Package ‘neonPlantEcology’

Type Package

Title Process NEON Plant Data for Ecological Analysis

Version 1.6.1

Date 2024-05-30

Maintainer Adam Mahood <admahood@gmail.com>

Description Downloading and organizing plant presence and percent cover data from the National Ecological Observatory Network <https://www.neonscience.org>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports neonUtilities, vegan, ggplot2, data.table, dplyr, dplyr, lubridate, sf, stringr, tibble, tidyr, ggpubr, utils

RoxygenNote 7.3.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/admahood/neonPlantEcology

BugReports https://github.com/admahood/neonPlantEcology/issues

NeedsCompilation no

Author Adam Mahood [aut, cre], Jacob Macdonald [ctb], Ranjan Muthukrishnan [ctb]

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2024-05-30 17:30:02 UTC
R topics documented:

D14 ... 2
npe_change_native_status ... 3
npe_cm_metadata .. 3
npe_community_matrix ... 4
npe_download .. 5
npe_eventID_fixer .. 6
npe_groundcover ... 7
npe_heights .. 8
npe_longform ... 9
npe_plot_centroids .. 10
npe_site_ids .. 11
npe_summary .. 11
npe_update_subplots ... 13
plot_centroids ... 13
sites ... 14
site_polygons ... 14

Index

D14

Plant Presence and Percent Cover Data for Domain 14

Description

This includes Jornada Experimental Range and Santa Rita Experimental Range

Usage

D14

Format

'D14' A list with 8 items, 2 of which are used by neonPlantEcology

Source

<https://doi.org/10.48443/9579-a253>

<https://data.neonscience.org/data-products/DP1.10058.001>
Change the native status code for a particular taxon at a particular site

Description

Sometimes even though a particular species identity is not known, the end user can still determine its native status. For example, maybe the taxon was identified to the genus level, and the local flora confirms that all plants in that genus are native at that particular site. This function allows for post-hoc modification of the native status code for cases like this.

Usage

npe_change_native_status(df, taxon, site, new_code)

Arguments

df is the data frame returned by npe_longform
taxon is the taxonID column in the data frame
site is the identity of the NEON site (e.g. "JORN")
new_code is the NativeStatusCode value to change to

Value

a data frame

Examples

data("D14")
lf_div <- npe_longform(D14)
modified_lf_div <- npe_change_native_status(lf_div, "ABUTI", "JORN", "N")

Get plot information from a community matrix

Description

The npe_community_matrix() function is designed to work with the vegan package, and one of the requirements of vegan functions is that there are only numeric columns in community matrices. Therefore, all of the metadata is collapsed into the rownames. This function allows you to extract that very basic metadata back out to a more easily interpretable data frame.
npe_community_matrix

Usage

npe_cm_metadata(comm)

Arguments

comm the community matrix object created by npe_community_matrix()

Value

a data frame

Examples

data("D14")
npe_community_matrix(D14) |> npe_cm_metadata()

npe_community_matrix Create a species abundance or occurrence matrix

Description

npe_community_matrix creates a wide matrix of species cover or binary (presence/absence) values with the plot/subplot/year as rownames. This is useful for the vegan package, hence the name.

Usage

npe_community_matrix(
 x,
 scale = "plot",
 trace_cover = 0.5,
 timescale = "annual",
 input = "neon_div_object",
 binary = FALSE
)

Arguments

x Input object. See input argument help for more details.

scale what level of aggregation? This can be "1m", "10m", "100m", "plot", which is the default, or "site".

trace_cover cover value for subplots where only occupancy was recorded

timescale what temporal resolution? can be "subannual", which is really only applicable at sites where there are multiple bouts per year, "annual" or "all", which dissolves together the entire time series.
input by default, longform dataframe is calculated from the diversity object and then converted to a community matrix, set this option to "lf" to use a longform data frame that was created separately (and perhaps modified). Another option is input = "divStack", which is using the output from the divStack function in the neonPlants package. Using a premade longform data frame or a divStack output will use the spatial and temporal scale of that input data separately.

binary should the matrix be converted from percent cover to binary?

neon_div_object the raw diversity data downloaded using neonPlantEcology::download_plant_div() or the function neonUtilities::loadByProduct() with the dpID argument set to "DP1.10058.001".

