Package ‘ncvreg’

February 13, 2020

Title Regularization Paths for SCAD and MCP Penalized Regression Models
Version 3.11.2
Date 2020-02-13
Suggests survival, parallel, knitr, ashr
VignetteBuilder knitr
Description Fits regularization paths for linear regression, GLM, and Cox regression models using lasso or nonconvex penalties, in particular the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) penalty, with options for additional L2 penalties (the “elastic net” idea). Utilities for carrying out cross-validation as well as post-fitting visualization, summarization, inference, and prediction are also provided.

BugReports http://github.com/pbreheny/ncvreg/issues
License GPL-3
URL http://pbreheny.github.io/ncvreg,
https://github.com/pbreheny/ncvreg
LazyData TRUE
RoxygenNote 7.0.2
Encoding UTF-8
NeedsCompilation yes
Author Patrick Breheny [aut, cre] (<https://orcid.org/0000-0002-0650-1119>)
Maintainer Patrick Breheny <patrick-breheny@uiowa.edu>
Repository CRAN
Date/Publication 2020-02-13 15:00:05 UTC

R topics documented:

ncvreg-package .. 2
AUC.cv.ncvsurv .. 3
ncvreg-package

Regularization paths for SCAD- and MCP-penalized regression models

Description

Efficient algorithms for fitting regularization paths for a variety of regression models (linear, logistic, Poisson, survival) penalized by MCP or SCAD, with optional additional L2 penalty.

Details

Accepts a design matrix \(X \) and vector of responses \(y \), produces the regularization path over a grid of values for the tuning parameter \(\lambda \). Also provides methods for plotting, cross-validation-based inference, and for determining locally convex regions of the coefficients paths.

See the "Getting started" vignette for a brief overview of how the package works.

Visit the ncvreg website for more details.

Author(s)

Patrick Breheny <patrick-breheny@uiowa.edu>

References

AUC.cv.ncvsurv

Examples

vignette("getting-started", package="ncvreg")

AUC.cv.ncvsurv *Calculates AUC for cv.ncvsurv objects*

Description

Calculates the cross-validated AUC (concordance) from a "cv.ncvsurv" object.

Usage

```r
## S3 method for class 'cv.ncvsurv'
AUC(obj, ...)
```

Arguments

- **obj** A `cv.ncvsurv` object. You must run `cv.ncvsurv` with the option `returnY=TRUE` in order for `AUC` to work.
- **...** For S3 method compatibility?

Details

The area under the curve (AUC), or equivalently, the concordance statistic (C), is calculated according to the procedure outlined in the reference below. This calls the `survConcordance` function in the `survival` package, except the cross-validated linear predictors are used to guard against overfitting. Thus, the values returned by `AUC.cv.ncvsurv` will be lower than those you would obtain with `survConcordance` if you fit the full (unpenalized) model.

Author(s)

Patrick Breheny, Brandon Butcher, and Lawrence Hunsicker

References

See Also

`cv.ncvsurv`, `survConcordance`
Examples

data(Lung)
X <- Lung$X
y <- Lung$y

cvfit <- cv.ncvsurv(X, y, returnY=TRUE)
head(AUC(cvfit))
lam <- cvfit$lambda
plot(lam, AUC(cvfit), xlim=rev(range(lam)), lwd=3, type='l',
 las=1, xlab=expression(lambda), ylab='AUC')

cv.ncvreg

Cross-validation for ncvreg/ncvsurv

Description

Performs k-fold cross validation for MCP- or SCAD-penalized regression models over a grid of values for the regularization parameter lambda.

Usage

cv.ncvreg(X, y, ..., cluster, nfolds=10, seed, fold, returnY=FALSE,
 trace=FALSE)
cv.ncvsurv(X, y, ..., cluster, nfolds=10, seed, fold, se=c('quick',
 'bootstrap'), returnY=FALSE, trace=FALSE)

Arguments

X The design matrix, without an intercept, as in ncvreg/ncvsurv.
y The response vector, as in ncvreg/ncvsurv.
... Additional arguments to ncvreg/ncvsurv.
cluster cv.ncvreg and cv.ncvsurv can be run in parallel across a cluster using the parallel package. The cluster must be set up in advance using the makeCluster function from that package. The cluster must then be passed to cv.ncvreg/cv.ncvsurv (see example).
nfolds The number of cross-validation folds. Default is 10.
fold Which fold each observation belongs to. By default the observations are randomly assigned.
seed You may set the seed of the random number generator in order to obtain reproducible results.
returnY Should cv.ncvreg/cv.ncvsurv return the linear predictors from the cross-validation folds? Default is FALSE; if TRUE, this will return a matrix in which the element for row i, column j is the fitted value for observation i from the fold in which observation i was excluded from the fit, at the jth value of lambda. NOTE: For cv.ncvsurv, the rows of Y are ordered by time on study, and therefore will not correspond to the original order of observations passed to cv.ncvsurv.
If set to TRUE, inform the user of progress by announcing the beginning of each CV fold. Default is FALSE.

For cv.ncvreg, the method by which the cross-validation standard error (CVSE) is calculated. The 'quick' approach is based on a rough approximation, but can be calculated more or less instantly. The 'bootstrap' approach is more accurate, but requires additional computing time.

The function calls ncvreg/ncvsurv nfolds times, each time leaving out 1/nfolds of the data. The cross-validation error is based on the deviance; see here for more details.

For family="binomial" models, the cross-validation fold assignments are balanced across the 0/1 outcomes, so that each fold has the same proportion of 0/1 outcomes (or as close to the same proportion as it is possible to achieve if cases do not divide evenly).

For Cox models, cv.ncvsurv uses the approach of calculating the full Cox partial likelihood using the cross-validated set of linear predictors. Other approaches to cross-validation for the Cox regression model have been proposed in the literature; the strengths and weaknesses of the various methods for penalized regression in the Cox model are the subject of current research. A simple approximation to the standard error is provided, although an option to bootstrap the standard error (se='bootstrap') is also available.

An object with S3 class cv.ncvreg/cv.ncvsurv containing:

cve The error for each value of lambda, averaged across the cross-validation folds.

cvse The estimated standard error associated with each value of for cve.

fold The fold assignments for cross-validation for each observation; note that for cv.ncvsurv, these are in terms of the ordered observations, not the original observations.

lambda The sequence of regularization parameter values along which the cross-validation error was calculated.

fit The fitted ncvreg/ncvsurv object for the whole data.

min The index of lambda corresponding to lambda.min.

lambda.min The value of lambda with the minimum cross-validation error.

null.dev The deviance for the intercept-only model. If you have supplied your own lambda sequence, this quantity may not be meaningful.

pe If family="binomial", the cross-validation prediction error for each value of lambda.

