Package ‘nestedLogit’

June 22, 2023

Title Nested Dichotomy Logistic Regression Models
Version 0.3.2
Date 2023-06-06

Description Provides functions for specifying and fitting nested
dichotomy logistic regression models for a multi-category response and
methods for summarising and plotting those models. Nested dichotomies are
statistically independent, and hence provide an additive decomposition
of tests for the overall 'polytomous' response. When the dichotomies
make sense substantively, this method can be a simpler alternative to
the standard 'multinomial' logistic model which compares response
categories to a reference level. See: J. Fox (2016), "Applied
1452205663.

License GPL (>= 2)

URL https://github.com/friendly/nestedLogit

BugReports https://github.com/friendly/nestedLogit/issues

Depends R (>= 3.5.0)

Imports broom, car, dplyr, effects, graphics, grDevices, stats,
 stringr, tibble

Suggests carData, geomtextpath, ggplot2, ggeffects, here, lobstr,
 knitr, nnet, rmarkdown, scales, spelling, testthat, tidyr

VignetteBuilder knitr, rmarkdown

Encoding UTF-8

Language en-US

LazyData TRUE

RoxygenNote 7.2.3

NeedsCompilation no

Author John Fox [aut] (https://orcid.org/0000-0002-1196-8012),
 Michael Friendly [aut, cre] (https://orcid.org/0000-0002-3237-0941),
 Achim Zeileis [ctb] (https://orcid.org/0000-0003-0918-3766)
as.data.frame.predictNestedLogit

Convert a Predicted Objects to a data.frame

Description

These functions provide simple ways to convert the results of predict.nestedLogit to a data frame in a consistent format for plotting and other actions.

Usage

S3 method for class 'predictNestedLogit'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x a "predictNestedLogit" object
row.names row.names for result (for conformity with generic; not currently used)
optional logical. If TRUE, setting row names and converting column names (to syntactic names: see make.names is optional
... other arguments (unused)

Value

- For predict(..., model="nested") (the default), returns a data frame containing the values of predictors along with the columns response, p, se.p, logit, se.logit.
- For predict(..., model="dichotomies"), returns a data frame containing the values of predictors along with the columns response, logit, and se.logit.
Examples

data("Womenlf", package = "carData")
comparisons <- logits(work=dichotomy("not.work", c("parttime", "fulltime")),
 full=dichotomy("parttime", "fulltime"))

wlf.nested <- nestedLogit(partic ~ hincome + children,
 dichotomies = comparisons,
 data=Womenlf)

get predicted values for a grid of `hincome` and `children`
new <- expand.grid(hincome=seq(0, 45, length=10),
 children=c("absent", "present"))

pred.nested <- predict(wlf.nested, new)
plotdata <- as.data.frame(pred.nested)
str(plotdata)

Predicted logit values for the dichotomies
pred.dich <- predict(wlf.nested, new, model = "dichotomies")
plotlogit <- as.data.frame(pred.dich)
str(plotlogit)

broomMethods

Broom Related Methods

Description

These functions give compact summaries of a "nestedLogit" object

- **glance** Construct a single row summaries for the dichotomies "nestedLogit" model.
- **tidy** Summarizes the terms in "nestedLogit" model.

Usage

```r
## S3 method for class 'nestedLogit'
glance(x, ...)
```

```r
## S3 method for class 'nestedLogit'
tidy(x, ...)
```

Arguments

- **x** an object of class "nestedLogit".
- **...** arguments to be passed down.

Value

- **glance** returns a tibble containing one row of fit statistics for each dichotomy, labeled response. See `glance` for details.
- **tidy** returns a tibble containing coefficient estimates and test statistics for the combinations of response and term. See `tidy` for details.
Effect.nestedLogit

Description

Computes effects (in the sense of the effects package—see, in particular, Effect)—for "nestedLogit" models, which then can be used with other functions in the effects package, for example, predictorEffects and to produce effect plots.

Usage

S3 method for class 'nestedLogit'
Effect(
 focal.predictors,
 mod,
 confidence.level = 0.95,
 fixed.predictors = NULL,
 ...
)

Arguments

focal.predictors
 a character vector of the names of one or more of the predictors in the model, for which the effect display should be computed.

mod
 a "nestedLogit" model object.

confidence.level
 for point-wise confidence bands around the effects (the default is 0.95).

