Package ‘netdiffuseR’

February 12, 2020

Title Analysis of Diffusion and Contagion Processes on Networks
Version 1.21.0
Date 2020-02-10

Description Empirical statistical analysis, visualization and simulation of
diffusion and contagion processes on networks. The package implements algorithms
for calculating network diffusion statistics such as transmission rate, hazard
rates, exposure models, network threshold levels, infectiousness (contagion),
and susceptibility. The package is inspired by work published in Valente,

Depends R (>= 3.1.1)
License MIT + file LICENSE
LazyData true

Imports Rcpp (>= 0.12.1), sna, network, networkDynamic, Matrix, MASS,
MatchIt, SparseM, methods, grDevices, graphics, stats, utils,
boot, igraph, viridisLite

Suggests covr, testthat, knitr, ape, RSiena, survival

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.0.2

Encoding UTF-8

URL https://github.com/USCCANA/netdiffuseR,
https://USCCANA.github.io/netdiffuseR

BugReports https://github.com/USCCANA/netdiffuseR/issues

Classification/MSC 90C35, 90B18, 91D30

Collate ‘RcppExports.R’ ‘imports.r’ ‘graph_data.r’ ‘adjmat.r’ ‘bass.r’
‘bootnet.r’ ‘data.r’ ‘diffnet-c.R’ ‘diffnet-class.r’
‘diffnet-indexing.r’ ‘diffnet-methods.r’ ‘egonets.R’
‘formula.r’ ‘igraph.r’ ‘infect_suscept.r’ ‘mentor.r’ ‘misc.r’
R topics documented:

'moran.r' 'netmatch.r' 'network.r' 'options.R' 'package-doc.r'
'plot_diffnet2.r' 'rewire.r' 'random_graph.R' 'rdiffnet.r'
'read_write_foreign.r' 'select_egoalter.R' 'spatial.R'
'spatial.R' 'struct_equiv.R' 'struct_test.R'
'survey_to_diffnet.R'

NeedsCompilation yes

Author George Vega Yon [aut, cre] (https://orcid.org/0000-0002-3171-0844),
Rewrite functions with Rcpp, plus new features),
Thomas Valente [aut, cph] (https://orcid.org/0000-0002-8824-5816), (R
original code),
Stephanie Dyal [ctb] (Package's first version),
Timothy Hayes [ctb] (Package's first version)

Maintainer George Vega Yon <g.vegayon@gmail.com>

Repository CRAN

Date/Publication 2020-02-12 10:40:02 UTC

R topics documented:

approx_geodesic 4
as.array.diffnet 5
as_dgCMatrix 6
bass ... 8
bootnet .. 10
brfarmers .. 13
brfarmersDiffNet 18
c.diffnet .. 18
classify_adopters 19
classify_graph 22
cumulative_adopt_count 23
dgr ... 24
diag_expand 26
diffnet-arithmetic 28
diffnet-class 29
diffnet_check_attr_class 35
diffnet_index 36
diffreg ... 38
diffusion-data 40
diffusionMap 41
drawColorKey 44
dedgelist_to_adjmat 46
dedges_coords 49
degonet_attrs 52
dego_variance 54
dexposure .. 55
dfakeDynEdgelist 60
dfakeEdgelist 61
R topics documented:

- fakesurvey 61
- fakesurveyDyn 62
- grid_distribution 63
- hazard_rate 64
- igraph 66
- infection 67
- isolated 70
- kfamily 71
- kfamilyDiffNet 84
- matrix_compare 84
- medInnovations 86
- medInnovationsDiffNet 88
- mentor_matching 89
- moran 91
- netdiffuseR 93
- netdiffuseR-graphs 93
- netdiffuseR-options 94
- netmatch 95
- network 97
- nvertices 99
- permute_graph 100
- plot.diffnet 102
- plot_adopters 103
- plot_diffnet 105
- plot_diffnet2 107
- plot_infectsuscep 109
- plot_threshold 112
- pretty_within 115
- rdiffnet 116
- read_pajek 119
- read_ucinet_head 121
- recode 122
- rescale_vertex_igraph 123
- rewire_graph 125
- rgraph_ws 133
- round_to_seq 134
- select_egoalter 135
- struct_equiv 136
- struct_test 137
- summary.diffnet 139
- survey_to_diffnet 143
- threshold 145
- toa_diff 148
- toa_mat 150
- transformGraphBy 152
approx_geodesic

Description

Computes approximate geodesic distance matrix using graph powers and keeping the amount of memory used low.

Usage

approx_geodesic(graph, n = 6L, warn = FALSE)

approx_geodist(graph, n = 6L, warn = FALSE)

Arguments

- **graph**: Any class of accepted graph format (see netdiffuserR-graphs).
- **n**: Integer scalar. Degree of approximation. Bigger values increase precision (see details).
- **warn**: Logical scalar. When TRUE, it warns if the algorithm performs less steps than required.

Details

While both igraph and sna offer very good and computationally efficient routines for computing geodesic distances, both functions return dense matrices, i.e. not sparse, which can be troublesome. Furthermore, from the perspective of social network analysis, path lengths of more than 6 steps, for example, may not be meaningful, or at least, relevant for the researcher. In such cases, approx_geodesic serves as a solution to this problem, computing geodesics up to the number of steps, n, desired, hence, if n = 6, once the algorithm finds all paths of 6 or less steps it will stop, returning a sparse matrix with zeros for those pairs of vertices for which it was not able to find a path with less than n steps.

Depending on the graph size and density, approx_geodesic’s performance can be compared to that of sna::geodist. Although, as n increases, geodist becomes a better alternative.

The algorithm was implemented using power graphs. At each iteration i the power graph of order i is computed, and its values are compared to the current values of the geodesic matrix (which is initialized in zero).

1. Initialize the output ans(n,n)
2. For i=1 to i < n do
(a) Iterate through the edges of G^i, if ans has a zero value in the corresponding row+column, replace it with i
(b) next
3. Replace all diagonal elements with a zero and return.

This implementation can be more memory efficient that the aforementioned ones, but at the same time it can be significant slower.
approx_geodist is just an alias for approx_geodesic.

Value
A sparse matrix of class dgCMatrix of size nnodes(graph)^2 with geodesic distances up to n.