Y If returnY=TRUE, the matrix of cross-validated fitted values (see above).

Patrick Breheny; Grant Brown helped with the parallelization support
References

See Also

ncvreg, plot.cv.ncvreg, summary.cv.ncvreg

Examples

data(Prostate)

cvfit <- cv.ncvreg(Prostate$X, Prostate$y)
plot(cvfit)
summary(cvfit)

fit <- cvfit$fit
plot(fit)
beta <- fit$beta[, cvfit$min]

requires loading the parallel package
Not run:
library(parallel)
X <- Prostate$X
y <- Prostate$y
cl <- makeCluster(4)
cvfit <- cv.ncvreg(X, y, cluster=cl, nfolds=length(y))
End(Not run)

Survival
data(Lung)
X <- Lung$X
y <- Lung$y

cvfit <- cv.ncvsurv(X, y)
summary(cvfit)
plot(cvfit)
plot(cvfit, type="rsq")

fir

Marginal false discovery rates

Description

Estimates the marginal false discovery rate (mFDR) of a penalized regression model.

Usage

`fir(fit, ...)`
Arguments

- `fit` An `ncvreg` or `ncvsurv` object.
- `...` Arguments to pass to `mfdr`.

Details

This function has been renamed and is currently deprecated. Use `mfdr` instead.

Heart

Risk factors associated with heart disease

Description

Data from a subset of the Coronary Risk-Factor Study baseline survey, carried out in rural South Africa.

- **X**: A design matrix with 462 observations (rows) and 9 predictor variables (columns). The columns are:
 - `sbp`: Systolic blood pressure
 - `tobacco`: Cumulative tobacco consumption, in kg
 - `ldl`: Low-density lipoprotein cholesterol
 - `adiposity`: Adipose tissue concentration
 - `famhist`: Family history of heart disease (1=Present, 0=Absent)
 - `typea`: Score on test designed to measure type-A behavior
 - `obesity`: Obesity
 - `alcohol`: Current consumption of alcohol
 - `age`: Age of subject
- **y**: Coronary heart disease at baseline; 1=Yes 0=No

Usage

```r
data(Heart)
```

Source

References

local_mfdr

Estimate local mFDR for all features

Description

local_mfdr() is called by summary.ncvreg(), which typically offers a more convenient interface to users. If, however, you are working with local mfdrs programmatically rather than interactively, you probably want to use local_mfdr(), which skips the sorting, filtering, and print formatting of summary.ncvreg().

Usage

local_mfdr(fit, lambda, X = NULL, y = NULL, method = c("ashr", "kernel"), ...)

Arguments

fit
A fitted ncvreg or ncvsurv object.

lambda
The value of lambda at which inference should be carried out.

X, y
The design matrix and response used to fit the model; in most cases, it is not necessary to provide X and y as they are returned by ncvreg, but see the returnX argument in ncvreg().

method
What method should be used to calculate the local fdr? Options are ashr (which tends to be more accurate) and kernel (which requires no additional packages). The default is to use ashr if the package is installed.

...
Additional arguments to ash() if using method = 'ashr'.

Value

If all features are penalized, then the object returns a data frame with one row per feature and four columns:

- Estimate: The coefficient estimate from the penalized regression fit
- z: A test statistic that approximately follows a standard normal distribution under the null hypothesis that the feature is marginally independent of the outcome
- mfdr: The estimated marginal local false discovery rate
- Selected: Features with nonzero coefficient estimates are given an asterisk

If some features are penalized and others are not, then a list is returned with two elements: pen.vars, which consists of the data frame described above, and unpen.vars, a data frame with four columns: Estimate, SE, Statistic, and p.value. The standard errors and p-values are based on a classical lm/glm/coxph model using the effect of the penalized features as an offset.

See Also

summary.ncvreg()
Examples

Linear regression
data(Prostate)
fit <- ncvreg(Prostate$X, Prostate$y)
local_mfdr(fit, 0.1)

fit <- ncvreg(Prostate$X, Prostate$y, penalty.factor=rep(0:1, each=4))
local_mfdr(fit, 0.1)

Logistic regression
data(Heart)
X <- Heart$X
y <- Heart$y
fit <- ncvreg(X, y, family="binomial")
local_mfdr(fit, 0.1)

Cox regression
data(Lung)
X <- Lung$X
y <- Lung$y
fit <- ncvsurv(X, y)
local_mfdr(fit, 0.1)

Lung

VA lung cancer data set

Description

Data from a randomised trial of two treatment regimens for lung cancer. This is a standard survival analysis data set from the classic textbook by Kalbfleisch and Prentice.

- X: A design matrix with 137 observations (rows) and 9 predictor variables (columns). The columns are:
 - trt: Treatment indicator (1=control group, 2=treatment group)
 - karno: Karnofsky performance score (0=bad, 100=good)
 - diagtime: Time from diagnosis to randomization (months)
 - age: Age (years)
 - prior: Prior therapy (0=no, 1=yes)
 - squamous: Indicator for whether the cancer type is squamous cell carcinoma (0=no, 1=yes)
 - small: Indicator for whether the cancer type is small cell lung cancer (0=no, 1=yes)
 - adeno: Indicator for whether the cancer type is adenocarcinoma (0=no, 1=yes)
 - large: Indicator for whether the cancer type is large cell carcinoma (0=no, 1=yes)
- y: A two column matrix (Surv object) containing the follow-up time (in days) and an indicator variable for whether the patient died while on the study or not.
Usage

data(Lung)

Format

A list containing the design matrix X and response matrix y

Source

https://cran.r-project.org/package=survival

References

See Also

ncvsurv

mfdr

Marginal false discovery rates

Description

Estimates the marginal false discovery rate (mFDR) of a penalized regression model.

Usage

mfdr(fit, X)

Arguments

- **fit**
 - An `ncvreg` or `ncvsurv` object.
- **X**
 - The model matrix corresponding to `fit`. This is not necessary for linear regression, but in logistic and Cox regression, the mFDR depends on X. It is not necessary to supply X if it is already contained in `fit`; i.e., if `ncvreg/ncvsurv` was run with `returnX=TRUE`.

