Package ‘nestedRanksTest’

August 29, 2016

Type Package
Title Mann-Whitney-Wilcoxon Test for Nested Ranks
Version 0.2
Maintainer Douglas G. Scofield <douglasgscofield@gmail.com>
Description Calculate a Mann-Whitney-Wilcoxon test for a difference between treatment levels using nested ranks. This test can be used when observations are structured into several groups and each group has received both treatment levels. The p-value is determined via bootstrapping. The nested ranks test is intended to be one possible mixed-model extension of the Mann-Whitney-Wilcoxon test, for which treatment is a fixed effect and group membership is a random effect.

ByteCompile yes

URL https://github.com/douglasgscofield/nestedRanksTest
License LGPL-3 | file LICENSE
Depends R (>= 3.2.0)
Suggests knitr (>= 0.5), testthat
VignetteBuilder knitr
NeedsCompilation no
Author Douglas G. Scofield [aut, cre]
Repository CRAN
Date/Publication 2015-06-06 14:40:26

R topics documented:

nestedRanksTest-package .. 2
nestedRanksTest .. 2
nestedRanksTest_weights ... 5
nestedRanksTest_Z ... 5
plot.htest_boot .. 6
print.htest_boot ... 8
woodpecker_multiyear ... 9

Index 11
Mann-Whitney-Wilcoxon ranks test when data are in groups.

Description

Calculate a Mann-Whitney-Wilcoxon test for a difference between treatment levels using nested ranks. This test can be used when observations are structured into several groups and each group has received both treatment levels. The p-value is determined via bootstrapping. This test is intended to be analogous to a mixed-model extension of the `wilcox.test`, for which treatment is a fixed effect and group membership is a random effect.

Details

The main function is `nestedRanksTest`, which includes a formula interface implementing the familiar "|" syntax for specifying group membership on the right-hand side of the formula. The value returned is a list of class `htest_boot`, which extends class `htest`. `print` and `plot` methods are provided to print and visualise results.

These statistical tools were developed in collaboration with Peter E. Smouse (Rutgers University) and Victoria L. Sork (UCLA) and were funded in part by U.S. National Science Foundation awards NSF-DEB-0514956 and NSF-DEB-0516529.

References

https://github.com/douglasgscofield/nestedRanksTest
Usage

```r
## S3 method for class 'formula'
nestedRanksTest(formula, data, groups = NULL, subset, ...)

## Default S3 method:
nestedRanksTest(x, y, groups, n.iter = 10000,
lighweight = FALSE, ...)
```

Arguments

- `formula`: A formula of the form `lhs ~ rhs` or `lhs ~ rhs | groups`, where `lhs` is a numeric variable giving the data values, `rhs` is a variable obeying conditions for `x`, and `groups` is a variable obeying conditions for `groups`. If `| groups` is not included in the formula, group membership must be specified with the `groups` argument.

- `data`: An optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

- `groups`: A (non-empty) vector specifying group membership for each `y`, coerced to a factor. There must be at least one `y` in each group for each treatment level.

- `subset`: An optional vector specifying a subset of observations to be used.

- `x`: A (non-empty) vector of treatments for each `y`, coerced to factor. Must contain exactly two levels.

- `y`: A (non-empty) numeric vector of data values.

- `n.iter`: Number of bootstrap iterations to perform. The value of the final iteration is provided by the observed Z-score. Using `n.iter = 1` simply returns the observed Z-score.

- `lightweight`: If `TRUE`, the vector of individual values of the null distribution is excluded from the return value of class `'htest_boot'`. By default the null distribution is included. If `n.iter` is large, specifying `TRUE` for this option can save space, but note that calling `plot` on the return value will produce an error if so.

Value

A list with class `'htest_boot'` based on class `'htest'` containing the following components. Components marked with "*" are additions to `'htest'`.

- `statistic`: the value of the observed Z-score.
- `p.value`: the p-value for the test.
- `alternative`: a character string describing the alternative hypothesis.
- `method`: a character string indicating the nested ranks test performed.
- `data.name`: a character string giving the name(s) of the data.
- `bad.obs`: the number of observations in the data excluded because of NA values.
- `null.values`: quantiles of the null distribution used for calculating the p-value.
- `n.iter*`: the number of bootstrap iterations used for generating the null distribution.
weights* the weights for groups, calculated by nestedRanksTest_weights.
null.distribution* null distribution of Z-scores, with statistic the last value.

