Package ‘nda’

June 18, 2023

Type Package
Title Generalized Network-Based Dimensionality Reduction and Analysis
Version 0.1.11
Maintainer Zsolt T. Kosztyan <kosztyan.zsolt@gtk.uni-pannon.hu>
License GPL (>= 2)
Encoding UTF-8
LazyData true
URL https://github.com/kzst/nda
Depends R (>= 3.10)
Imports energy, psych, stats, igraph, Matrix, MASS, ppcor, visNetwork
RoxygenNote 7.2.1
NeedsCompilation no
Author Zsolt T. Kosztyan [aut, cre],
 Marcell T. Kurbucz [aut],
 Attila I. Katona [aut]
Repository CRAN
Date/Publication 2023-06-18 07:50:03 UTC

R topics documented:

 biplot.nda .. 2
 COVID19_2020 3
 CrimesUSA1990.X 4
 CrimesUSA1990.Y 4
 CWTS_2020 .. 5
 data_gen .. 5
 dCor ... 7
Description

Biplot function for Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Usage

```r
## S3 method for class 'nda'
biplot(x, main=NULL,...)
```

Arguments

- `x` an object of class 'NDA'.
- `main` main title of biplot.
- `...` other graphical parameters.

Author(s)

Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona

e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu

See Also

`plot`, `summary.nda`, `ndr`, `data_gen`.
Examples

Biplot function without feature selection
Generate 200 x 50 random block matrix with 3 blocks and lambda=0 parameter

df<-data_gen(200,50,3,0)
p<-ndr(df)
biplot(p)

COVID19_2020 Covid’19 case datasets of countries (2020), where the data frame has 138 observations of 18 variables.

Description

Sample datasets for Generalized Network-based Dimensionality Reduction and Analysis (GNDA) Covid’19 of countries (2020), where the data frame has 138 observations of 18 variables.

Usage

data("COVID19_2020")

Format

A data frame with 138 observations 18 variables.

Source

Examples

data(COVID19_2020)
CrimesUSA1990.X

Description

Sample datasets for Generalized Network-based Dimensionality Reduction and Analysis (GNDA) Crimes in USA cities in 1990. Independent variables (X)

Usage

data("CrimesUSA1990.X")

Format

A data frame with 1994 observations 123 variables.

Source

Examples

data(CrimesUSA1990.X)

CrimesUSA1990.Y

Description

Sample datasets for Generalized Network-based Dimensionality Reduction and Analysis (GNDA) Crimes in USA cities in 1990. Dependent variable (Y)

Usage

data("CrimesUSA1990.Y")

Format

A data frame with 1994 observations 1 variables.

Source

Examples

```r
data(CrimesUSA1990)
```

CWTS_2020

CWTS Leiden’s University Ranking 2020 for all scientific fields, within the period of 2016-2019. 1176 observations (i.e., universities), and 42 variables (i.e., indicators).

Description

Sample datasets for Generalized Network-based Dimensionality Reduction and Analysis (GNDA) CWTS Leiden’s 2020 dataset, where the data frame has 1176 observations of 42 variables.

Usage

```r
data("CWTS_2020")
```

Format

A data frame with 1176 observations of 42 variables.

Source

CWTS Leiden Ranking 2020: https://www.leidenranking.com/ranking/2020/list

Examples

```r
data(CWTS_2020)
```

data_gen

Generate random block matrix for GNDA

Description

Generate random block matrix for Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Usage

```r
data_gen(n,m,nfactors=2,lambda=1)
```
Arguments

n number of rows
m number of columns
nfactors number of blocks (factors, where the default value is 2)
lambda exponential smoothing, where the default value is 1

Details

n, m, nfactors must be integers, and they are not less than 1; lambda should be a positive real number.