Details

The function estimates the marginal false discovery rate (mFDR) for a penalized regression model. The estimate tends to be accurate in most settings, but will be slightly conservative if predictors are highly correlated. For an alternative way of estimating the mFDR, typically more accurate in highly correlated cases, see `perm.ncvreg`.
Value
An object with S3 class `mfdr` inheriting from `data.frame` and containing:

- **EF**: The number of variables selected at each value of lambda, averaged over the permutation fits.
- **S**: The actual number of selected variables for the non-permuted data.
- **mFDR**: The estimated marginal false discovery rate (EF/S).

Author(s)
Patrick Breheny and Ryan Miller

See Also
`ncvreg`, `ncvsurv`, `plot.mfdr`, `perm.ncvreg`

Examples

```r
# Linear regression -----------------------------
data(Prostate)
fit <- ncvreg(Prostate$X, Prostate$y)
obj <- mfdr(fit)
obj[1:10,]

# Comparison with perm.ncvreg
op <- par(mfrow=c(2,2))
plot(obj)
plot(obj, type="EF")
pmfit <- perm.ncvreg(Prostate$X, Prostate$y)
plot(pmfit)
plot(pmfit, type="EF")
par(op)

# Logistic regression --------------------------
data(Heart)
fit <- ncvreg(Heart$X, Heart$y, family="binomial")
obj <- mfdr(fit)
head(obj)
op <- par(mfrow=c(1,2))
plot(obj)
plot(obj, type="EF")
par(op)

# Cox regression -----------------------------
data(Lung)
fit <- ncvsurv(Lung$X, Lung$y)
obj <- mfdr(fit)
head(obj)
op <- par(mfrow=c(1,2))
```
ncvreg

Fit an MCP- or SCAD-penalized regression path

Description

Fit coefficients paths for MCP- or SCAD-penalized regression models over a grid of values for the regularization parameter lambda. Fits linear and logistic regression models, with option for an additional L2 penalty.

Usage

```r
ncvreg(X, y, family=c("gaussian", "binomial", "poisson"),
penalty=c("MCP", "SCAD", "lasso"), gamma=switch(penalty, SCAD=3.7, 3),
alpha=1, lambda.min=ifelse(n>p,.001,.05), nlambda=100, lambda, eps=1e-4,
max.iter=10000, convex=TRUE, dfmax=p+1, penalty.factor=rep(1, ncol(X)),
warn=TRUE, returnX, ...)
```

Arguments

- **X**: The design matrix, without an intercept. `ncvreg` standardizes the data and includes an intercept by default.
- **y**: The response vector.
- **family**: Either "gaussian", "binomial", or "poisson", depending on the response.
- **penalty**: The penalty to be applied to the model. Either "MCP" (the default), "SCAD", or "lasso".
- **gamma**: The tuning parameter of the MCP/SCAD penalty (see details). Default is 3 for MCP and 3.7 for SCAD.
- **alpha**: Tuning parameter for the Mnet estimator which controls the relative contributions from the MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha may be arbitrarily small, but not exactly 0.
- **lambda.min**: The smallest value for lambda, as a fraction of lambda.max. Default is .001 if the number of observations is larger than the number of covariates and .05 otherwise.
- **nlambda**: The number of lambda values. Default is 100.
- **lambda**: A user-specified sequence of lambda values. By default, a sequence of values of length nlambda is computed, equally spaced on the log scale.
- **eps**: Convergence threshold. The algorithm iterates until the RMSD for the change in linear predictors for each coefficient is less than eps. Default is 1e-4.
max.iter Maximum number of iterations (total across entire path). Default is 10000.
convex Calculate index for which objective function ceases to be locally convex? Default is TRUE.
dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients.
penalty.factor A multiplicative factor for the penalty applied to each coefficient. If supplied, penalty.factor must be a numeric vector of length equal to the number of columns of \(X \). The purpose of penalty.factor is to apply differential penalization if some coefficients are thought to be more likely than others to be in the model. In particular, penalty.factor can be 0, in which case the coefficient is always in the model without shrinkage.
warn Return warning messages for failures to converge and model saturation? Default is TRUE.
returnX Return the standardized design matrix along with the fit? By default, this option is turned on if \(X \) is under 100 MB, but turned off for larger matrices to preserve memory. Note that certain methods, such as summary.ncvreg require access to the design matrix and may not be able to run if returnX=FALSE.

... Not used.

Details
The sequence of models indexed by the regularization parameter \(\lambda \) is fit using a coordinate descent algorithm. For logistic regression models, some care is taken to avoid model saturation; the algorithm may exit early in this setting. The objective function is defined to be

\[
Q(\beta|X,y) = \frac{1}{n}L(\beta|X,y) + P_\lambda(\beta)
\]

where the loss function \(L \) is the deviance (-2 times the log likelihood) for the specified outcome distribution (gaussian/binomial/poisson). See here for more details.

This algorithm is stable, very efficient, and generally converges quite rapidly to the solution. For GLMs, adaptive rescaling is used.

Value
An object with S3 class "ncvreg" containing:

beta The fitted matrix of coefficients. The number of rows is equal to the number of coefficients, and the number of columns is equal to \(n_\lambda \).
iter A vector of length \(n_\lambda \) containing the number of iterations until convergence at each value of \(\lambda \).
lambda The sequence of regularization parameter values in the path.
penalty Same as above.
family Same as above.
gamma Same as above.
alpha Same as above.
convex.min The last index for which the objective function is locally convex. The smallest value
of lambda for which the objective function is convex is therefore lambda[convex.min], with
corresponding coefficients beta[,convex.min].
loss A vector containing the deviance (i.e., the loss) at each value of lambda. Note that for
gaussian models, the loss is simply the residual sum of squares.
penalty.factor Same as above.
n Sample size.
Additionally, if returnX=TRUE, the object will also contain
X The standardized design matrix.
y The response, centered if family='gaussian'.