The length of null.distribution equals n.iter. Note that null.distribution will not be present if the lightweight = TRUE option was given to nestedRanksTest.

Note

Cases for which any of x, y or groups are NA are removed.
The generation of a null distribution can take some time. For example, if any use of nestedRanksTest in the examples were run with the default n.iter = 10000, completion would require a few seconds.

References

https://github.com/douglasgscofield/nestedRanksTest

See Also

wilcox.test, print.htest_boot, plot.htest_boot

Examples

require(graphics)

data(woodpecker_multiyear)

S3 method for class 'formula'
n.iter set to 1000 to shorten completion time

group in formula
nestedRanksTest(Distance ~ Year | Granary, n.iter = 1000,
 data = woodpecker_multiyear,
 subset = Species == "agrifolia")

group in 'groups='
nestedRanksTest(Distance ~ Year, groups = Granary, n.iter = 1000,
 data = woodpecker_multiyear,
 subset = Species == "lobata")

Default S3 method

dat.a <- subset(woodpecker_multiyear, Species == "agrifolia")
arguments in default order
nestedRanksTest(dat.a$Year, dat.a$Distance, dat.a$Granary, n.iter = 1000)
named arguments used in 'formula' order
```r
res <- with(subset(woodpecker_multiyear, Species == "lobata"),
           nestedRanksTest(y = Distance, x = Year, groups = Granary,
                            n.iter = 1000))
plot(res)
```

nestedRanksTest_weights

Calculates weights for nestedRanksTest based on group sizes.

Description

`nestedRanksTest_weights` is used by `nestedRanksTest` to calculate group weights based on group sizes. The number of group members in each of the two treatment levels is determined \((n_1\text{ and }n_2)\) together with their product \((n_1 \cdot n_2)\), and the group-specific weight is calculated by dividing \(n_1 \cdot n_2\) by the sum of \(n_1 \cdot n_2\) for all groups.

Usage

`nestedRanksTest_weights(x, groups)`

Arguments

- **x**: Treatments, coerced to factor. Must contain two levels.
- **groups**: Groups, coerced to factor, with elements in the same order as for `x`.

Value

data.frame containing weights and other information for each group: columns group, a factor of group names, also used for row names; \(n_1\), \(n_2\), and \(n_1 \cdot n_2\) for integer group sizes in the first and second treatment levels and their product; and numeric weights for the calculated weights.

See Also

`nestedRanksTest`

nestedRanksTest_Z

Calculates Z-score from ranks.

Description

`nestedRanksTest_Z` is used by `nestedRanksTest` to calculate the Z-score for the ranks of responses \(y\) divided into two treatment levels.

Usage

`nestedRanksTest_Z(y, n1, n2)`
Arguments

- **y**
 Values to be ranked for the test. Its length must be equal to the sum of \(n_1\) and \(n_2\).

- **n1**
 The first \(n_1\) values in \(y\) belong to the first treatment level.

- **n2**
 The final \(n_2\) values in \(y\) belong to the second treatment level.

Details

Values across both treatments are ranked using the base R function `rank` with `ties.method = "average"`, which assigns tied values their average rank. The Mann-Whitney-Wilcoxon test statistic is computed from these ranks. Because the value of the statistic is sample-size dependent (between \(-n_1\times n_2\) and \(n_1\times n_2\)), it is scaled to be \([-1, +1]\) by dividing by \(n_1\times n_2\).

The bottleneck for bootstrapping is calculation of ranks, so the most straightforward way to speed up `nestedRanksTest` would come from speeding up `rank`. Because of the checks performed prior to calling this routine, it should be sufficient to use a stripped-down function that simply does the equivalent of making an `.Internal` call, which is not allowed within package code. As of this writing, this is sufficient:

```r
rank_new <- function(x) .Internal(rank(x, length(x), "average"))
```

For the example data this is 8-9 times faster than the base R `rank`, because it avoids error-checking overhead. For longer vectors, the advantage decreases such that at 10000 elements it is 20-30%.