Examples

data("Womenlf", package = "carData")
m <- nestedLogit(partic ~ hincome + children,
 dichotomies = logits(work=dichotomy("not.work",
 working=c("parttime", "fulltime")),
 full=dichotomy("parttime", "fulltime")),
 data=Womenlf)

one-line summaries
broom::glance(m)
coefficients and tests
broom::tidy(m)
fixed.predictors

controls the values at which other predictors are fixed; see `Effect` for details; if NULL (the default), numeric predictors are set to their means, factors to their distribution in the data.

... optional arguments to be passed to the `Effect` method for binary logit models (fit by the `glm` function).

Value

an object of class "effpoly" (see `Effect`).

Author(s)

John Fox

References

See Also

`Effect`, `plot.effpoly`, `predictorEffects`

Examples

data("Womenlf", package = "carData")
comparisons <- logits(work=dichotomy("not.work", working=c("parttime", "fulltime")),
 full=dichotomy("parttime", "fulltime"))
m <- nestedLogit(partic ~ hincome + children,
 dichotomies = comparisons,
 data=Womenlf)
peff.women <- effects::predictorEffects(m)
plot(peff.women)
plot(peff.women, axes=list(y=list(style="stacked")))
summary(peff.women)

dichots <- logits(AB_CD = dichotomy(c("A", "B"), c("C", "D")),
 A_B = dichotomy("A", "B"),
 C_D = dichotomy("C", "D"))
m.health <- nestedLogit(product4 ~ age + gender*household + position_level,
 dichotomies = dichots, data = HealthInsurance)
eff.gen.hh <- effects::Effect(c("gender", "household"), m.health,
 xlevels=list(household=0:7))

eff.gen.hh
plot(eff.gen.hh, axes=list(x=list(rug=FALSE)))
plot(eff.gen.hh, axes=list(x=list(rug=FALSE),
 y=list(style="stacked")))
Description

This data set is drawn from the U.S. General Social Survey (GSS) for years between 1972 and 2016.

Usage

data("GSS", package = "nestedLogit")

Format

A data frame with 44091 rows and 3 columns.

- **parentdeg** A factor representing parents' attained level of education (highest "degree" obtained), recording the higher of mother's and father's education, with levels "l.t.highschool", "highschool", "college", and "graduate".
- **degree** The respondent's level of education, a factor with the same levels as parentdeg.
- **year** The year of the survey, between 1972 and 2016.

Source

See Also

- nestedLogit.

Examples

```r
round(100*with(GSS, prop.table(table(degree, parentdeg), 2)))
m.GSS <- nestedLogit(degree ~ parentdeg*year,
  continuationLogits(c("l.t.highschool", "highschool",
    "college", "graduate")),
  data=GSS)
car::Anova(m.GSS)
summary(m.GSS)
```
A company recently introduced a new health insurance provider for its employees. At the beginning of the year the employees had to choose one of three (or four) different health plan products from this provider to best suit their needs.

This dataset was modified from its original source (McNulty, 2022) for the present purposes by adding a fourth choice, sampled randomly from the original three.

Usage

```r
data("HealthInsurance", package = "nestedLogit")
```

Format

A data frame with 1448 rows and 7 columns.

- **product**: Choice among three products, a factor with levels "A", "B", and "C".
- **product4**: Choice among four products, a factor with levels "A", "B", "C", and "D".
- **age**: The age of the individual, in years.
- **household**: The number of people living with the individual in the same household.
- **position_level**: Position level in the company at the time the choice was made, where 1 is the lowest level and 5 is the highest, a numeric vector.
- **gender**: The gender of the individual, a factor with levels "Female" and "Male".
- **absent**: The number of days the individual was absent from work in the year prior to the choice.

Source

See Also

- **nestedLogit**

Examples

```r
lbinary <- logits(AB_CD = dichotomy(c("A", "B"), c("C", "D")),
                 A_B   = dichotomy("A", "B"),
                 C_D   = dichotomy("C", "D"))
as.matrix(lbinary)
health.nested <- nestedLogit(product4 ~ age + gender * household + position_level,
                              dichotomies = lbinary, data = HealthInsurance)
car::Anova(health.nested)
coef(health.nested)
```
models is used to extract "glm" objects representing binary logit models from a "nestedLogit" object.