Author(s)
Patrick Breheny

References

Breheny, P. and Huang, J. (2011) Coordinate descent algorithms for nonconvex penalized regres-

See Also

plot.ncvreg, cv.ncvreg

Examples

Linear regression ---
data(Prostate)
X <- Prostate$X
y <- Prostate$y

op <- par(mfrow=c(2,2))
fit <- ncvreg(X, y)
plot(fit, main=expression(paste(gamma,"=",3)))
fit <- ncvreg(X, y, gamma=10)
plot(fit, main=expression(paste(gamma,"=",10)))
fit <- ncvreg(X, y, gamma=1.5)
plot(fit, main=expression(paste(gamma,"=",1.5)))
fit <- ncvreg(X, y, penalty="SCAD")
plot(fit, main=expression(paste("SCAD","=",gamma="=",3)))
par(op)

op <- par(mfrow=c(2,2))
fit <- ncvreg(X, y)
plot(fit, main=expression(paste(alpha,"=",1)))
fit <- ncvreg(X, y, alpha=0.9)
plot(fit, main=expression(paste(alpha,"=",0.9)))
ncvreg(X, y, alpha=0.5)
plot(fit, main=expression(paste(alpha,"=",0.5)))
fit <- ncvreg(X, y, alpha=0.1)
plot(fit, main=expression(paste(alpha,"=",0.1)))
par(op)

op <- par(mfrow=c(2,2))
fit <- ncvreg(X, y)
plot(mfdr(fit)) # Independence approximation
plot(mfdr(fit), type="EF") # Independence approximation
perm.fit <- perm.ncvreg(X, y)
plot(perm.fit)
plot(perm.fit, type="EF")
par(op)

Logistic regression

data(Heart)
X <- Heart$X
y <- Heart$y

op <- par(mfrow=c(2,2))
fit <- ncvreg(X, y, family="binomial")
plot(fit, main=expression(paste(gamma,"=",3)))
fit <- ncvreg(X, y, family="binomial", gamma=10)
plot(fit, main=expression(paste(gamma,"=",10)))
fit <- ncvreg(X, y, family="binomial", gamma=1.5)
plot(fit, main=expression(paste(gamma,"=",1.5)))
fit <- ncvreg(X, y, family="binomial", penalty="SCAD")
plot(fit, main=expression(paste("SCAD, ",gamma,"=",3))))
par(op)

op <- par(mfrow=c(2,2))
fit <- ncvreg(X, y, family="binomial")
plot(fit, main=expression(paste(alpha,"=",1)))
fit <- ncvreg(X, y, family="binomial", alpha=0.9)
plot(fit, main=expression(paste(alpha,"=",0.9)))
fit <- ncvreg(X, y, family="binomial", alpha=0.5)
plot(fit, main=expression(paste(alpha,"=",0.5)))
fit <- ncvreg(X, y, family="binomial", alpha=0.1)
plot(fit, main=expression(paste(alpha,"=",0.1)))
par(op)

ncvsurv

ncvsurv

Fit an MCP- or SCAD-penalized survival model

Description

Fit coefficients paths for MCP- or SCAD-penalized Cox regression models over a grid of values for the regularization parameter lambda, with option for an additional L2 penalty.
Usage

ncvsurv(X, y, penalty=c("MCP", "SCAD", "lasso"),
gamma=switch(penalty, SCAD=3.7, 3), alpha=1,
lambda.min=ifelse(n>p,.001,.05), nlambda=100, lambda, eps=1e-4,
max.iter=1000, convex=TRUE, dfmax=p, penalty.factor=rep(1, ncol(X)),
warn=TRUE, returnX, ...)

Arguments

X The design matrix of predictor values. ncvSURV standardizes the data prior to fitting.
y The time-to-event outcome, as a two-column matrix or Surv object. The first column should be time on study (follow up time); the second column should be a binary variable with 1 indicating that the event has occurred and 0 indicating (right) censoring.
penalty The penalty to be applied to the model. Either "MCP" (the default), "SCAD", or "lasso".
gamma The tuning parameter of the MCP/SCAD penalty (see details). Default is 3 for MCP and 3.7 for SCAD.
alpha Tuning parameter for the Mnet estimator which controls the relative contributions from the MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha may be arbitrarily small, but not exactly 0.
lambda.min The smallest value for lambda, as a fraction of lambda.max. Default is .001 if the number of observations is larger than the number of covariates and .05 otherwise.
nlambda The number of lambda values. Default is 100.
lambda A user-specified sequence of lambda values. By default, a sequence of values of length nlambda is computed, equally spaced on the log scale.
eps Convergence threshold. The algorithm iterates until the RMSD for the change in linear predictors for any coefficient is less than eps. Default is 1e-4.
max.iter Maximum number of iterations (total across entire path). Default is 1000.
convex Calculate index for which objective function ceases to be locally convex? Default is TRUE.
dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients.
penalty.factor A multiplicative factor for the penalty applied to each coefficient. If supplied, penalty.factor must be a numeric vector of length equal to the number of columns of X. The purpose of penalty.factor is to apply differential penalization if some coefficients are thought to be more likely than others to be in the model. In particular, penalty.factor can be 0, in which case the coefficient is always in the model without any penalization/shrinkage.
ncvsurv

warn
Return warning messages for failures to converge and model saturation? Default is TRUE.

returnX
Return the standardized design matrix along with the fit? By default, this option is turned on if X is under 100 MB, but turned off for larger matrices to preserve memory. Note that certain methods, such as `summary.ncvsurv` require access to the design matrix and may not be able to run if `returnX=FALSE`.

... Not used.

Details
The sequence of models indexed by the regularization parameter \(\lambda \) is fit using a coordinate descent algorithm. In order to accomplish this, the second derivative (Hessian) of the Cox partial log-likelihood is diagonalized (see references for details). The objective function is defined to be

\[
Q(\beta|X, y) = \frac{1}{n} L(\beta|X, y) + P(\lambda(\beta))
\]

where the loss function \(L \) is the deviance (-2 times the partial log-likelihood) from the Cox regression mode. See here for more details.

Presently, ties are not handled by `ncvsurv` in a particularly sophisticated manner. This will be improved upon in a future release of `ncvreg`.

Value
An object with S3 class "ncvsurv" containing:

- **beta** The fitted matrix of coefficients. The number of rows is equal to the number of coefficients, and the number of columns is equal to \(n \lambda \).
- **iter** A vector of length \(n \lambda \) containing the number of iterations until convergence at each value of \(\lambda \).
- **lambda** The sequence of regularization parameter values in the path.
- **penalty** Same as above.
- **model** Same as above.
- **gamma** Same as above.
- **alpha** Same as above.
- **convex.min** The last index for which the objective function is locally convex. The smallest value of \(\lambda \) for which the objective function is convex is therefore \(\lambda[\text{convex.min}] \), with corresponding coefficients \(\beta[,\text{convex.min}] \).
- **loss** The deviance of the fitted model at each value of \(\lambda \).
- **penalty.factor** Same as above.
- **n** The number of observations.