Value

M a dataframe of a block matrix

Author(s)

Prof. Zsolt T. Kosztyan, Department of Quantitative Methods, Institute of Management, Faculty of Business and Economics, University of Pannonia, Hungary

e-mail: kzst@gtk.uni-pannon.hu

Examples

Specification 30 by 10 random block matrices with 2 blocks/factors
df<-data_gen(30,10)
library(psych)
scree(df)
biplot(ndr(df))

Specification 40 by 20 random block matrices with 3 blocks/factors
df<-data_gen(40,20,3)
library(psych)
scree(df)
biplot(ndr(df))
plot(ndr(df))

Specification 50 by 20 random block matrices with 4 blocks/factors
lambda=0.1
df<-data_gen(50,15,4,0.1)
scree(df)
biplot(ndr(df))
plot(ndr(df))
Calculating distance correlation of two vectors or columns of a matrix

Description

Calculating distance correlation of two vectors or columns of a matrix for Generalized Network-based Dimensionality Reduction and Analysis (GNDA).

The calculation is very slow for large matrices!

Usage

dCor(x, y=NULL)

Arguments

- **x**: a numeric vector, a numeric matrix (in this case y=NULL), or a numeric data frame (in this case y=NULL)
- **y**: a numeric vector (optional)

Details

If **x** is a numeric vector, **y** must be specified. If **x** is a numeric matrix or numeric data frame, **y** must be ignored from the parameters.

Value

Either a distance correlation value of vectors **x** and **y**, or a distance correlation matrix of **x**.

Author(s)

Prof. Zsolt T. Kosztyan, Department of Quantitative Methods, Institute of Management, Faculty of Business and Economics, University of Pannonia, Hungary

e-mail: kosztyan.zsolt@gtk.uni-pannon.hu

References

Examples

Specification of distance correlation value of vectors x and y.
x<-rnorm(36)
y<-rnorm(36)
dCor(x, y)

Specification of distance correlation matrix.
x<-matrix(rnorm(36),nrow=6)
dCor(x)
Calculating distance covariance of two vectors or columns of a matrix

Description
Calculating distance covariance of two vectors or columns of a matrix for Generalized Network-based Dimensionality Reduction and Analysis (GNDA).
The calculation is very slow for large matrices!

Usage
\texttt{dCov(x,y=NULL)}

Arguments
- \texttt{x} a numeric vector, a numeric matrix (in this case \texttt{y=\textbf{NULL}}), or a numeric data frame (in this case \texttt{y=\textbf{NULL}})
- \texttt{y} a numeric vector (optional)

Details
If \texttt{x} is a numeric vector, \texttt{y} must be specified. If \texttt{x} is a numeric matrix or numeric data frame, \texttt{y} must be ignored from the parameters.

Value
Either a distance covariance value of vectors \texttt{x} and \texttt{y}, or a distance covariance matrix of \texttt{x}.

Author(s)
Prof. Zsolt T. Kosztyan, Department of Quantitative Methods, Institute of Management, Faculty of Business and Economics, University of Pannonia, Hungary
e-mail: kosztyan.zsolt@gtk.uni-pannon.hu

References

Examples
\begin{verbatim}
Specification of distance covariance value of vectors x and y.
x<-rnorm(36)
y<-rnorm(36)
dCov(x,y)
Specification of distance covariance matrix.
x<-matrix(rnorm(36),nrow=6)
dCov(x)
\end{verbatim}
Feature selection for PCA, FA, and (G)NDA

Description

This function drops variables that have low communality values and/or are common indicators (i.e., correlates more than one latent variables).

Usage

\[
\text{fs.dimred}(\text{fn}, \text{DF}, \text{min}_\text{comm}=0.25, \text{com}_\text{comm}=0.25)
\]

Arguments

- **fn**: It is a list variable of the output of a principal (PCA), a fa (FA), or an ndr (NDA) function.
- **DF**: Numeric data frame, or a numeric matrix of the data table
- **min_comm**: Scalar between 0 to 1. Minimal communality value, which a variable has to be achieved. The default value is 0.25.
- **com_comm**: Scalar between 0 to 1. The minimal difference value between loadings. The default value is 0.25.

Details

This function only works with principal, and fa, and ndr functions.