Value

a data frame with each row a site aggregated at the spatial and temporal scales chosen by the user. Each column is a single species, and cell values can be either cover (a value between 0 and 100) or occurrence (1 or 0)

Examples

data("D14")
comm <- npe_community_matrix(D14)

Description

A wrapper function to download data from the NEON API using neonUtilities::loadByProduct. Some commonly used products are provided as plain language options, otherwise the user can enter the product ID number (dpID). Downloads Plant Presence and Percent Cover by default (DP1.10058.001).

Usage

npe_download(
 sites = "JORN",
 dpID = NA,
 token = NA,
 verbose = TRUE,
 product = "plant_diversity",
 ...
)
Arguments

sites a vector of NEON site abbreviations. Defaults to "JORN"
dpID if you need a data product not given as one of the product options, set the data product ID here (e.g. "DP1.10023.001").
token a token from neonscience.org
verbose if true, prints which sites are being downloaded

Value
a list

Examples

diversity_object <- npe_download(sites = "JORN")

Description

neonPlantEcology is a house of cards that rests delicately upon the eventID column being in the site.bout-number.year format, and if there is any deviation from that format all hell breaks loose. This function converts any NA or non-standard eventID rows to the desired format.

Usage

npe_eventID_fixer(x, verbose = FALSE)

Arguments

x raw list data from NEON api
verbose if true, prints details of which eventID errors were fixed into the console

Value
the same list object but with repaired eventIDs

Examples

data("D14")
x <- npe_eventID_fixer(D14)
Description

Get ground cover and other variables

Usage

{npe_groundcover}(
 neon_div_object,
 scale = "plot",
 verbose = FALSE,
 pc_na_value = 0.5,
 timescale = "annual"
)

Arguments

{neon_div_object}
the raw diversity data downloaded using neonPlantEcology::download_plant_div()
or the function neonUtilities::loadByProduct() with the dpID argument set to
"DP1.10058.001".

{scale}
the spatial scale of aggregation. Can be "1m", "10m", "100m", "plot" or "site".
default is "plot".

{verbose}
if true, prints details of which eventID errors were fixed into the console

{pc_na_value}
sometimes the raw data from neon will have NA's in the percent cover cells.
This is assumed to be a data entry error and is set to 0.5 by default.

{timescale}
The temporal scale of aggregation. Can be "all", "annual" or "subannual" in the
case of multiple sampling bouts per year. Defaults to "annual".

Value

a data frame with each row a single observation of ground cover at the spatial and temporal scale
chosen by the user.

Examples

data("D14")
groundcover <- npe_groundcover(D14)
Description

Get heights

Usage

npe_heights(
 neon_div_object,
 scale = "plot",
 verbose = FALSE,
 timescale = "annual"
)

Arguments

neon_div_object
the raw diversity data downloaded using neonPlantEcology::download_plant_div() or the function neonUtilities::loadByProduct() with the dpID argument set to "DP1.10058.001".

scale
the spatial scale of aggregation. Can be "1m", "10m", "100m", "plot" or "site". default is "plot".

verbose
if true, prints details of which eventID errors were fixed into the console

timescale
The temporal scale of aggregation. Can be "all", "annual" or "subannual" in the case of multiple sampling bouts per year. Defaults to "annual".

Value

a data frame with each row a single observation of species height at the spatial and temporal scale chosen by the user.

Examples

data("D14")
heights <- npe_heights(D14)
npe_longform

Convert raw NEON diversity object to longform plant cover data frame

Description

The diversity data from NEON comes as a list containing 2 data frames of data that need to be combined, among other things. Here, we take those two data frames and combine them into a longform data frame that can then be further modified for analysis. Most of the unnecessary information from the raw data has been removed. Column names that remain are plotID, subplotID, year, taxonID, cover, scientificName, nativeStatusCode, family, and site.