Usage

models(model, select, as.list = FALSE)

S3 method for class 'nestedLogit'
models(model, select, as.list = FALSE)

Arguments

model a "nestedLogit" model.
select a numeric or character vector giving the number(s) or names(s) of one or more binary logit models to be extracted from model; if absent, a list of all of the binary logits models in model is returned.
as.list if TRUE (the default is FALSE) and one binary logit model is selected, return the "glm" object in a one-element named list; otherwise a single model is returned directly as a "glm" object; when more than one binary logit model is selected, the corresponding "glm" objects are always returned as a named list.

Value

model returns either a single "glm" object (see glm) or a list of "glm" objects, each representing a binary logit model.

Examples

data("Womenlf", package = "carData")
comparisons <- logits(work=dichotomy("not.work", working=c("parttime", "fulltime")),
 full=dichotomy("parttime", "fulltime"))
m <- nestedLogit(partic ~ hincome + children,
 dichotomies = comparisons,
 data=Womenlf)

extract a binominal logit model
models(m, "work")
use that to plot residuals
plot(density(residuals(models(m, "work"))))
Description

Various methods for testing hypotheses about nested logit models.

Anova Calculates type-II or type-III analysis-of-variance tables for "nestedLogit" objects; see
 Anova in the car package.

anova Computes sequential analysis of variance (or deviance) tables for one or more fitted "nestedLogit"
 objects; see anova.

linearHypothesis Computes Wald tests for linear hypotheses; see linearHypothesis in the car
 package.

logLik Returns the log-likelihood and degrees of freedom for the nested-dichotomies model. (and
 through it AIC and BIC model-comparison statistics).

Usage

S3 method for class 'nestedLogit'
Anova(mod, ...)

S3 method for class 'Anova.nestedLogit'
print(x, ...)

S3 method for class 'nestedLogit'
linearHypothesis(model, ...)

S3 method for class 'nestedLogit'
anova(object, object2, ...)

S3 method for class 'anova.nestedLogit'
print(x, ...)

S3 method for class 'nestedLogit'
logLik(object, ...)

Arguments

... arguments to be passed down. In the case of linearHypothesis, the second argument is typically the hypothesis.matrix. See the Details section of linearHypothesis. In the case of anova, additional sequential "nestedLogit" models.

x, object, object2, mod, model in most cases, an object of class "nestedLogit".
Value

- The `Anova` and `anova` methods return objects of class "Anova.nestedLogit" and "anova.nestedLogit", respectively, each of which contains a list of "anova" objects (see `anova`) and is usually printed.
- The `linearHypothesis` method is called for its side effect, printing the result of linear hypothesis tests, and invisibly returns `NULL`.
- The `logLik` method returns an object of class "logLik" (see `logLik`).

Author(s)

John Fox

See Also

`Anova`, `anova`, `linearHypothesis`, `logLik`, `AIC`, `BIC`

Examples

```r
# define continuation dichotomies for level of education
cont.dichots <- continuationLogits(c("l.t.highschool", "highschool", "college", "graduate"))

# fit a nested model for the GSS data examining education degree in relation to parent & year
m <- nestedLogit(degree ~ parentdeg + year,
                 cont.dichots,
                 data=GSS)

# Anova and anova tests
car::Anova(m) # type-II (partial) tests
anova(update(m, . ~ . - year), m) # model comparison

# Wald test
car::linearHypothesis(m, c("parentdeghighschool", "parentdegcollege", "parentdeggraduate"))

# log-liklihood, AIC, and BIC
logLik(m)
AIC(m)
BIC(m)
```
nestedLogit

Description

Fit a related set of binary logit models via the \texttt{glm} function to nested dichotomies, comprising a model for the polytomy. A polytomous response with \(m \) categories can be analyzed using \(m - 1 \) binary logit comparisons. When these comparisons are nested, the \(m - 1 \) sub-models are statistically independent. Therefore, the likelihood chi-square statistics for the sub-models are additive and give overall tests for a model for the polytomy. This method was introduced by Fienberg (1980), and subsequently illustrated by Fox (2016) and Friendly & Meyer (2016).

dichotomy and logits are helper functions to construct the dichotomies.

continuationLogits constructs a set of \(m - 1 \) logit comparisons, called continuation logits, for an ordered response. With \(m = 4 \) levels, say, A, B, C, D, considered low to high: The first contrasts B, C, D against A. The second ignores A and contrasts C, D against B. The second ignores A, B and contrasts D against C.