Examples
A very simple example ---
g <- ring_lattice(10, 3)
approx_geodesic(g, 6)
sna::geodist(as.matrix(g))[2]
igraph::distances(
 igraph::graph_from_adjacency_matrix(g, mode = "directed"),
 mode = "out"
)

as.array.diffnet Coerce a diffnet graph into an array

Description
Coerce a diffnet graph into an array

Usage
S3 method for class 'diffnet'
as.array(x, ...)

Arguments

x A diffnet object.

... Ignored.

Details
The function takes the list of sparse matrices stored in x and creates an array with them. Attributes and other elements from the diffnet object are dropped.
dimnames are obtained from the metadata of the diffnet object.
Value
A three-dimensional array of T matrices of size $n \times n$.

See Also
diffnet.
Other diffnet methods: `%*%`, `c.diffnet()`, `diffnet-arithmetic`, `diffnet-class`, `diffnet_index`, `plot.diffnet()`, `summary.diffnet()`

Examples

```r
# Creating a random diffnet object
set.seed(84117)
mydiffnet <- rdiffnet(30, 5)

# Coercing it into an array
as.array(mydiffnet)
```

as_dgCMatrix

Coerce a matrix-like objects to dgCMatrix (sparse matrix)

Description
This helper function allows easy coercion to sparse matrix objects from the `Matrix` package, `dgCMarix`.

Usage

```r
as_dgCMatrix(x, make.dimnames = TRUE, ...)
```

```r
as.dgCMarix(x, make.dimnames = TRUE, ...)
```

```r
as.spmat(x, make.dimnames = TRUE, ...)
```

Default S3 method:
as_dgCMatrix(x, make.dimnames = TRUE, ...)

S3 method for class 'diffnet'
as_dgCMatrix(x, make.dimnames = TRUE, ...)

S3 method for class 'array'
as_dgCMatrix(x, make.dimnames = TRUE, ...)

S3 method for class 'igraph'
as_dgCMatrix(x, make.dimnames = TRUE, ...)

S3 method for class 'network'
```
as_dgCMatrix

as_dgCMatrix(x, make.dimnames = TRUE, ...)

## S3 method for class 'list'
as_dgCMatrix(x, make.dimnames = TRUE, ...)

Arguments

x
An object to be coerced into a sparse matrix.

make.dimnames
Logical scalar. When TRUE, it makes sure that the returned object has dimnames.

...
Further arguments passed to the method.

Details

In the case of the igraph and network methods, ... is passed to as_adj and as.matrix.network respectively.

Value

Either a list with dgCMatrix objects or a dgCMatrix object.

Examples

set.seed(123)
x <- rgraph_er(10)

# From matrix object
as_dgCMatrix(as.matrix(x))

# From a network object
as_dgCMatrix(network::as.network(as.matrix(x)))

# From igraph object
as_dgCMatrix(igraph::graph_from_adjacency_matrix(x))

# From array
myarray <- array(dim=c(10,10,2))
myarray[,1] <- as.matrix(x)
myarray[,2] <- as.matrix(x)

myarray
as_dgCMatrix(myarray)

# From a diffnet object
ans <- as_dgCMatrix(medInnovationsDiffNet)
str(ans)
**bass**

---

**Bass Model**

**Description**

Fits the Bass Diffusion model. In particular, fits an observed curve of proportions of adopters to \( F(t) \), the proportion of adopters at time \( t \), finding the corresponding coefficients \( p \), Innovation rate, and \( q \), imitation rate.

**Usage**

```r
fitbass(dat, ...)
```

```
S3 method for class 'diffnet'
fitbass(dat, ...)
```

```
Default S3 method:
fitbass(dat, ...)
```

```
S3 method for class 'diffnet_bass'
plot(
 x,
 y = 1:length(xmlhs()),
 add = FALSE,
 pch = c(21, 24),
 main = "Bass Diffusion Model",
 ylab = "Proportion of adopters",
 xlab = "Time",
 type = c("b", "b"),
 lty = c(2, 1),
 col = c("black", "black"),
 bg = c("lightblue", "gray"),
 include.legend = TRUE,
 ...
)
```