Usage

```r
npe_longform(
  neon_div_object,
  trace_cover = 0.5,
  pc_na_value = 0.5,
  scale = "plot",
  verbose = FALSE,
  timescale = "annual"
)
```

Arguments

- `neon_div_object` the raw diversity data downloaded using `neonPlantEcology::download_plant_div()` or the function `neonUtilities::loadByProduct()` with the dpID argument set to "DP1.10058.001".
- `trace_cover` cover value for subplots where only occupancy was recorded
- `pc_na_value` sometimes the raw data from neon will have NA's in the percent cover cells. This is assumed to be a data entry error and is set to 0.5 by default.
- `scale` what level of spatial aggregation? This can be "1m", "10m", "100m", "plot", which is the default, or "site".
- `verbose` if true, prints details of which eventID errors were fixed into the console
- `timescale` what level of temporal aggregation? can be "subannual", which is only important for sites with multiple sampling bouts per year, "annual" or "all" for the full time series.

Value

a data frame with each row a single observation of species cover at the spatial and temporal scale chosen by the user.
npe_plot_centroids

Examples

data("D14")
lf <- npe_longform(D14)

npe_plot_centroids

Description

Download and join spatial information to a neonPlantEcology output data frame

Usage

npe_plot_centroids(
 df,
 type = "latlong",
 spatial_only = TRUE,
 input = "community_matrix"
)

Arguments

df a neonPlantEcology-produced data frame

type what type of ancillary data structure you want joined. Can be "spatial", which will turn the data frame into an sf data frame, or "latlong", which will add the latitudes and longitudes and other ancillary data as columns only.

spatial_only set to TRUE if you only want the coordinates and none of the ancillary variables.

input to what kind of neonPlantEcology product are you appending? Can be "community_matrix", "longform_cover", or "summary_info".

Value

a data frame
npe_site_ids
Get site ids

Description

This returns a list of 4 letter site ID codes to feed into npe_download. It can return all 47 siteID codes, or a subset based on site type, aridity index, Koppen-Geiger Climate region, or NEON domain.

Usage

```r
npe_site_ids(by, domain = NA, type = NA, aridity = NA, koppen = NA)
```

Arguments

- **by**
 How to select sites? Can be "all", "domain", "ai", "koppen", or "type".
- **domain**
 can be one or more domain codes, as a character vector, or as a number. e.g. domain = c("D01", "D14"), or domain = c(3, 14), can also be a mix: domain = c(3, "D04").
- **type**
 can be "Core Terrestrial" or "Relocatable Terrestrial"
- **aridity**
 can be "Hyper-Arid", "Arid", "Dry sub-humid", or "Humid"
- **koppen**
 can be any 3 letter Koppen-Geiger code, or one of "Equatorial", "Arid", "Temperate", "Boreal", "Polar"

Value

a vector of four letter site identification codes.

Examples

```r
all_sites <- npe_site_ids(by = "all")
npe_site_ids(by = "domain", domain = c("Northeast", "Mid-Atlantic"))
npe_site_ids(by = "domain", domain = c("D02", 15))
```

npe_summary
Get plant biodiversity information for NEON plots

Description

npe_summary calculates various biodiversity and cover indexes at the plot or subplot scale at each timestep for each plot. Outputs a data frame with number of species, percent cover, relative percent cover (relative to the cover of the other plants), and shannon diversity, for natives, exotics, "notexotics", unknowns, and all species. "notexotic" refers to all species with native or unknown origin status. Also calculates all of these metrics for the families of your choice.
Usage

```r
npe_summary(
  neon_div_object,
  scale = "plot",
  trace_cover = 0.5,
  timescale = "annual",
  betadiversity = FALSE,
  families = NA
)
```

Arguments

- **neon_div_object**
 - the raw vegan::diversity data downloaded using neonPlantEcology::download_plant_div() or neonUtilities::loadByProduct() with the dpID argument set to "DP1.10058.001".