Usage

\begin{verbatim}
nestedLogit(formula, dichotomies, data, subset = NULL, contrasts = NULL, ...) logits(...) dichotomy(...) continuationLogits(levels, names, prefix = "above_")
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{formula} a model formula with the polytomous response on the left-hand side and the usual linear-model-like specification on the right-hand side.
 \item \texttt{dichotomies} specification of the logits for the nested dichotomies, constructed by the logits and dichotomy functions, or continuationLogits. Alternatively, the dichotomies can be specified as a nested (i.e., recursive) list, the elements of which can be given optional names. See Details.
 \item \texttt{data} a data frame with the data for the model; unlike in most statistical modeling functions, the \texttt{data} argument is required. Cases with NAs in any of the variables appearing in the model formula will be removed with a Note message.
 \item \texttt{subset} a character string specifying an expression to fit the model to a subset of the data; the default, \texttt{NULL}, uses the full data set.
 \item \texttt{contrasts} an optional list of contrast specification for specific factors in the model; see \texttt{lm} for details.
 \item \texttt{...} for \texttt{nestedLogit}, optional named arguments to be passed to \texttt{glm}; for logits, definitions of the nested logits—with each named argument specifying a dichotomy; for dichotomy, two character vectors giving the levels defining the dichotomy; the vectors can optionally be named.
 \item \texttt{levels} A character vector of set of levels of the variables or a number specifying the numbers of levels (in which case, uppercase letters will be use for the levels).
 \item \texttt{names} Names to be assigned to the dichotomies; if absent, names will be generated from the levels.
\end{itemize}
nestedLogit

prefix a character string (default: "above_") used as a prefix to the names of the continuation dichotomies.

Details

A dichotomy for a categorical variable is a comparison of one subset of levels against another subset. A set of dichotomies is nested, if after an initial dichotomy, all subsequent ones are within the groups of levels lumped together in earlier ones. Nested dichotomies correspond to a binary tree of the successive divisions.

For example, for a 3-level response, a first dichotomy could be \{A\}, \{B, C\} and then the second one would be just \{B\}, \{C\}. Note that in the second dichotomy, observations with response A are treated as NA.

The function dichotomy constructs a single dichotomy in the required form, which is a list of length 2 containing two character vectors giving the levels defining the dichotomy. The function logits is used to create the set of dichotomies for a response factor. Alternatively, the nested dichotomies can be specified more compactly as a nested (i.e., recursive) list with optionally named elements; for example, list(air="plane", ground=list(public=list("train", "bus"), private="car")).

The function continuationLogits provides a convenient way to generate all dichotomies for an ordered response. For an ordered response with \(m = 4 \) levels, say, A, B, C, D, considered low to high: The dichotomy first contrasts B, C, D against A. The second ignores A and contrasts C, D against B. The second ignores A, B and contrasts D against C.

Value

nestedLogit returns an object of class "nestedLogit" containing the following elements:

- models, a named list of (normally) \(m - 1 \) "glm" objects, each a binary logit model for one of the \(m - 1 \) nested dichotomies representing the \(m \)-level response.
- formula, the model formula for the nested logit models.
- dichotomies, the "dichotomies" object defining the nested dichotomies for the model.
- data.name, the name of the data set to which the model is fit, of class "name".
- data, the data set to which the model is fit.
- subset, a character representation of the subset argument or "NULL" if the argument isn't specified.
- contrasts, the contrasts argument or NULL if the argument isn't specified.
- contrasts.print a character representation of the contrasts argument or "NULL" if the argument isn't specified.

logits and continuationLogits return objects of class "dichotomies" and c("continuationDichotomies" "dichotomies"), respectively, which are two-elements lists, each element containing a list of two character vectors representing a dichotomy. dichotomy returns a list of two character vectors representing a dichotomy.