```r
bass_F(Time, p, q)
```

```r
bass_dF(p, q, Time)
```

```r
bass_f(Time, p, q)
```

**Arguments**

- **dat**
  - Either a diffnet object, or a numeric vector. Observed cumulative proportion of adopters.

- **...**
  - Further arguments passed to the method.
x  An object of class diffnet_bass.
y  Integer vector. Time (label).
add  Passed to matplot.
pch  Passed to matplot.
main  Passed to matplot.
ylab  Character scalar. Label of the y axis.
xlab  Character scalar. Label of the x axis.
type  Passed to matplot.
lty  Passed to matplot.
col  Passed to matplot.
bg  Passed to matplot.
include.legend  Logical scalar. When TRUE, draws a legend.

Details

The function fits the bass model with parameters \([p, q]\) for values \(t = 1, 2, \ldots, T\), in particular, it fits the following function:

\[
F(t) = \frac{1 - \exp(-(p + q)t)}{1 + \frac{q}{p} \exp(-(p + q)t)}
\]

Which is implemented in the bass_F function. The proportion of adopters at time \(t\), \(f(t)\) is:

\[
f(t) = \begin{cases} F(t), & t = 1 \\ F(t) - F(t - 1), & t > 1 \end{cases}
\]

and it’s implemented in the bass_f function.

For testing purposes only, the gradient of \(F\) with respect to \(p\) and \(q\) is implemented in bass_dF.

The estimation is done using nls.

Value

An object of class nls and diffnet_bass. For more details, see nls in the stats package.

Author(s)

George G. Vega Yon

References

bootnet

Network Bootstrapping

Description

Implements the bootstrapping method described in Snijders and Borgatti (1999). This function is essentially a wrapper of boot.

Usage

resample_graph(graph, self = NULL, useR = FALSE, ...)

bootnet(graph, statistic, R, resample.args = list(self = FALSE), ...)

## S3 method for class 'diffnet_bootnet'
c(..., recursive = FALSE)

## S3 method for class 'diffnet_bootnet'
print(x, ...)

## S3 method for class 'diffnet_bootnet'
hist(
  x,
  main = "Empirical Distribution of Statistic",
  xlab = expression(Values ~ of ~ t),
  breaks = 20,
  annotated = TRUE,
  b0 = expression(atop(plain("") %up% plain(""), t[0]),

See Also

Other statistics: classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()
bootnet

b = expression(atop(plain("")) %up% plain(""), t[]),
ask = TRUE,
...
)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).
self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
useR Logical scalar. When TRUE, autolinks are filled using an R based routine. Otherwise it uses the Rcpp implementation (default). This is intended for testing only.
... Further arguments passed to the method (see details).
statistic A function that returns a vector with the statistic(s) of interest. The first argument must be the graph, and the second argument a vector of indices (see details)
R Number of reps
resample.args List. Arguments to be passed to resample_graph
recursive Ignored
x A diffnet_bootnet class object.
main Character scalar. Title of the histogram.
xlab Character scalar. x-axis label.
breaks Passed to hist.
annotated Logical scalar. When TRUE marks the observed data average and the simulated data average.
b0 Character scalar. When annotated=TRUE, label for the value of b0.
b Character scalar. When annotated=TRUE, label for the value of b.
ask Logical scalar. When TRUE, asks the user to type <Enter> to see each plot (as many as statistics where computed).

Details

Just like the boot function of the boot package, the statistic that is passed must have as arguments the original data (the graph in this case), and a vector of indices. In each repetition, the graph that is passed is a resampled version generated as described in Snijders and Borgatti (1999).

When self = FALSE, for pairs of individuals that haven been drawn more than once the algorithm, in particular, resample_graph, takes care of filling these pseudo autolinks that are not in the diagonal of the network. By default it is assumed that these pseudo-autolinks depend on whether the original graph had any, hence, if the diagonal has any non-zero value the algorithm assumes that self = TRUE, skipping the 'filling algorithm'. It is important to notice that, in order to preserve the density of the original network, when assigning an edge value to a pair of the form (i, i) (pseudo-autolinks), such is done with probability proportional to the density of the network, in other words, before
choosing from the existing list of edge values, the algorithm decides whether to set a zero value first.

The vector of indices that is passed to statistic, an integer vector with range 1 to \( n \), corresponds to the drawn sample of nodes, so the user can, for example, use it to get a subset of a data.frame that will be used with the graph.

**Value**

A list of class `diffnet_bootnet` containing the following:

- **graph**
  - The graph passed to `bootnet`.
- **p.value**
  - The resulting p-value of the test (see details).
- **t0**
  - The observed value of the statistic.
- **mean_t**
  - The average value of the statistic applied to the simulated networks.
- **var_t**
  - A vector of length \( \text{length}(t0) \). Bootstrap variances.
- **R**
  - Number of simulations.
- **statistic**
  - The function `statistic` passed to `bootnet`.
- **boot**
  - A boot class object as return from the call to `boot`.
- **resample.args**
  - The list `resample.args` passed to `bootnet`.

**References**


**See Also**

Other Functions for inference: `moran()`, `struct_test()`

**Examples**