This function drops each variable that has a low communality value (under min_comm value). In other words, that variable does not fit enough of any latent variable.

This function also drops so-called common indicators, which correlate highly with more than one latent variable. And the difference in the correlation is either lower than the com_comm value or the greatest absolute factor loading value is not twice greater than the second greatest factor loading.

Value

- **dropped_low**: Numeric data frame or numeric matrix. Set of indicators (i.e. variables), which are dropped by their low communalities. This value is NULL if a correlation matrix is used as an input or there is no dropped indicator.
- **dropped_com**: Numeric data frame or numeric matrix. Set of dropped common indicators (i.e. common variables). This value is NULL if a correlation matrix is used as an input or there is no dropped indicator.
- **remain_DF**: Numeric data frame or numeric matrix. Set of retained indicators
- **...**: Other outputs came from \text{principal}, \text{fa}, or in \text{ndr}

Author(s)

Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona

e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu
References

See Also
principal, fa, ndr.

Examples

data<-I40_2020
library(psych)

Principal Component Analysis (PCA)
pca<-principal(data,nfactors=2,covar=TRUE)
pca

Feature selection with default values
PCA<-fs.dimred(pca,data)
PCA

List of dropped, low communality value indicators
print(colnames(PCA$dropped_low))

List of dropped, common communality value indicators
print(colnames(PCA$dropped_com))

List of retained indicators
print(colnames(PCA$retained_DF))

Principal Component Analysis (PCA) of correlation matrix
pca<-principal(cor(data,method="spearman"),nfactors=2,covar=TRUE)
pca

Feature selection
min_comm<-0.25 # Minimal communality value
com_comm<-0.20 # Minimal common communality value

PCA<-fs.dimred(pca,cor(data,method="spearman"),min_comm,com_comm)
PCA
Feature selection for KMO

Description

Drop variables if their MSA_i value is lower than a threshold, in order to increase the overall KMO (MSA) value.

Usage

fs.KMO(data,min_MSA=0.5,cor.mtx=FALSE)

Arguments

data A numeric data frame
min_MSA A numeric value. Minimal MSA value for variable i
cor.mtx Boolean value. The input is either a correlation matrix (cor.mtx=TRUE), or not (cor.mtx=FALSE)

Details

Low Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy does not suggest using principal component or factor analysis. Therefore, this function drop variables with low KMO/MSA values.

Value

data Cleaned data or the cleaned correlation matrix.

Author(s)

Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona

e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu

References

See Also

summary.
Examples

```r
library(psych)
data(I40_2020)
data<-I40_2020
KMO(fs.KMO(data,min_MSA=0.7,cor.mtx=FALSE))
```

GOVDB2020

Governmental and economic data of countries (2020), where the data frame has 138 observations of 2161 variables.

Description

Sample datasets for Generalized Network-based Dimensionality Reduction and Analysis (GNDA) Governmental and economic data of countries (2020), where the data frame has 138 observations of 2161 variables.

Usage

data("GOVDB2020")

Format

A data frame with 138 observations of 2161 variables.

Source

Examples

data(GOVDB2020)

I40_2020

NUTS2 regional development data (2020) of I4.0 readiness, where the data frame has 414 observations of 101 variables.

Description

Sample datasets for Generalized Network-based Dimensionality Reduction and Analysis (GNDA) NUTS2 regional development data (2020), where the data frame has 414 observations of 101 variables.
Usage

```r
data("COVID19_2020")
```

Format

A data frame with 414 observations of 101 variables.

Source

Examples

```r
data(I40_2020)
```

Description

The package of Generalized Network-based Dimensionality Reduction and Analysis (GNDA).

Author(s)

Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona

e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu

References

See Also

`ndr`, `plot`, `biplot`, `summary`, `dCor`.
ndr

Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Description

The main function of Generalized Network-based Dimensionality Reduction and Analysis (GNDA).