For Cox models, the following objects are also returned (and are necessary to estimate baseline survival conditional on the estimated regression coefficients), all of which are ordered by time on study. I.e., the \(i \)th row of \(W \) does not correspond to the \(i \)th row of \(X \):

- **W** Matrix of exp(\(\beta \)) values for each subject over all \(\lambda \) values.
time Times on study.
fail Failure event indicator.

Additionally, if returnX=TRUE, the object will also contain

X The standardized design matrix.

Author(s)
Patrick Breheny

References

- Breheny P and Huang J. (2011) Coordinate descentalgorithms for nonconvex penalized re-
 gression, with applications to biological feature selection. Annals of Applied Statistics, 5:
 Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software, 39:

See Also

plot.ncvreg, cv.ncvsurv

Examples

data(Lung)
X <- Lung$X
y <- Lung$y

op <- par(mfrow=c(2,2))
fit <- ncvsurv(X, y)
plot(fit, main=expression(paste(gamma,"=",3)))
fit <- ncvsurv(X, y, gamma=10)
plot(fit, main=expression(paste(gamma,"=",10)))
fit <- ncvsurv(X, y, gamma=1.5)
plot(fit, main=expression(paste(gamma,"=",1.5)))
fit <- ncvsurv(X, y, penalty="SCAD")
plot(fit, main=expression(paste("SCAD, ",gamma,"="",3))
par(op)

fit <- ncvsurv(X,y)
ll <- log(fit$lambda)
op <- par(mfrow=c(2,1))
plot(ll, BIC(fit), type="l", xlim=rev(range(ll)))
lam <- fit$lambda[which.min(BIC(fit))]
b <- coef(fit, lambda=lam)
b[b!=0]
plot(fit)
abline(v=lam)
par(op)
S <- predict(fit, X, type='survival', lambda=lam)
plot(S, xlim=c(0,200))

perm.ncvreg

Permutation fitting for ncvreg

Description

Fits multiple penalized regression models in which the outcome is randomly permuted, thereby allowing estimation of the marginal false discovery rate.

Usage

perm.ncvreg(X, y, ..., permute=c("outcome", "residuals"), N=10, seed, trace=FALSE)

Arguments

X The design matrix, without an intercept, as in ncvreg.
y The response vector, as in ncvreg.
... Additional arguments to ncvreg.
permute What to permute. If 'outcome', the response vector, y, is permuted. If 'residuals', the residuals are permuted. This is only available for linear regression (i.e., for family='gaussian'). Note that permuting the residuals may take a long time, as the residuals differ for each value of lambda, so separate permutations are required at every value of lambda. See also permres.
N The number of permutation replications. Default is 10.
seed You may set the seed of the random number generator in order to obtain reproducible results.
trace If set to TRUE, perm.ncvreg will inform the user of its progress by announcing the beginning of each permutation fit. Default is FALSE.

Details

The function fits a penalized regression model to the actual data, then repeats the process N times with a permuted version of the response vector. This allows estimation of the expected number of variables included by chance for each value of lambda. The ratio of this expected quantity to the number of selected variables using the actual (non-permuted) response is called the marginal false discovery rate (mFDR).
Value

An object with S3 class "perm.ncvreg" containing:

- **EF**
 The number of variables selected at each value of lambda, averaged over the permutation fits.

- **S**
 The actual number of selected variables for the non-permuted data.

- **mFDR**
 The estimated marginal false discovery rate (EF/S).

- **fit**
 The fitted ncvreg object for the original (non-permuted) data.

- **loss**
 The loss/deviance for each value of lambda, averaged over the permutation fits. This is an estimate of the explanatory power of the model under null conditions, and can be used to adjust the loss of the fitted model in a manner akin to the idea of an adjusted R-squared in classical regression.

Author(s)

Patrick Breheny <patrick-breheny@uiowa.edu>

See Also

ncvreg, plot.mfdr, mfdr

Examples

```r
# Linear regression -----------------------------------------------
data(Prostate)
pmfit <- perm.ncvreg(Prostate$X, Prostate$y)

op <- par(mfcol=c(2,2))
plot(pmfit)
plot(pmfit, type="EF")
plot(pmfit$fit)
lam <- pmfit$fit$lambda

pmfit.r <- perm.ncvreg(Prostate$X, Prostate$y, permute="residuals")
plot(pmfit.r, col="red")  # Permuting residuals is
lines(lam, pmfit$r$MFR, col="gray60")  # less conservative
par(op)

# Logistic regression -----------------------------------------------
data(Heart)
pmfit <- perm.ncvreg(Heart$X, Heart$y, family="binomial")

op <- par(mfcol=c(2,2))
plot(pmfit)
plot(pmfit, type="EF")
plot(pmfit$fit)
par(op)
```
permres

Permute residuals for a fitted ncvreg model

Description

Fits multiple penalized regression models in which the residuals are randomly permuted, thereby allowing estimation of the marginal false discovery rate.

Usage

permres(fit, ...)
S3 method for class 'ncvreg'
permres(fit, lambda, N=10, seed, trace=FALSE, ...)

Arguments

fit
A fitted ncvreg model, as produced by ncvreg(). To use with permres, the model must be fit using the returnX=TRUE option.

lambda
The regularization parameter to use for estimating residuals. Unlike perm.ncvreg, permres calculates EF and mFDR for a specific lambda value, not an entire path. As a result, it runs much faster.

N
The number of permutation replications. Default is 10.

seed
You may set the seed of the random number generator in order to obtain reproducible results.

trace
If set to TRUE, perm.ncvreg will inform the user of its progress by announcing the beginning of each permutation fit. Default is FALSE.

...
Not used.

Details

The function fits a penalized regression model to the actual data, then repeats the process N times with a permuted version of the response vector. This allows estimation of the expected number of variables included by chance for each value of lambda. The ratio of this expected quantity to the number of selected variables using the actual (non-permuted) response is called the marginal false discovery rate (mFDR).

Value

A list with the following components:

EF
The number of variables selected at each value of lambda, averaged over the permutation fits.

S
The actual number of selected variables for the non-permuted data.

mFDR
The estimated marginal false discovery rate (EF/S).
The loss/deviance, averaged over the permutation fits. This is an estimate of the
explanatory power of the model under null conditions, and can be used to adjust
the loss of the fitted model in a manner akin to the idea of an adjusted R-squared
in classical regression.

