 25, 27, 30–32, 34, 38, 40, 41
Sncf.srf, 22, 29, 30, 40
Sncf2D, 3, 20, 23, 26, 29, 32, 39–41
spatial.plot, 35
spline.correlog, 6, 24, 26, 27, 36, 42
spline.correlog2D, 32, 34, 38, 38
summary.Sncf, 22, 29, 32, 40, 41
summary.Sncf2D, 3, 34, 41
summary.spline.correlog, 24, 38, 42