```r
set.seed(13)
g <- rgraph.ba(t=99)
ans <- bootnet(g, function(w, ...) length(w@x), R=100)
ans
```
**Description**

From Valente (1995) “In the mid-1960s, Rogers and others conducted an ambitious ‘three country study’ to determine influences on adoption of farm practices in Nigeria, India and Brazil. […] Only in Brazil, and only for hybrid corn, did adoption of the innovation reach more than a small proportion of the farmers.”

**Usage**

`brfarmers`

**Format**

A data frame with 692 rows and 148 columns:

- `village` village number
- `idold` respondent id
- `age` respondent’s age
- `liveout` Lived outside of community
- `visits` # of visits to large city
- `contact` # of contacts with relatives
- `coop` membership in coop
- `orgs` membership in organizations
- `patry` Patriarchalism score
- `liter` Literate
- `news1` # of newspapers or mags pr mon
- `subs` subscribe to news
- `radio1` Own radio
- `radio2` Frequency radio listening
- `radio3` program preference
- `tv` frequency Tv viewing
- `movie` freq movie attendance
- `letter` freq letter writing
- `source` total # of sources used for ag
- `practA` Ever used practice A
- `practB` Ever used practice B
- `practC` Ever used practice C
- `practD` Ever used practice D
practE  Ever used practice E
practF  Ever used practice F
practG  Ever used practice G
practH  Ever used practice H
practI  Ever used practice I
practJ  Ever used practice J
practK  Ever used practice K
practL  Ever used practice L
yrA    A year of adoption
yrB    B year of adoption
yrC    C year of adoption
yrD    D year of adoption
yrE    E year of adoption
yrF    F year of adoption
yrG    G year of adoption
yrH    H year of adoption
yrI    I year of adoption
yrJ    J year of adoption
yrK    K year of adoption
yrL    L year of adoption
curA   A Current use
curB   B Current use
curC   C Current use
curD   D Current use
curE   E Current use
curF   F Current use
curG   G Current use
curH   H Current use
curI   I Current use
curJ   J Current use
curK   K Current use
curL   L Current use
src1   Source of aware in A
timeA  Years ago 1st aware
src2   Source of more info on A
src3   Most influential source
use    use during trial stage
<table>
<thead>
<tr>
<th>variable</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>total</strong></td>
<td>total # of practices adopted</td>
</tr>
<tr>
<td><strong>futatt</strong></td>
<td>Future attitude</td>
</tr>
<tr>
<td><strong>achiev</strong></td>
<td>Achievement Score</td>
</tr>
<tr>
<td><strong>attcred</strong></td>
<td>Attitude toward credit</td>
</tr>
<tr>
<td><strong>littest</strong></td>
<td>Score on functional literacy t</td>
</tr>
<tr>
<td><strong>acarcomm</strong></td>
<td>Communication with ACAR repres</td>
</tr>
<tr>
<td><strong>econk</strong></td>
<td>Economic knowledge</td>
</tr>
<tr>
<td><strong>caact</strong></td>
<td>recognize any change agent act</td>
</tr>
<tr>
<td><strong>hfequip</strong></td>
<td># of home &amp; farm equips owned</td>
</tr>
<tr>
<td><strong>politk</strong></td>
<td>political knowledge score</td>
</tr>
<tr>
<td><strong>income</strong></td>
<td>income</td>
</tr>
<tr>
<td><strong>land1</strong></td>
<td>total land area in pasture</td>
</tr>
<tr>
<td><strong>land2</strong></td>
<td>total land area planted</td>
</tr>
<tr>
<td><strong>cows</strong></td>
<td># of cows giving milk</td>
</tr>
<tr>
<td><strong>land3</strong></td>
<td>total land owned</td>
</tr>
<tr>
<td><strong>respf</strong></td>
<td>respondent named as friend</td>
</tr>
<tr>
<td><strong>respa</strong></td>
<td>respondent named as ag adv</td>
</tr>
<tr>
<td><strong>respppa</strong></td>
<td>respondent named for practic A</td>
</tr>
<tr>
<td><strong>respppb</strong></td>
<td>respondent named for practic B</td>
</tr>
<tr>
<td><strong>respppc</strong></td>
<td>respondent named for practic C</td>
</tr>
<tr>
<td><strong>poly</strong></td>
<td>polymorphic OL for 3 practices</td>
</tr>
<tr>
<td><strong>respl</strong></td>
<td>respondent named for loan</td>
</tr>
<tr>
<td><strong>resppi</strong></td>
<td>resp named for price info</td>
</tr>
<tr>
<td><strong>repsccp</strong></td>
<td>resp named for coop comm proj</td>
</tr>
<tr>
<td><strong>counter</strong></td>
<td>counterfactuality score</td>
</tr>
<tr>
<td><strong>opinion</strong></td>
<td>opinionness score</td>
</tr>
<tr>
<td><strong>school</strong></td>
<td>years of schooling by resp</td>
</tr>
<tr>
<td><strong>pk1</strong></td>
<td>political know 1</td>
</tr>
<tr>
<td><strong>pk2</strong></td>
<td>political know 2</td>
</tr>
<tr>
<td><strong>pk3</strong></td>
<td>political know 3</td>
</tr>
<tr>
<td><strong>pk4</strong></td>
<td>political know 4</td>
</tr>
<tr>
<td><strong>pk5</strong></td>
<td>political know 5</td>
</tr>
<tr>
<td><strong>innovtim</strong></td>
<td>innovativeness time</td>
</tr>
<tr>
<td><strong>adoptpct</strong></td>
<td>adoption percent</td>
</tr>
<tr>
<td><strong>discon</strong></td>
<td># of practices discontinued</td>
</tr>
<tr>
<td><strong>mmcred</strong></td>
<td>Mass media credibility</td>
</tr>
<tr>
<td><strong>trust</strong></td>
<td>Trust</td>
</tr>
</tbody>
</table>
stusincn  Status inconsistency
nach  N achievement motivation
attcred2  Attitude toward credit
risk  Risk taking
socpart  Social participate
patriarc  patriarchy
credit2  attit to credit for product
visicit  visitin cities
nondep  non-dependence on farming
oltotal  OL total 7 items t-score
innov  overall innovativeness score
icosmo  cosmo index
immexp  mass media exposure index
iempath  empathy index
iach5  achievement motivation index 5
iach7  achievement motivation index 7
ipk  political knowledge index
immc  mass media credibilility index
iol  OL index
yr  Actual Year of Adoption
fs — MISSING INFO —
ado  Time of Adoption
tri  Triangular values used as appro
hlperc  high low percent of diffusion
hlperc1  — MISSING INFO —
new  new or old villages
card1  card number
sour1  Source: radio
sour2  Source: TV
sour3  Source: Newspaper
sour4  Source: Magazine
sour5  Source: ACAR Bulletin
sour6  Source: Agronomist
sour7  Source: Neighbor
sourc6  — MISSING INFO —
adopt  — MISSING INFO —
net31  nomination friend 1
The dataset has 692 respondents (farmers) from 11 communities. Collected during 1966, it spans 20 years of farming practices.

Source

The Brazilian Farmers data were collected as part of a USAID-funded study of farming practicing in the three countries, India, Nigeria, and Brazil. There was only one wave of data that contained survey questions regarding social networks, and only in Brazil did diffusion of the studied farming innovations reach an appreciable saturation level— that was for hybrid seed corn. The data were stored along with hundreds of other datasets by the University of Wisconsin library and I, Tom Valente, paid a fee to have the disks mailed to me in the early 1990s.

References


See Also

Other diffusion datasets: brfarmersDiffNet, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations
Description

A directed dynamic graph with 692 vertices and 21 time periods. The attributes in the graph are static and described in brfarmers.

Format

A diffnet class object.

See Also

Other diffusion datasets: brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations

c.diffnet

Combine diffnet objects

Description

Combining diffnet objects that share time periods and attributes names, but vertices ids (only valid for diffnet objects that have an empty intersection between vertices ids).

Usage

## S3 method for class 'diffnet'
c(..., recursive = FALSE)

Arguments

... diffnet objects to be concatenated.
recursive Ignored.

Details