Value

The calculated Z-score

See Also

- `nestedRanksTest`, `wilcox.test`

plot.htest_boot
Diagnostic plot of result held in `htest_boot` object

Description

`plot.htest_boot` creates a diagnostic plot of a return value held in a list of class `htest_boot`, as returned by e.g., `nestedRanksTest`. The plot contains a histogram of the null distribution generated by' bootstrapping plotted with `hist`, and a verticle line indicating the observed value plotted with `abline`.
Usage

S3 method for class 'htest_boot'
plot(x, breaks, col = "lightblue", border = NA,
digits = getOption("digits"), main = paste(sep = "", x$method, ", ",
x$data.name, "\n", names(x$statistic), " = ", format(signif(x$statistic,
max(1L, digits - 2L))), ", P = " , format.pval(x$p.value, digits = max(1L,
digits - 3L))), xlab = "Distribution of Z-scores", ylab = paste(sep = "",
"Frequency (out of ", x$n.iter, ")"), p.col = "red", p.lty = 2,
p.lwd = 2, ...)

Arguments

x Value of class 'htest_boot'
b breaks The number of breaks to use when plotting the distribution, the default is calculated from n.iter of the call to nestedRanksTest
col Fill color for histogram bars, passed to hist.
border Border color for histogram bars, passed to hist
digits Number of digits to use for statistic and p-value, the default is taken from the "digits" option
main Main title, passed to hist
xlab X-axis label, passed to hist
ylab Y-axis label, passed to hist
p.col Observed value line colour, passed to abline
p.lty Observed value line type, passed to abline
p.lwd Observed value line width, passed to abline
... Additional arguments passed to hist and abline for plotting

Details

If there is no null distribution included in the class, e.g., because the’ options lightweight = TRUE or n.iter = 1 were given to nestedRanksTest, this function produces an error.

Value

None

See Also

print.htest_boot for printing test results, hist and abline for plotting options, and nestedRanksTest for one test that returns an object of class 'htest_boot'
print.htest_boot

Description

print.htest_boot prints a return value held in a list of class 'htest_boot', as returned by e.g., nestedRanksTest. Class 'htest_boot' extends class 'htest' by including group weights, the number of bootstrap iterations, and the complete null distribution. The latter is not printed by this function; it may be visualised with plot.htest_boot.

Usage

S3 method for class 'htest_boot'
print(x, digits = getOption("digits"), prefix = "\t", ...

Arguments

x Value of class 'htest_boot' as returned by e.g., nestedRanksTest.
digits Number of digits or significant digits to use in output. Similar to other print methods, this method pays attention to the "digits" option.
prefix String, passed to print.htest
... Additional arguments passed to print.htest.

Value

The value of x is returned invisibly.
See Also

- plot.h.test.boot for a graphical plot of test results,
- print.h.test for the print method of the base class,
- nestedRanksTest for one test that returns an object of class 'h.test.boot'

Examples

data(woodpecker_multiyear)
n.iter set to 1000 to shorten completion time
res <- nestedRanksTest(Distance ~ Year | Granary, n.iter = 1000,
 data = woodpecker_multiyear,
 subset = Species == "agrifolia")
class(res)
print(res)

Description

A dataset containing distances of two oak species were carried by acorn woodpeckers
(Melanerpes formicivorus) to their granaries, in two different years for each oak species. Data
were collected in oak savanna habitat in central California. Acorn woodpeckers store acorns in cen-
tral granaries, and different woodpecker social groups maintain different granaries. The variables
are as follows:

- Species, the species of oak for the observed acorn ("lobata" for Quercus lobata, "agrifolia" for
 Quercus agrifolia)
- Year, the year of observation (2002 and 2004 for Quercus lobata, 2006 and 2007 for Quercus
 agrifolia)
- Granary, the woodpecker granary from which the acorn was collected
- Distance, distance in metres from the acorn source tree to the granary

Format

Data frame with 534 rows and 4 variables.

Author(s)

Douglas G. Scofield <douglasgscofield@gmail.com>

Source

Dataset originates from the lab of Victoria L. Sork <vlsork@ucla.edu> and is used with permi-
sion.
References

Index

*Topic **datasets**
 woodpecker_multiyear, 9
*Topic **hplot**
 plot.htest_boot, 6
*Topic **htest**
 nestedRanksTest, 2
*Topic **nonparametric**
 nestedRanksTest, 2

abline, 6, 7
hist, 6, 7
model.frame, 3

nestedRanksTest, 2, 2, 5–9
nestedRanksTest-package, 2
nestedRanksTest_weights, 5
nestedRanksTest_Z, 5
plot.htest_boot, 4, 6, 8, 9
print.htest, 8, 9
print.htest_boot, 4, 7, 8

wilcox.test, 2, 4, 6
woodpecker_multiyear, 9