Author(s)
Patrick Breheny <patrick-breheny@uiowa.edu>

See Also
ncvreg, mfdr, perm.ncvreg

Examples

```r
data(Prostate)
fit <- ncvreg(Prostate$X, Prostate$y, N=50)
permres(fit, lambda=0.15)
```

Description

Plots the cross-validation curve from a `cv.ncvreg` or `cv.ncvsurv` object, along with standard error
bars.

Usage

```r
## S3 method for class 'cv.ncvreg'
plot(x, log.l=TRUE, type=c("cve", "rsq", "scale", 
"snr", "pred", "all"), selected=TRUE, vertical.line=TRUE, col="red", 
...)
```

Arguments

- **x**: A `cv.ncvreg` or `cv.ncvsurv` object.
- **log.l**: Should horizontal axis be on the log scale? Default is `TRUE`.
- **type**: What to plot on the vertical axis. `cve` plots the cross-validation error (deviance);
 `rsq` plots an estimate of the fraction of the deviance explained by the model
 (R-squared); `snr` plots an estimate of the signal-to-noise ratio; `scale` plots, for
 `family="gaussian"`, an estimate of the scale parameter (standard deviation);
 `pred` plots, for `family="binomial"`, the estimated prediction error; `all` produces all of the above.
- **selected**: If `TRUE` (the default), places an axis on top of the plot denoting the number of
 variables in the model (i.e., that have a nonzero regression coefficient) at that
 value of `lambda`.
vertical.line If TRUE (the default), draws a vertical line at the value where cross-validation error is minimized.

col Controls the color of the dots (CV estimates).

Details

Error bars representing approximate 68% confidence intervals are plotted along with the estimates at value of lambda. For rsq and snr applied to models other than linear regression, the Cox-Snell R-squared is used.

Author(s)

Patrick Breheny

References

See Also

ncvreg, cv.ncvreg

Examples

Linear regression

data(Prostate)
cvfit <- cv.ncvreg(Prostate$X, Prostate$y)
plot(cvfit)
op <- par(mfrow=c(2,2))
plot(cvfit, type="all")
par(op)

Logistic regression

data(Heart)
cvfit <- cv.ncvreg(Heart$X, Heart$y, family="binomial")
plot(cvfit)
op <- par(mfrow=c(2,2))
plot(cvfit, type="all")
par(op)

Cox regression

data(Lung)
cvfit <- cv.ncvsurv(Lung$X, Lung$y)
op <- par(mfrow=c(1,2))
plot(cvfit)
plot(cvfit, type="rsq")
par(op)
plot.mfdr

Plot marginal false discovery rate curves

Description

Plot marginal false discovery rate curves from an "mfdr" or "perm.ncvreg" object.

Usage

```r
## S3 method for class 'mfdr'
plot(x, type=c("mFDR", "EF"), log.l=FALSE, selected=TRUE, 
legend=TRUE, ...)
```

Arguments

- `x`: A "perm.ncvreg" or "mfdr" object.
- `type`: What to plot on the vertical axis. mFDR plots the marginal false discovery rate; EF plots the expected number of false discoveries along with the actual number of variables included in the model.
- `log.l`: Should horizontal axis be on the log scale? Default is FALSE.
- `selected`: If TRUE (the default), places an axis on top of the plot denoting the number of variables in the model (i.e., that have a nonzero regression coefficient) at that value of lambda.
- `legend`: For type="EF" plots, draw a legend to indicate which line is for the actual selections and which line is for the expected number of false discoveries? Default is TRUE.
- `...`: Other graphical parameters to pass to plot

Author(s)

Patrick Breheny

References

See Also

mfdr, perm.ncvreg
Examples

```r
data(Prostate)
fit <- ncvreg(Prostate$X, Prostate$y)

obj <- mfdr(fit)
obj[1:10,]

# Some plotting options
plot(obj)
plot(obj, type="EF")
plot(obj, log=TRUE)

# Comparison with perm.ncvreg
op <- par(mfrow=c(2,2))
plot(obj)
plot(obj, type="EF")
pmfit <- perm.ncvreg(Prostate$X, Prostate$y)
plot(pmfit)
plot(pmfit, type="EF")
par(op)
```

plot.ncvreg

Plot coefficients from a ncvreg object

Description

Produces a plot of the coefficient paths for a fitted ncvreg object.

Usage

```r
## S3 method for class 'ncvreg'
plot(x, alpha=1, log.l=FALSE, shade=TRUE, col, ...)
```

Arguments

- `x`: Fitted "ncvreg" model.
- `alpha`: Controls alpha-blending, helpful when the number of covariates is large. Default is `alpha=1`.
- `log.l`: Should horizontal axis be on the log scale? Default is `FALSE`.
- `shade`: Should nonconvex region be shaded? Default is `TRUE`.
- `col`: Vector of colors for coefficient lines. By default, evenly spaced colors are selected automatically.
- `...`: Other graphical parameters to `plot`

Author(s)

Patrick Breheny
References

See Also
ncvreg

Examples

```r
data(Prostate)
fit <- ncvreg(Prostate$X, Prostate$y)
plot(fit)
plot(fit, col="black")
plot(fit, log=TRUE)
```

plot.ncvsurv.func Plot survival curve for ncvsurv model

Description
Plot survival curve for a model that has been fit using ncvsurv followed by a prediction of the survival function using predict.ncvsurv

Usage

```r
## S3 method for class 'ncvsurv.func'
plot(x, alpha=1, ...)
```

Arguments

- **x**: A 'ncvsurv.func' object, which is returned by predict.ncvsurv if type='survival' is specified. See examples.
- **alpha**: Controls alpha-blending (i.e., transparency). Useful if many overlapping lines are present.
- **...**: Other graphical parameters to pass to plot

Author(s)
Patrick Breheny

See Also
ncvsurv, predict.ncvsurv
Examples

data(Lung)
X <- Lung$X
y <- Lung$y

fit <- ncvvsurv(X, y)

A single survival curve
S <- predict(fit, X[1,], type='survival', lambda=.15)
plot(S, xlim=c(0,200))

Lots of survival curves
S <- predict(fit, X, type='survival', lambda=.08)
plot(S, xlim=c(0,200), alpha=0.3)

predict.ncvreg

Model predictions based on a fitted ncvreg object.