The diffnet objects in ... must fulfill the following conditions:

1. Have the same time range,
2. have the same vertex attributes, and
3. have an empty intersection of vertices ids,

The meta data regarding undirected, value, and multiple are set to TRUE if any of the concatenating diffnet objects has that meta equal to TRUE.

The resulting diffnet object’s columns in the vertex attributes ordering (both dynamic and static) will coincide with the first diffnet’s ordering.
classify_adopters

Value

A new diffnet object with as many vertices as the sum of each concatenated diffnet objects' number of vertices.

See Also

Other diffnet methods: %*%(), as.array.diffnet(), diffnet-arithmetic, diffnet-class, diffnet_index, plot.diffnet(), summary.diffnet()

Examples

# Calculate structural equivalence exposure by city -------------------------
data(medInnovationsDiffNet)

# Subsetting diffnets
city1 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]]] == 1]
city2 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]]] == 2]
city3 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]]] == 3]
city4 <- medInnovationsDiffNet[medInnovationsDiffNet[["city"]]] == 4]

# Computing exposure in each one
city1["expo_se"] <- exposure(city1, alt.graph="se", valued=TRUE)
city2["expo_se"] <- exposure(city2, alt.graph="se", valued=TRUE)
city3["expo_se"] <- exposure(city3, alt.graph="se", valued=TRUE)
city4["expo_se"] <- exposure(city4, alt.graph="se", valued=TRUE)

# Concatenating all
diffnet <- c(city1, city2, city3, city4)
diffnet

classify_adopters

Classify adopters accordingly to Time of Adoption and Threshold levels.

Description

Adopters are classified as in Valente (1995). In general, this is done depending on the distance in terms of standard deviations from the mean of Time of Adoption and Threshold.

Usage

classify_adopters(...)
classify(...)

## S3 method for class 'diffnet'
classify_adopters(graph, include_censored = FALSE, ...)
classify_adopters

## Default S3 method:
classify_adopters(
  graph,
  toa,
  t0 = NULL,
  t1 = NULL,
  expo = NULL,
  include_censored = FALSE,
  ...
)

## S3 method for class 'diffnet_adopters'
ftable(x, as.pcent = TRUE, digits = 2, ...)

## S3 method for class 'diffnet_adopters'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

## S3 method for class 'diffnet_adopters'
plot(x, y = NULL, ftable.args = list(), table.args = list(), ...)

Arguments

... Further arguments passed to the method.

graph A dynamic graph.

include_censored Logical scalar, passed to threshold.

toa Integer vector of length \( n \) with times of adoption.

t0 Integer scalar passed to threshold and toa_mat.

t1 Integer scalar passed to toa_mat.

expo Numeric matrix of size \( n \times T \) with network exposures.

x A diffnet_adopters class object.

as.pcent Logical scalar. When TRUE returns a table with percentages instead.

digits Integer scalar. Passed to round.

row.names Passed to as.data.frame.

optional Passed to as.data.frame.

y Ignored.

ftable.args List of arguments passed to ftable.

table.args List of arguments passed to table.

Details

Classifies (only) adopters according to time of adoption and threshold as described in Valente (1995). In particular, the categories are defined as follow:

For Time of Adoption, with toa as the vector of times of adoption:
classify_adopters

- **Early Adopters**: \( \text{toa}[i] \leq \text{mean(toa)} - \text{sd(toa)}, \)
- **Early Majority**: \( \text{mean(toa)} - \text{sd(toa)} < \text{toa}[i] \leq \text{mean(toa)}, \)
- **Late Majority**: \( \text{mean(toa)} < \text{toa}[i] \leq \text{mean(toa)} + \text{sd(toa)}, \) and
- **Laggards**: \( \text{mean(toa)} + \text{sd(toa)} < \text{toa}[i]. \)

For Threshold levels, with \( \text{thr} \) as the vector of threshold levels:

- **Very Low Thresh.**: \( \text{thr}[i] \leq \text{mean(thr)} - \text{sd(thr)}, \)
- **Low Thresh.**: \( \text{mean(thr)} - \text{sd(thr)} < \text{thr}[i] \leq \text{mean(thr)}, \)
- **High Thresh.**: \( \text{mean(thr)} < \text{thr}[i] \leq \text{mean(thr)} + \text{sd(thr)}, \) and
- **Very High Thresh.**: \( \text{mean(thr)} + \text{sd(thr)} < \text{thr}[i]. \)

By default threshold levels are not computed for left censored data. These will have a \text{NA} value in the \text{thr} vector.

The plot method, \text{plot.diffnet_adopters}, is a wrapper for the \text{plot.table} method. This generates a \text{mosaicplot} plot.

**Value**

A list of class \text{diffnet_adopters} with the following elements:

- **toa**: A factor vector of length \( n \) with 4 levels: "Early Adopters", "Early Majority", "Late Majority", and "Laggards"
- **thr**: A factor vector of length \( n \) with 4 levels: "Very Low Thresh.", "Low Thresh.", "High Thresh.", and "Very High Thresh."

**Author(s)**

George G. Vega Yon

**References**


**See Also**

Other statistics: \text{bass}, \text{cumulative_adopt_count()}, \text{dgr()}, \text{ego_variance()}, \text{exposure()}, \text{hazard_rate()}, \text{infection()}, \text{moran()}, \text{struct_equiv()}, \text{threshold()}, \text{vertex_covariate_dist()}.

**Examples**

# Classifying brfarmers -----------------------------------------------------

\begin{verbatim}
x <- brfarmersDiffNet
diffnet.toa(x)[x$toa==max(x$toa, na.rm = TRUE)] <- NA
out <- classify_adopters(x)
\end{verbatim}

# This is one way
classify_graph

Analyze an R object to identify the class of graph (if any)

description
Analyze an R object to identify the class of graph (if any)

Usage
classify_graph(graph)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

Details
This function analyzes an R object and tries to classify it among the accepted classes in netdiffuseR. If the object fails to fall in one of the types of graphs the function returns with an error indicating what (and when possible, where) the problem lies.

The function was designed to be used with as_diffnet.

Value
When the object fits any of the accepted graph formats, a list of attributes including

type Character scalar. Whether is a static or a dynamic graph
class Character scalar. The class of the original object
ids Character vector. Labels of the vertices
cumulative_adopt_count

pers: Integer vector. Labels of the time periods
nper: Integer scalar. Number of time periods
n: Integer scalar. Number of vertices in the graph

Otherwise returns with error.

Author(s)
George G. Vega Yon

See Also
as_diffnet, netdiffuseR-graphs

cumulative_adopt_count
Cumulative count of adopters

Description
For each time period, calculates the number of adopters, the proportion of adopters, and the adoption
rate.

Usage
cumulative_adopt_count(obj)

Arguments
obj: A \( n \times T \) matrix (Cumulative adoption matrix obtained from toa_mat) or a
diffnet object.

Details
The rate of adoption—returned in the 3rd row out the resulting matrix—is calculated as

\[
\frac{q_t - q_{t-1}}{q_{t-1}}
\]

where \( q_t \) is the number of adopters in time \( t \). Note that it is only calculated for \( t > 1 \).

Value
A \( 3 \times T \) matrix, where its rows contain the number of adopters, the proportion of adopters and the
rate of adoption respectively, for each period of time.

Author(s)
George G. Vega Yon & Thomas W. Valente
**See Also**
Other statistics: `bass.classify_adopters()`, `dgr()`, `ego_variance()`, `exposure()`, `hazard_rate()`, `infection()`, `moran()`, `struct_equiv()`, `threshold()`, `vertex_covariate_dist()`

---

**dgr**

*Indegree, outdegree and degree of the vertices*

**Description**
Computes the requested degree measure for each node in the graph.

**Usage**