Usage

```r
ndr(r, covar=FALSE, cor_method=1, cor_type=1, min_R=0, min_comm=2, Gamma=1, null_modell_type=4, mod_mode=6, min_evalue=0, min_communality=0, com_communalities=0, use_rotation=FALSE)
```

Arguments

- `r` A numeric data frame
- `covar` If this value is FALSE (default), it finds the correlation matrix from the raw data. If this value is TRUE, it uses the matrix `r` as a correlation/similarity matrix.
- `cor_method` Correlation method (optional). '1' Pearson’s correlation (default), '2' Spearman’s correlation, '3' Kendall’s correlation, '4' Distance correlation
- `cor_type` Correlation type (optional). '1' Bivariate correlation (default), '2' partial correlation, '3' semi-partial correlation
- `min_R` Minimal square correlation between indicators (default: 0).
- `min_comm` Minimal number of indicators per community (default: 2).
- `Gamma` Gamma parameter in multiresolution null modell (default: 1).
- `null_modell_type` '1' Differential Newmann-Grivan’s null model, '2' The null model is the mean of square correlations between indicators, '3' The null model is the specified minimal square correlation, '4' Newmann-Grivan’s modell (default)
- `mod_mode` Community-based modularity calculation mode: '1' Louvain modularity, '2' Fast-greedy modularity, '3' Leading Eigen modularity, '4' Infomap modularity, '5' Walktrap modularity, '6' Leiden modularity (default)
- `min_evalue` Minimal eigenvector centrality value (default: 0)
- `min_communality` Minimal communality value of indicators (default: 0)
- `com_communalities` Minimal common communalities (default: 0)
- `use_rotation` FALSE no rotation (default), TRUE varimax rotation

Details

NDA both works on low and high simple size datasets. If min_evalue=min_communality=com_communalities=0 than there is no feature selection.
Value

- **communality**: Communality estimates for each item. These are merely the sum of squared factor loadings for that item. It can be interpreted in correlation matrices.
- **loadings**: A standard loading matrix of class "loadings".
- **uniqueness**: Uniqueness values of indicators.
- **factors**: Number of found factors.
- **scores**: Estimates of the factor scores are reported (if covar=FALSE).
- **n.obs**: Number of observations specified or found.
- **fn**: Factor name: NDA
- **Call**: Callback function

Author(s)

Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona

e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu

References

See Also

- plot
- biplot
- summary

Examples

```r
data(swiss)
df<-swiss
p<-ndr(df)
summary(p)
plot(p)
biplot(p)
```

pdCor

Calculating partial distance correlation of columns of a matrix

Description

Calculating partial distance correlation of two columns of a matrix for Generalized Network-based Dimensionality Reduction and Analysis (GNDA).

The calculation is very slow for large matrices!
Usage

pdCor(x)

Arguments

x a numeric matrix, or a numeric data frame

Value

Partial distance correlation matrix of x.

Author(s)

Prof. Zsolt T. Kosztyan, Department of Quantitative Methods, Institute of Management, Faculty of Business and Economics, University of Pannonia, Hungary

e-mail: kosztyan.zsolt@gtk.uni-pannon.hu

References

Examples

Specification of partial distance correlation matrix.
x<-matrix(rnorm(36),nrow=6)
pdCor(x)

plot.nda

Plot function for Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Description

Plot variable network graph

Usage

S3 method for class 'nda'
plot(x, cuts=0.3, interactive=TRUE, edgescale=1.0, labeldist=-1.5,...)
Arguments

- **x**: an object of class 'NDA'.
- **cuts**: minimal square correlation value for an edge in the correlation network graph (default 0.3).
- **interactive**: Plot interactive visNetwork graph or non-interactive igraph plot (default TRUE).
- **edgescale**: Proportion scale value of edge width.
- **labeldist**: Vertex label distance in non-interactive igraph plot (default value =-1.5).
- **...**: other graphical parameters.

Author(s)

Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona
e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu

See Also

biplot, summary, ndr.