- **scale**
 - what level of aggregation? This can be "1m", "10m", "100m", "plot" or "site". "plot" is the default.

- **trace_cover**
 - cover value for subplots where only occupancy was recorded.

- **timescale**
 - by default npe_summary groups everything by year. The user may set this argument to "all" to have the function aggregate the years together and then calculate diversity and cover indexes, or "subannual" for bout-level.

- **betadiversity**
 - If evaluating at the plot or site level, should beta diversity (turnover and nestedness) be calculated. If scale = plot, it will calculate betadiversity within each plot, using the combined species presences within the 1 and 10 m subplots, and so it's calculated from 8 subplots before 2020, 6 after. If scale = site, it calculates the betadiversity between plots.

- **families**
 - Which specific families should the metrics be calculated for? This can be a concatenated vector if the user want more than one family.

Value

- a data frame of higher-level summary information. Number of species, Shannon-Weiner alpha diversity, cover, relative cover, for all species together and grouped by nativeStatusCode.

Examples

```r
data("D14")
plot_level <- neonPlantEcology::npe_summary(neon_div_object = D14, scale = "plot")
```
npe_update_subplots

Change subplot names

Description

The 2024 release features a change in subplot names. This function changes subplot names of the Plant Presence and Percent Cover raw list object from the old format to the new format, to ensure backwards compatibility. This is mostly an internal helper function.

Usage

```r
npe_update_subplots(neon_div_object)
```

Arguments

- `neon_div_object`:

a list downloaded using npe_download containing Plant Presence and Percent Cover data

Value

- a

Examples

```r
data("D14")
D14_updated <- npe_update_subplots(D14)
```

plot_centroids

Plot centroids for the entire NEON network

Description

Plot centroids for the entire NEON network

Usage

```r
plot_centroids
```

Format

```r
## 'plot_centroids' A simple feature collection with 3842 features and 36 fields
```

Source

https://www.neonscience.org
Description

Note: Some sites have more than one polygon. There are 59 polygons and 47 total sites.

Usage

sites

Format

'sites' data frame with 47 features and 8 fields

- **domainNumb** Domain Number
- **domainName** Domain Name
- **siteType** Site type. Core or Relocatable
- **siteID** Four letter site ID. Used in npe_download()
- **koppen_fine** Koppen-Geiger climate classification from Beck et al 2023
- **koppen_coarse** Coarsest category of K-G climate classification from Beck et al 2023
- **ai** Annual aridity index from Zomer & Trabucco 2022
- **ai_class** Climate classification based on the aridity index from Zomer & Trabucco 2022

Source

<https://www.neonscience.org>
<https://doi.org/10.6084/m9.figshare.7504448.v5>
<https://doi.org/10.1038/s41597-023–02549-6>

site_polygons

Description

Note: Some sites have more than one polygon. There are 59 polygons and 47 total sites.

Usage

site_polygons
Format

'site_polygons’ A simple feature collection with 59 features and 8 fields

domainNumb Domain Number

domainName Domain Name

siteType Site type. Core or Relocatable

siteName Site name

siteID Four letter site ID. Used in npe_download()

siteHost Organization hosting the site

areaKm2 Area of the site in square kilometers

acres Area of the site in acres

geometry list column containing geometry information for each polygon

Source

<https://www.neonscience.org>
Index

* datasets
 D14, 2
 plot_centroids, 13
 site_polygons, 14
 sites, 14
* diversity
 npe_download, 5
* download
 npe_download, 5
* neon
 npe_download, 5

D14, 2

npe_change_native_status, 3
npe_cm_metadata, 3
npe_community_matrix, 4
npe_download, 5
npe_eventID_fixer, 6
npe_groundcover, 7
npe_heights, 8
npe_longform, 9
npe_plot_centroids, 10
npe_site_ids, 11
npe_summary, 11
npe_update_subplots, 13

plot_centroids, 13

site_polygons, 14
sites, 14