Description

Similar to other predict methods, this function returns predictions from a fitted ncvreg object.

Usage

S3 method for class 'ncvreg'
predict(object, X, type=c("link", "response", "class", "coefficients", "vars", "nvars"), lambda, which=1:length(object$lambda), ...)
S3 method for class 'ncvreg'
coef(object, lambda, which=1:length(object$lambda), drop=TRUE, ...)

Arguments

object Fitted ncvreg model object.
X Matrix of values at which predictions are to be made. Not used for type="coefficients" or for some of the type settings in predict.
lambda Values of the regularization parameter lambda at which predictions are requested. For values of lambda not in the sequence of fitted models, linear interpolation is used.
which Indices of the penalty parameter lambda at which predictions are required. By default, all indices are returned. If lambda is specified, this will override which.
type Type of prediction: "link" returns the linear predictors; "response" gives the fitted values; "class" returns the binomial outcome with the highest probability; "coefficients" returns the coefficients; "vars" returns a list containing the indices and names of the nonzero variables at each value of lambda; "nvars" returns the number of nonzero coefficients at each value of lambda.
predict.ncvsurv

drop If coefficients for a single value of lambda are to be returned, reduce dimensions to a vector? Setting drop=FALSE returns a 1-column matrix.

... Not used.

Value

The object returned depends on type.

Author(s)

Patrick Breheny

References

See Also
ncvreg

Examples

data(Heart)

fit <- ncvreg(Heart$X, Heart$y, family="binomial")
coef(fit, lambda=0.05)
head(predict(fit, Heart$X, type="link", lambda=0.05))
head(predict(fit, Heart$X, type="response", lambda=0.05))
head(predict(fit, Heart$X, type="class", lambda=0.05))
predict(fit, type="vars", lambda=c(0.05, 0.01))
predict(fit, type="nvars", lambda=c(0.05, 0.01))

Description

Similar to other predict methods, this function returns predictions from a fitted "ncvsurv" object.

Usage

S3 method for class 'ncvsurv'
predict(object, X, type=c("link", "response", "survival", "median", "coefficients", "vars", "nvars"), lambda, which=1:length(object$lambda), ...)
Arguments

- **object** Fitted "ncvsurv" model object.
- **X** Matrix of values at which predictions are to be made. Not used for type="coefficients" or for some of the type settings in `predict`.
- **lambda** Values of the regularization parameter lambda at which predictions are requested. For values of lambda not in the sequence of fitted models, linear interpolation is used.
- **which** Indices of the penalty parameter lambda at which predictions are required. By default, all indices are returned. If lambda is specified, this will override which.
- **type** Type of prediction: "link" returns the linear predictors; "response" gives the risk (i.e., exp(link)); "survival" returns the estimated survival function; "median" estimates median survival times. The other options are all identical to their ncvreg counterparts: "coefficients" returns the coefficients; "vars" returns a list containing the indices and names of the nonzero variables at each value of lambda; "nvars" returns the number of nonzero coefficients at each value of lambda.
- ... Not used.

Details

Estimation of baseline survival function conditional on the estimated values of beta is carried out according to the method described in Chapter 4.3 of Kalbfleish and Prentice. In particular, it agrees exactly the results returned by `survfit.coxph(...,type='kalbfleisch-prentice')` in the survival package.

Value

The object returned depends on type.

Author(s)

Patrick Breheny <patrick-breheny@uiowa.edu>

References

See Also

ncvsurv
Examples

```r
    data(Lung)
    X <- Lung$X
    y <- Lung$y

    fit <- ncvsurv(X, y)
    coef(fit, lambda=0.05)
    head(predict(fit, X, type="link", lambda=0.05))
    head(predict(fit, X, type="response", lambda=0.05))

    # Survival function
    S <- predict(fit, X[1,], type="survival", lambda=0.05)
    S(100)
    plot(S, xlab="time", ylab="survival probability")

    # Medians
    M <- predict(fit, X[1,], type="median", lambda=0.05)
    predict(fit, X, type="median")
    M[1:10, ]

    # Nonzero coefficients
    predict(fit, type="vars", lambda=c(0.1, 0.01))
    predict(fit, type="nvars", lambda=c(0.1, 0.01))
```

Description

Data from a study by by Stamey et al. (1989) to examine the association between prostate specific antigen (PSA) and several clinical measures that are potentially associated with PSA in men who were about to receive a radical prostatectomy. The variables are as follows:

- **X**: A design matrix with 97 instances (rows) and 8 predictor variables (columns). The columns are:
 - lcavol: Log cancer volume
 - lweight: Log prostate weight
 - age: The man’s age
 - lbph: Log of the amount of benign hyperplasia
 - svi: Seminal vesicle invasion; 1=Yes, 0=No
 - lcp: Log of capsular penetration
 - gleason: Gleason score
 - pgg45: Percent of Gleason scores 4 or 5
- **y**: Log PSA
Usage

\texttt{std(X)}

Arguments

\texttt{X} \\
A matrix (or object that can be coerced to a matrix, such as a data frame or numeric vector).

Details

This function centers and scales each column of \texttt{X} so that

\[
\sum_{i=1}^{n} x_{ij} = 0
\]

and

\[
n^{-1} \sum_{i=1}^{n} x_{ij}^2 = 1
\]

for all \(j \). This is usually not necessary to call directly, as \texttt{ncvreg} internally standardizes the design matrix, but inspection of the standardized design matrix can sometimes be useful. This differs from the base R function \texttt{scale} in two ways:

1. \texttt{scale} uses the sample standard deviation \(\sqrt{\text{sum}(x^2)/(n-1)} \), while \texttt{std} uses the root-mean-square (population) standard deviation \(\sqrt{\text{mean}(\text{sum}(x^2))} \)
2. \texttt{std} is faster.
Value

The standardized design matrix, with the following attributes:

- center, scale: mean and standard deviation used to scale the columns
- nonsingular: A vector indicating which columns of the original design matrix were able to be standardized (constant columns cannot be standardized to have a standard deviation of 1)

Examples

```r
X <- matrix(rnorm(50), 10, 5)
S <- std(X)
apply(S, 2, sum)
apply(S, 2, function(x) mean(x^2))
```

Value

`summary.cv.ncvreg` produces an object with S3 class "summary.cv.ncvreg". The class has its own print method and contains the following list elements:

- **penalty**: The penalty used by `ncvreg`.
- **model**: Either "linear" or "logistic", depending on the family option in `ncvreg`.
- **n**: Number of observations
- **p**: Number of regression coefficients (not including the intercept).
- **min**: The index of lambda with the smallest cross-validation error.
lambda The sequence of lambda values used by cv.ncvreg.
cve Cross-validation error (deviance).
r.squared Proportion of variance explained by the model, as estimated by cross-validation. For models outside of linear regression, the Cox-Snell approach to defining R-squared is used.
snr Signal to noise ratio, as estimated by cross-validation.
sigma For linear regression models, the scale parameter estimate.
ppe For logistic regression models, the prediction error (misclassification error).