Examples

```r
# Plot function with feature selection

data("CrimesUSA1990.X")
df<-CrimesUSA1990.X
p<-ndr(df)
biplot(p,main="Biplot of CrimesUSA1990 without feature selection")

# Plot function with feature selection
# minimal eigen values (min_evalue) is 0.0065
# minimal communality value (min_communality) is 0.1
# minimal common communality value (com_communalities) is 0.1

p<-ndr(df,min_evalue = 0.0065,min_communality = 0.1,com_communalities = 0.1)

# Plot with default (cuts=0.3)
plot(p)

# Plot with higher cuts
plot(p,cuts=0.6)
```
Calculating semi-partial distance correlation of columns of a matrix

Description

Calculating semi-partial distance correlation of two columns of a matrix for Generalized Network-based Dimensionality Reduction and Analysis (GNDA).

The calculation is very slow for large matrices!

Usage

spdCor(x)

Arguments

x a numeric matrix, or a numeric data frame

Value

Semi-partial distance correlation matrix of x.

Author(s)

Prof. Zsolt T. Kosztyan, Department of Quantitative Methods, Institute of Management, Faculty of Business and Economics, University of Pannonia, Hungary

e-mail: kosztyan.zsolt@gtk.uni-pannon.hu

References

R package version 1.7-8, <URL: https://CRAN.R-project.org/package=energy>.

Examples

Specification of semi-partial distance correlation matrix.
x<-matrix(rnorm(36),nrow=6)
spdCor(x)
Summary function of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Description
Print summary of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Usage
S3 method for class 'nda'
summary(object, digits = getOption("digits"), ...)

Arguments
object an object of class 'nda'.
digits the number of significant digits to use when add.stats = TRUE.
... additional arguments affecting the summary produced.

Author(s)
Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona
e-mail*: kzst@gtk.uni-pannon.hu

See Also
biplot, plot, ndr.

Examples
Example of summary function of NDA without feature selection
data("CrimesUSA1990.X")
df<-CrimesUSA1990.X
p<-ndr(df)
summary(p)

Example of summary function of NDA with feature selection
minimal eigen values (min_evalue) is 0.0065
minimal communality value (min_communality) is 0.1
minimal common communality value (com_communalities) is 0.1

p<-ndr(df,min_evalue = 0.0065,min_communality = 0.1,com_communalities = 0.1)
summary(p)
Index

* array
 data_gen, 5
dCor, 7
dCov, 8
pdCor, 15
spdCor, 18
* control chart
 plot.nda, 16
* correlation matrix
 dCor, 7
dCov, 8
pdCor, 15
spdCor, 18
* datasets
 COVID19_2020, 3
 CrimesUSA1990.X, 4
 CrimesUSA1990.Y, 4
 CWTS_2020, 5
 GOVDB2020, 12
 I40_2020, 12
* dimensionality
 fs.dimred, 9
 fs.KMO, 11
 ndr, 14
* distance correlation
 dCor, 7
dCov, 8
pdCor, 15
spdCor, 18
* multivariate
 data_gen, 5
dCor, 7
dCov, 8
fs.dimred, 9
fs.KMO, 11
ndr, 14
pdCor, 15
plot.nda, 16
spdCor, 18

summary.nda, 19
* nonparametric
 ndr, 14
* package
 nda, 13
* plot
 biplot.nda, 2
* random block matrix
 data_gen, 5
* reduction
 fs.dimred, 9
 fs.KMO, 11
 ndr, 14

biplot, 13, 15, 17, 19
biplot.nda, 2
COVID19_2020, 3
CrimesUSA1990.X, 4
CrimesUSA1990.Y, 4
CWTS_2020, 5
data_gen, 2, 5
dCor, 7, 13
dCov, 8
fa, 9, 10
fs.dimred, 9
fs.KMO, 11

GOVDB2020, 12
I40_2020, 12
nda, 13
ndr, 2, 9, 10, 13, 14, 17, 19

pdCor, 15
plot, 2, 13, 15, 19
plot.nda, 16
principal, 9, 10
INDEX

spdCor, 18
summary, 2, 11, 13, 15, 17
summary.nda, 19