Author(s)

John Fox
References

See Also

nestedMethods

Examples

data("Womenlf", package = "carData")

#' Use `logits()` and `dichotomy()` to specify the comparisons of interest
comparisons <- logits(work=dichotomy("not.work",
 working=c("parttime", "fulltime"),
 full=dichotomy("parttime", "fulltime"))

print(comparisons)

m <- nestedLogit(partic ~ hincome + children,
 dichotomies = comparisons,
 data=Womenlf)

print(summary(m))
print(car::Anova(m))
coef(m)

equivalent;
nestedLogit(partic ~ hincome + children,
 dichotomies = list("not.work",
 working=list("parttime", "fulltime"),
 full=dichotomy("parttime", "fulltime")),
 data=Womenlf)

get predicted values
new <- expand.grid(hincome=seq(0, 45, length=10),
 children=c("absent", "present"))

pred.nested <- predict(m, new)

plot
op <- par(mfcol=c(1, 2), mar=c(4, 4, 3, 1) + 0.1)
plot(m, "hincome", list(children="absent"),
 xlab="Husband's Income", legend=FALSE)
plot(m, "hincome", list(children="present"),
 xlab="Husband's Income")
par(op)
nestedMethods

Methods for "nestedLogit" and Related Objects

Description

Various methods for processing "nestedLogit" and related objects. Most of these are the standard methods for a model-fitting function.

- `coef, vcov` Return the coefficients and their variance-covariance matrix respectively.
- `update` Re-fit a "nestedLogit" model with a change in any of the formula, dichotomies, data, subset, or contrasts, arguments.
- `predict, fitted` Computes predicted values from a fitted "nestedLogit" model.
- `confint` Computes point-wise confidence limits for predicted response-category probabilities or logits.
- `glance` Construct a single row summaries for the dichotomies "nestedLogit" model.
- `tidy` Summarizes the terms in "nestedLogit" model.

Usage

```r
## S3 method for class 'nestedLogit'
print(x, ...)

## S3 method for class 'nestedLogit'
summary(object, ...)

## S3 method for class 'summary.nestedLogit'
print(x, ...)

## S3 method for class 'dichotomies'
print(x, ...)

## S3 method for class 'nestedLogit'
predict(object, newdata, model = c("nested", "dichotomies"), ...)

## S3 method for class 'predictNestedLogit'
print(x, n = min(10L, nrow(x$p)), ...)

## S3 method for class 'predictNestedLogit'
confint(
  object,
  parm = c("prob", "logit"),
)```

```
level = 0.95,
conf.limits.logit = TRUE,
...
)

S3 method for class 'predictDichotomies'
print(x, n = 10L, ...)

S3 method for class 'nestedLogit'
fitted(object, model = c("nested", "dichotomies"), ...)

S3 method for class 'nestedLogit'
coef(object, as.matrix = TRUE, ...)

S3 method for class 'nestedLogit'
vcov(object, as.matrix = FALSE, ...)

S3 method for class 'nestedLogit'
update(object, formula, dichotomies, data, subset, contrasts, ...)

S3 method for class 'dichotomies'
as.matrix(x, ...)

S3 method for class 'dichotomies'
as.character(x, ...)

S3 method for class 'continuationDichotomies'
as.matrix(x, ...)

as.dichotomies(x, ...)

S3 method for class 'matrix'
as.dichotomies(x, ...)

Arguments

- **x**, **object** in most cases, an object of class "nestedLogit".
- **...** arguments to be passed down.
- **newdata** For the predict method, a data frame containing combinations of values of the predictors at which fitted probabilities (or other quantities) are to be computed.
- **model** For the predict and fitted methods, either "nested" (the default), in which case fitted probabilities under the nested logit model are returned, or "dichotomies", in which case predict.glm is invoked for each binary logit model fit to the nested dichotomies and a named list of the results is returned.
- **n** For the print method of predict.nestedLogit or predictDichotomies, an integer or "all" to control how many rows are printed for each of the probabilities of response categories, corresponding logits and their standard errors.
For the \texttt{confint} method, one of "prob" or "logit", indicating whether to generate confidence intervals for probabilities or logits of the responses.

Confidence level for the \texttt{confint} method

When \texttt{parm} = "prob" ?????

if \texttt{TRUE} (the default for \texttt{coef}) return coefficients as a matrix with one column for each nested dichotomy, or coefficient covariances as a matrix with one row and column for each combination of dichotomies and coefficients; if \texttt{FALSE} (the default for \texttt{vcov}), return a list of coefficients or coefficient covariances with one element for each dichotomy.

optional updated model formula.

optional updated dichotomies object.

optional updated data argument

optional updated subset argument.

optional updated contrasts argument.