Author(s)

Patrick Breheny

References

See Also

ncvreg, cv.ncvreg, plot.cv.ncvreg

Examples

Linear regression ---
data(Prostate)
cvfit <- cv.ncvreg(Prostate$X, Prostate$y)
summary(cvfit)

Logistic regression ---
data(Heart)
cvfit <- cv.ncvreg(Heart$X, Heart$y, family="binomial")
summary(cvfit)

Cox regression ---
data(Lung)
cvfit <- cv.ncvsurv(Lung$X, Lung$y)
summary(cvfit)

summary.ncvreg Summary method for ncvreg objects

Description

Inferential summaries for ncvreg and ncvsurv objects based on local marginal false discovery rates.
Usage

```r
## S3 method for class 'ncvreg'
summary(object, lambda, which, number, cutoff, ...)
## S3 method for class 'summary.ncvreg'
print(x, digits, ...)
```

Arguments

- `object`: An `ncvreg` or `ncvsurv` object.
- `lambda`: The regularization parameter value at which inference should be reported. Alternatively, `lambda` may be specified by index; `which=10` means: report inference for the 10th value of `lambda` along the regularization path. If both `lambda` and `which` are specified, `lambda` takes precedence.
- `which`: By default, `summary` will provide an inferential summary for each variable that has been selected (i.e., each variable with a nonzero coefficient). Specifying `number=5`, for example, means that the summary table will include the 5 features with the lowest mfdr values, regardless of whether they were selected. To see all features, `number=Inf`.
- `number`: Alternatively, specifying for example `cutoff=0.3` will report inference for all features with mfdr under 30%. If both `number` and `cutoff` are specified, the intersection between both sets of features is reported.
- `cutoff`: A `summary.ncvreg` object.
- `digits`: Number of digits past the decimal point to print out. Can be a vector specifying different display digits for each of the five non-integer printed values.
- `...`: Further arguments; in particular, if you have set `returnX=FALSE`, you will need to supply `X` and `y` in order to calculate local mFDRs.

Value

`summary.ncvreg` and `summary.ncvsurv` produce object with S3 class `summary.ncvreg`. The class has its own print method and contains the following list elements:

- `penalty`: The penalty used by `ncvreg` or `ncvsurv`.
- `model`: Either "linear", "logistic", or "Cox".
- `n`: Number of instances.
- `p`: Number of regression coefficients (not including the intercept).
- `lambda`: The `lambda` value at which inference is being reported.
- `nvars`: The number of nonzero coefficients (again, not including the intercept) at that value of `lambda`.
- `table`: A table containing estimates, normalized test statistics (`z`), and an estimate of the local mfdr for each coefficient. The mfdr may be loosely interpreted, in an empirical Bayes sense, as the probability that the given feature is null.
- `unpen.table`: If there are any unpenalized coefficients, a separate inferential summary is given for them. Currently, this is based on `lm/glm/coxph` using the penalized coefficients to provide an offset. This is useful and more or less accurate, but not ideal; we hope to improve the inferential methods for unpenalized variables in the future.
Author(s)
Patrick Breheny <patrick-breheny@uiowa.edu>

See Also
ncvreg, ncvreg.cv, plot.cv.ncvreg, local_mfdr

Examples

Linear regression ---
data(Prostate)
fit <- ncvreg(Prostate$X, Prostate$y)
summary(fit, lambda=0.08)

Logistic regression ---
data(Heart)
fit <- ncvreg(Heart$X, Heart$y, family="binomial")
summary(fit, lambda=0.05)

Cox regression --
data(Lung)
fit <- ncvsurv(Lung$X, Lung$y)
summary(fit, lambda=0.1)

Options --
fit <- ncvreg(Heart$X, Heart$y, family="binomial")
summary(fit, lambda=0.08, number=3)
summary(fit, lambda=0.08, number=Inf)
summary(fit, lambda=0.08, cutoff=0.5)
summary(fit, lambda=0.08, number=3, cutoff=0.5)

If X and y are not returned with the fit, they must be supplied
fit <- ncvreg(Heart$X, Heart$y, family="binomial", returnX=FALSE)
summary(fit, X=Heart$X, y=Heart$y, lambda=0.08)
Index

*Topic datasets
Heart, 7
Lung, 9
Prostate, 30

AUC (AUC.cv.ncvsurv), 3
AUC.cv.ncvsurv, 3

coef.ncvreg (predict.ncvreg), 27
coef.ncvsurv (predict.ncvsurv), 28
cv.ncvreg, 4, 14, 23, 33, 35
cv.ncvsurv, 3, 18
cv.ncvsurv (cv.ncvreg), 4

definition
Prostate, 30
prostate (Prostate), 30

scale, 31
std, 31
summary.cv.ncvreg, 6, 32
summary.ncvreg, 13, 33
summary.ncvreg(), 8
summary.ncvsurv, 17
summary.ncvsurv (summary.ncvreg), 33
Surv, 16
survConcordance, 3

Heart, 7
heart (Heart), 7

local.mfdr, 8, 35
Lung, 9

mfdr, 7, 10, 20, 22, 24

ncvreg, 6, 11, 12, 20–23, 26, 28, 33, 35
ncvreg(), 8
ncvreg-package, 2
ncvsurv, 10, 11, 15, 26, 29

perm.ncvreg, 10, 11, 19, 21, 22, 24
permres, 19, 21
plot.cv.ncvreg, 6, 22, 33, 35
plot.mfdr, 11, 20, 24
plot.ncvreg, 14, 18, 25
plot.ncvsurv.func, 26
predict.ncvreg, 27
predict.ncvsurv, 26, 28
print.summary.cv.ncvreg
 (summary.cv.ncvreg), 32
print.summary.ncvreg (summary.ncvreg),
 33