```r
Dgr(
 graph,
 cmode = "degree",
 undirected = getOption("diffnet.undirected", FALSE),
 self = getOption("diffnet.self", FALSE),
 valued = getOption("diffnet.valued", FALSE)
)
```

## S3 method for class 'diffnet_degSeq'

```r
plot(
 x,
 breaks = min(100L, nrow(x)/5),
 freq = FALSE,
 y = NULL,
 log = "xy",
 hist.args = list(),
 slice = ncol(x),
 xlab = "Degree",
 ylab = "Freq",
 ...
)
```

**Arguments**

- **graph**: Any class of accepted graph format (see `netdiffuseR-graphs`).
- **cmode**: Character scalar. Either "indegree", "outdegree" or "degree".
- **undirected**: Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster).
- **self**: Logical scalar. When TRUE autoclines (loops, self edges) are allowed (see details).
- **valued**: Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
x  An `diffnet_degSeq` object
breaks Passed to `hist`.
freq Logical scalar. When `TRUE` the y-axis will reflect counts, otherwise densities.
y Ignored
log Passed to `plot` (see `par`).
hist.args Arguments passed to `hist`.
slice Integer scalar. In the case of dynamic graphs, number of time point to plot.
xlab Character scalar. Passed to `plot`.
ylab Character scalar. Passed to `plot`.
... Further arguments passed to `plot`.

Value
A numeric matrix of size $n \times T$. In the case of `plot`, returns an object of class `histogram`.

Author(s)
George G. Vega Yon

See Also
Other statistics: `bass`, `classify_adopters()`, `cumulative_adopt_count()`, `ego_variance()`, `exposure()`, `hazard_rate()`, `infection()`, `moran()`, `struct_equiv()`, `threshold()`, `vertex_covariate_dist()`
Other visualizations: `diffusionMap()`, `drawColorKey()`, `grid_distribution()`, `hazard_rate()`, `plot_adopters()`, `plot_diffnet2()`, `plot_diffnet()`, `plot_infectsuscep()`, `plot_threshold()`, `rescale_vertex_igraph()`

Examples

```r
Comparing degree measurements ---
Creating an undirected graph
graph <- rgraph_ba()
graph
data.frame(
 In = dgr(graph, "indegree", undirected = FALSE),
 Out = dgr(graph, "outdegree", undirected = FALSE),
 Degree = dgr(graph, "degree", undirected = FALSE)
)

Testing on Korean Family Planning (weighted graph) ------------------------
data(kfamilyDiffNet)
d_unvalued <- dgr(kfamilyDiffNet, valued=FALSE)
d_valued <- dgr(kfamilyDiffNet, valued=TRUE)
any(d_valued!=d_unvalued)
```
# Classic Scale-free plot -----------------------------------------------
set.seed(1122)
g <- rgraph.ba(t=1e3-1)
hist(dgr(g))

# Since by default uses logscale, here we suppress the warnings
# on points been discarded for <=0.
suppressWarnings(plot(dgr(g)))

---

**diag_expand**

*Creates a square matrix suitable for spatial statistics models.*

### Description

Creates a square matrix suitable for spatial statistics models.

### Usage

diag_expand(...)

```r
S3 method for class 'list'
diag_expand(
 graph,
 self = getOption("diffnet.self"),
 valued = getOption("diffnet.valued"),
 ...
)

S3 method for class 'diffnet'
diag_expand(
 graph,
 self = getOption("diffnet.self"),
 valued = getOption("diffnet.valued"),
 ...
)

S3 method for class 'matrix'
diag_expand(
 graph,
 nper,
 self = getOption("diffnet.self"),
 valued = getOption("diffnet.valued"),
 ...
)

S3 method for class 'array'
diag_expand(
 graph,
 self = getOption("diffnet.self"),
 valued = getOption("diffnet.valued"),
 ...
)
```
diag_expand

    graph,
    self = getOption("diffnet.self"),
    valued = getOption("diffnet.valued"),
    ...
  )

## S3 method for class 'dgCMatrix'

diag_expand(
  graph,
  nper,
  self = getOption("diffnet.self"),
  valued = getOption("diffnet.valued"),
  ...
)

Arguments

... Further arguments to be passed to the method.

- **graph** Any class of accepted graph format (see netdiffuser-graphs).

- **self** Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).

- **valued** Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.

- **nper** Integer scalar. Number of time periods of the graph.

Value

A square matrix of class dgCMatrix of size (nnode(g)*nper)^2

Examples

# Simple example -----------------------------------------------
set.seed(23)
g <- rgraph_er(n=10, p=.5, t=2, undirected=TRUE)

# What we've done: A list with 2 bernoulli graphs

g

# Expanding to a 20*20 matrix with structural zeros on the diagonal
# and on cell 'off' adjacency matrix
diag_expand(g)
**Arithmetic and Logical Operators**

**Description**

Addition, subtraction, network power of diffnet and logical operators such as & and | as objects

**Usage**

```r
S3 method for class 'diffnet'
x ^ y

graph_power(x, y, valued = getOption("diffnet.valued", FALSE))

S3 method for class 'diffnet'
y / x

S3 method for class 'diffnet'
x - y

S3 method for class 'diffnet'
x * y

S3 method for class 'diffnet'
x & y

S3 method for class 'diffnet'
x | y
```

**Arguments**

- `x` A diffnet class object.
- `y` Integer scalar. Power of the network
- `valued` Logical scalar. When FALSE all non-zero entries of the adjacency matrices are set to one.

**Details**

Using binary operators, ease data management process with diffnet.

By default the binary operator ^ assumes that the graph is valued, hence the power is computed using a weighted edges. Otherwise, if more control is needed, the user can use graph_power instead.

**Value**

A diffnet class object
**diffnet-class**

*Description*

`diffnet` objects contain diffusion networks. With adjacency matrices and time of adoption (toa) vector as its main components, most of the package’s functions have methods for this class of objects.

*Usage*

```r
as_diffnet(graph, ...)
```

## Default S3 method:

```r
data(brfarmersDiffNet)
expo1 <- threshold(brfarmersDiffNet)
expo2 <- threshold(brfarmersDiffNet^2)
Computing correlation
cor(expo1, expo2)
Drawing a qqplot
qqplot(expo1, expo2)
Working with inverse --
brf2_step <- brfarmersDiffNet^2
brf2_step <- 1/brf2_step
Removing the first 3 vertex of medInnovationsDiffnet -----------------------
data(medInnovationsDiffNet)
Using a diffnet object
first3Diffnet <- medInnovationsDiffNet[1:3,,]
medInnovationsDiffNet - first3Diffnet
Using indexes
medInnovationsDiffNet - 1:3
Using ids
medInnovationsDiffNet - as.character(1001:1003)
```
as_diffnet(graph, ...)

## S3 method for class 'networkDynamic'
as_diffnet(graph, toavar, ...)

new_diffnet(
  graph,
  toa,
t0 = min(toa, na.rm = TRUE),
t1 = max(toa, na.rm = TRUE),
vertex.dyn.attrs = NULL,
vertex.static.attrs = NULL,
id.and.per.vars = NULL,
graph.attrs = NULL,
undirected = getOption("diffnet.undirected"),
self = getOption("diffnet.self"),
multiple = getOption("diffnet.multiple"),
name = "Diffusion Network",
behavior = "Unspecified"
)

## S3 method for class 'diffnet'
as.data.frame(
  x,
  row.names = NULL,
  optional = FALSE,
  attr.class = c("dyn", "static"),
  ...
)

diffnet.attrs(
  graph,
  element = c("vertex", "graph"),
  attr.class = c("dyn", "static"),
  as.df = FALSE
)

diffnet.attrs(graph, element = "vertex", attr.class = "static") <- value

diffnet.toa(graph)
diffnet.toa(graph, i) <- value

## S3 method for class 'diffnet'
print(x, ...)

nodes(graph)
diffnetLapply(graph, FUN, ...)

## S3 method for class 'diffnet'
str(object, ...)

## S3 method for class 'diffnet'
dimnames(x)

## S3 method for class 'diffnet'
t(x)

## S3 method for class 'diffnet'
dim(x)

Arguments

graph       A dynamic graph (see netdiffuseR-graphs).
...         Further arguments passed to the jmethod.
toavar      Character scalar. Name of the variable that holds the time of adoption.
toa         Numeric vector of size n. Times of adoption.
t0          Integer scalar. Passed to toa_mat.
t1          Integer scalar. Passed to toa_mat.
vertex.dyn.attrs Vertices dynamic attributes (see details).
vertex.static.attrs Vertices static attributes (see details).
id.and.per.vars A character vector of length 2. Optionally specified to check the order of the rows in the attribute data.
graph.attrs  Graph dynamic attributes (not supported yet).
undirected   Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster).
self         Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
multiple     Logical scalar. When TRUE allows multiple edges.
name         Character scalar. Name of the diffusion network (descriptive).
behavior     Character scalar. Name of the behavior been analyzed (innovation).
x            A diffnet object.
row.names    Ignored.
optional     Ignored.
attr.class   Character vector/scalar. Indicates the class of the attribute, either dynamic ("dyn"), or static ("static").
element      Character vector/scalar. Indicates what to retrieve/alter.
diffnet-class

as.df Logical scalar. When TRUE returns a data.frame.

value In the case of diffnet.toa, replacement, otherwise see below.

i Indices specifying elements to replace. See Extract.

FUN a function to be passed to lapply

object A diffnet object.

Details

diffnet objects hold both, static and dynamic vertex attributes. When creating diffnet objects, these can be specified using the arguments vertex.static.attrs and vertex.dyn.attrs: depending on whether the attributes to specify are static or dynamic, netdiffuseR currently supports the following objects:

<table>
<thead>
<tr>
<th>Class</th>
<th>Dimension</th>
<th>Check sorting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static attrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>matrix</td>
<td>with $n$ rows</td>
<td>id</td>
</tr>
<tr>
<td>data.frame</td>
<td>with $n$ rows</td>
<td>id</td>
</tr>
<tr>
<td>vector</td>
<td>of length $n$</td>
<td></td>
</tr>
<tr>
<td>Dynamic attrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>matrix</td>
<td>with $n \times T$ rows</td>
<td>id, per</td>
</tr>
<tr>
<td>data.frame</td>
<td>with $n \times T$ rows</td>
<td>id, per</td>
</tr>
<tr>
<td>vector</td>
<td>of length $n \times T$</td>
<td></td>
</tr>
<tr>
<td>list</td>
<td>of length $T$ with matrices or data.frames of $n$ rows</td>
<td>id, per</td>
</tr>
</tbody>
</table>

The last column, Check sorting, lists the variables that the user should specify if he wants the function to check the order of the rows of the attributes (notice that this is not possible for the case of vectors). By providing the name of the vertex id variable, id, and the time period id variable, per, the function makes sure that the attribute data is presented in the right order. See the example below. If the user does not provide the names of the vertex id and time period variables then the function does not check the way the rows are sorted, further it assumes that the data is in the correct order.

Value

A list of class diffnet with the following elements:

- graph A list of length $T$. Containing sparse square matrices of size $n$ and class dgCMatrix.
- toa An integer vector of size $T$ with times of adoption.
- adopt, cumadopt Numeric matrices of size $n \times T$ as those returned by toa_mat.
- vertex.static.attrs If not NULL, a data frame with $n$ rows with vertex static attributes.
- vertex.dyn.attrs A list of length $T$ with data frames containing vertex attributes throughout time (dynamic).
graph.attrs A data frame with $T$ rows.

meta A list of length 9 with the following elements:

- type: Character scalar equal to "dynamic".
- class: Character scalar equal to "list".
- ids: Character vector of size $n$ with vertices' labels.
- pers: Integer vector of size $T$.
- nper: Integer scalar equal to $T$.
- n: Integer scalar equal to $n$.
- self: Logical scalar.
- undirected: Logical scalar.
- multiple: Logical scalar.
- name: Character scalar.
- behavior: Character scalar.

Auxiliary functions

diffnet.attrs Allows retrieving network attributes. In particular, by default returns a list of length $T$ with data frames with the following columns:

1. per Indicating the time period to which the observation corresponds.
2. toa Indicating the time of adoption of the vertex.
3. Further columns depending on the vertex and graph attributes.

Each vertex static attributes' are repeated $T$ times in total so that these can be binded (rbind) to dynamic attributes.

When as.df=TRUE, this convenience function is useful as it can be used to create event history (panel data) datasets used for model fitting.

Conversely, the replacement method allows including new vertex or graph attributes either dynamic or static (see examples below).

diffnet.toa(graph) works as an alias of graph$toa. The replacement method, diffnet.toa<- used as diffnet.toa<-... is the right way of modifying times of adoption as when doing so it performs several checks on the time ranges, and recalculates adoption and cumulative adoption matrices using toa_mat.

nodes(graph) is an alias for graph$meta$ids.

Author(s)

George G. Vega Yon

See Also

Default options are listed at netdiffuseR-options

Other diffnet methods: %*%, as.array.diffnet(), c.diffnet(), diffnet-arithmetic, diffnet_index, plot.diffnet(), summary.diffnet()

Other data management functions: edgelist_to_adjmat(), egonet_attrs(), isolated(), survey_to_diffnet()
Examples