The \texttt{predict} method provides predicted values for two representations of the model. \texttt{model = "nested"} gives the fitted probabilities for each of the response categories. \texttt{model = "dichotomies"} gives the fitted log odds for each binary logit models in the dichotomies.

The \texttt{coef} and \texttt{vcov} methods return either matrices or lists of regression coefficients and their covariances, respectively.

The \texttt{update} method returns an object of class "\texttt{nestedLogit}" (see \texttt{nestedLogit}) derived from the original nested-logit model.

The \texttt{predict} and \texttt{fitted} methods return an object of class "\texttt{predictNested}" or "\texttt{predictDichotomies}", which contain the predicted probabilities, predicted logits, and other information, such as standard errors of predicted values, and, if supplied, the newdata on which predictions are based.

The \texttt{summary} method returns an object of class "\texttt{summary.nestedLogit}", which is a list of summaries of the \texttt{glm} objects that comprise the nested-dichotomies model; the object is normally printed.

The methods for \texttt{as.matrix}, \texttt{as.character}, and \texttt{as.dichotomies} coerce various objects to matrices, character vectors, and dichotomies objects.

The various print methods invisibly return their \texttt{x} arguments.

John Fox and Michael Friendly

\textbf{See Also}

\url{nestedLogit.plot.nestedLogit, glance.nestedLogit, tidy.nestedLogit}
Examples

define continuation dichotomies for level of education
cont.dichots <- continuationLogits(c("l.t.highschool",
"highschool",
"college",
"graduate"))

Show dichotomies in various forms
print(cont.dichots)
as.matrix(cont.dichots)
as.character(cont.dichots)

fit a nested model for the GSS data examining education degree in relation to parent & year
m <- nestedLogit(degree ~ parentdeg + year,
cont.dichots,
data=GSS)

coef(m) # coefficient estimates
sqrt(diag(vcov(m, as.matrix=TRUE)))) # standard errors
print(m)
summary(m)

broom methods
broom::glance(m)
broom::tidy(m)

predicted probabilities and plotting
predict(m) # fitted probabilities for first few cases;

new <- expand.grid(parentdeg=c("l.t.highschool", "highschool",
"college", "graduate"),
year=c(1972, 2016))
fit <- predict(m, newdata=new)
cbind(new, fit) # fitted probabilities at specific values of predictors

predicted logits for dichotomies
predictions <- predict(m, newdata=new, model="dichotomies")
predictions

plot.nestedLogit

Plotting Nested Logit Models

Description

A plot method for "nestedLogit" objects produced by the nestedLogit function. Fitted probabilities under the model are plotted for each level of the polytomous response variable, with one of the explanatory variables on the horizontal axis and other explanatory variables fixed to particular values. By default, a 95% pointwise confidence envelope is added to the plot.
plot.nestedLogit

Usage

S3 method for class 'nestedLogit'
plot(
 x,
 x.var,
 others,
 n.x.values = 100L,
 xlab = x.var,
 ylab = "Fitted Probability",
 main,
 cex.main = 1,
 digits.main = getOption("digits") - 2L,
 font.main = 1L,
 pch = 1L:length(response.levels),
 lwd = 3,
 lty = 1L:length(response.levels),
 col = palette()[1L:length(response.levels)],
 legend = TRUE,
 legend.inset = 0.01,
 legend.location = "topleft",
 legend.bty = "n",
 conf.level = 0.95,
 conf.alpha = 0.3,
 ...
)

Arguments

x an object of "nestedLogit" produced by nestedLogit.

x.var quoted name of the variable to appear on the x-axis; if omitted, the first predictor in the model is used.

others a named list of values for the other variables in the model, that is, other than x.var; if any other predictor is omitted, it is set to an arbitrary value—the mean for a numeric predictor or the first level or value of a factor, character, or logical predictor; only one value may be specified for each variable in others.

n.x.values the number of evenly spaced values of x.var at which to evaluate fitted probabilities to be plotted (default 100).

xlab label for the x-axis (defaults to the value of x.var).

ylab label for the y-axis (defaults to "Fitted Probability").

main main title for the graph (if missing, constructed from the variables and values in others).

cex.main size of main title (see par).

digits.main number of digits to retain when rounding values for the main title.

font.main font for main title (see par).

pch plotting characters (see par).
lwd line width (see \texttt{par}).

\texttt{lty} line types (see \texttt{par}).

\texttt{col} line colors (see \texttt{par}).

\texttt{legend} if \texttt{TRUE} (the default), add a legend for the response levels to the graph.

\texttt{legend.inset} default 0.01 (see \texttt{legend}).

\texttt{legend.location} position of the legend (default "topleft", see \texttt{legend}).

\texttt{legend.bty} the type of box to be drawn around the legend. The allowed values are "o" (the default) and "n".

\texttt{conf.level} the level for pointwise confidence envelopes around the predicted response probabilities; the default is .0.95. If \texttt{NULL}, the confidence envelopes are suppressed.

\texttt{conf.alpha} the opacity of the confidence envelopes; the default is .3.

\texttt{...} arguments to be passed to \texttt{matplot}.

\section*{Value}

\texttt{NULL} Used for its side-effect of producing a plot

\section*{Author(s)}

John Fox <jfox@mcmaster.ca>

\section*{See Also}

\texttt{nestedLogit, matplot}

\section*{Examples}

data("Womenlf", package = "carData")
m <- nestedLogit(partic ~ hincome + children,
 logits(work=dichotomy("not.work", c("parttime", "fulltime")),
 full=dichotomy("parttime", "fulltime")),
 data=Womenlf)
plot(m, legend.location="top")
op <- par(mfcol=c(1,2), mar=c(4, 4, 3, 1) + 0.1)
plot(m, "hincome", list(children="absent"),
 xlab="Husband's Income", legend=FALSE)
plot(m, "hincome", list(children="present"),
 xlab="Husband's Income")
par(op)
Index

* datasets
 GSS, 6
 HealthInsurance, 7

* regression
 Effect.nestedLogit, 4
 nestedHypotheses, 9
 nestedLogit, 10
 nestedMethods, 14
 glm, 5, 8, 11, 16
 GSS, 6
 HealthInsurance, 7
 legend, 19
 linearHypothesis, 9, 10
 linearHypothesis.nestedLogit (nestedHypotheses), 9
 lm, 11
 logits (nestedLogit), 10
 logLik, 10
 logLik.nestedLogit (nestedHypotheses), 9
 make.names, 2
 matplot, 19
 models, 8
 nestedHypotheses, 9
 nestedLogit, 6, 7, 10, 16–19
 nestedMethods, 4, 13, 14
 par, 18, 19
 plot, 17
 plot.effpoly, 5
 plot.nestedLogit, 16, 17
 predict.glm, 15
 predict.nestedLogit, 2
 predict.nestedLogit (nestedMethods), 14
 predictorEffects, 4, 5
 print.Anova.nestedLogit (nestedHypotheses), 9
 print.anova.nestedLogit (nestedHypotheses), 9
 print.dichotomies (nestedMethods), 14
 print.nestedLogit (nestedMethods), 14
 print.predictDichotomies (nestedMethods), 14
 print.predictNestedLogit (nestedMethods), 14

AIC, 9, 10
Anova, 9, 10
anova, 9, 10
Anova.nestedLogit (nestedHypotheses), 9
anova.nestedLogit (nestedHypotheses), 9
as.character.dichotomies (nestedMethods), 14
as.data.frame.predictNestedLogit, 2
as.dichotomies (nestedMethods), 14
as.matrix.continuationDichotomies (nestedMethods), 14
as.matrix.dichotomies (nestedMethods), 14

BIC, 9, 10
broomMethods, 3
coef.nestedLogit (nestedMethods), 14
confint.predictNestedLogit (nestedMethods), 14
continuationLogits (nestedLogit), 10
dichotomy (nestedLogit), 10

Effect, 4, 5
Effect.nestedLogit, 4
fitted.nestedLogit (nestedMethods), 14

glance, 3, 4
glance.nestedLogit, 16
glance.nestedLogit (broomMethods), 3
INDEX

print.summary.nestedLogit
 (nestedMethods), 14

summary.nestedLogit (nestedMethods), 14

tidy, 3, 4
 tidy.nestedLogit, 16
 tidy.nestedLogit (broomMethods), 3

update.nestedLogit (nestedMethods), 14

vcov.nestedLogit (nestedMethods), 14