```r
Creating a random graph
set.seed(123)
graph <- rgraph.ba(t=9)
graph <- lapply(1:5, function(x) graph)

Pretty TOA
names(graph) <- 2001L:2005L
toa <- sample(c(2001L:2005L,NA), 10, TRUE)

Creating diffnet object
diffnet <- new_diffnet(graph, toa)
diffnet
summary(diffnet)

Plotting slice 4
plot(diffnet, t=4)

ATTRIBUTES

ATTRIBUTES
Retrieving attributes
diffnet.attrs(diffnet, "vertex", "static")

Now as a data.frame (only static)
diffnet.attrs(diffnet, "vertex", "static", as.df = TRUE)

Now as a data.frame (all of them)
diffnet.attrs(diffnet, as.df = TRUE)
as.data.frame(diffnet) # This is a wrapper

Unsorted data
Loading example data
data(fakesurveyDyn)

Creating a diffnet object
fs_diffnet <- survey_to_diffnet(
 fakesurveyDyn, "id", c("net1", "net2", "net3"), "toa", "group",
 timevar = "time", keep.isolates=TRUE, warn.coercion=FALSE)

Now, we extract the graph data and create a diffnet object from scratch
graph <- fs_diffnet$graph
ids <- fs_diffnet$meta$ids
graph <- Map(function(g) {
 dimnames(g) <- list(ids,ids)
 g
}, g=graph)
attrs <- diffnet.attrs(fs_diffnet, as.df=TRUE)
toa <- diffnet.toa(fs_diffnet)

Lets apply a different sorting to the data to see if it works
n <- nrow(attrs)
```
diffnet_check_attr_class

Infer whether value is dynamic or static.

Description

Intended for internal use only, this function is used in diffnet_index methods.

Usage

diffnet_check_attr_class(value, meta)

Arguments

value Either a matrix, data frame or a list. Attribute values.
meta A list. A diffnet object's meta data.

Value

The value object either as a data frame (if static) or as a list of data frames (if dynamic). If value does not follows the permitted types of diffnet_index, then returns with error.
Indexing diffnet objects (on development)

Description

Access and assign (replace) elements from the adjacency matrices or the vertex attributes data frames.

Usage

```r
S3 method for class 'diffnet'
x[[name, as.df = FALSE]]

S3 replacement method for class 'diffnet'
x[[i, j]] <- value

S3 method for class 'diffnet'
x[i, j, k, drop = FALSE]

S3 replacement method for class 'diffnet'
x[i, j, k] <- value
```

Arguments

- `x`: A diffnet class object.
- `name`: String vector. Names of the vertices attributes.
- `as.df`: Logical scalar. When TRUE returns a data frame, otherwise a list of length T.
- `i`: Index of the i-th row of the adjacency matrix (see details).
- `j`: Index of the j-th column of the adjacency matrix (see details)
- `value`: Value to assign (see details)
- `k`: Index of the k-th slice of the adjacency matrix (see details).
- `drop`: Logical scalar. When TRUE returns an adjacency matrix, otherwise a filtered diffnet object.

Details

The `[.diffnet methods provides access to the diffnet attributes data frames, static and dynamic. By providing the name of the corresponding attribute, depending on whether it is static or dynamic the function will return either a data frame–static attributes–or a list of these–dynamic attributes.

For the assigning method, `[[<-.diffnet`, the function will infer what kind of attribute is by analyzing the dimensions of value, in particular we have the following possible cases:

<table>
<thead>
<tr>
<th>Class</th>
<th>Dimension</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix</td>
<td>$n \times T$</td>
<td>Dynamic</td>
</tr>
<tr>
<td>matrix</td>
<td>$n \times 1$</td>
<td>Static</td>
</tr>
</tbody>
</table>
### diffnet_index

<table>
<thead>
<tr>
<th>type</th>
<th>description</th>
<th>dynamic/static</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix</td>
<td>((n \times T) \times 1)</td>
<td>Dynamic</td>
</tr>
<tr>
<td>data.frame</td>
<td>(n \times T)</td>
<td>Dynamic</td>
</tr>
<tr>
<td>data.frame</td>
<td>(n \times 1)</td>
<td>Static</td>
</tr>
<tr>
<td>data.frame</td>
<td>((n \times T) \times 1)</td>
<td>Dynamic</td>
</tr>
<tr>
<td>vector</td>
<td>(n)</td>
<td>Static</td>
</tr>
<tr>
<td>vector</td>
<td>(n \times T)</td>
<td>Dynamic</td>
</tr>
<tr>
<td>list*</td>
<td>(T) data.frames/matrices/vectors</td>
<td>Dynamic</td>
</tr>
</tbody>
</table>

*: With \(n \times 1\) data.frame/matrix or \(n\) length vector.

Other cases will return with error.

In the case of the slices index \(k\), either an integer vector with the positions, a character vector with the labels of the time periods or a logical vector of length \(T\) can be used to specify which slices to retrieve. Likewise, indexing vertices works in the same way with the only difference that, instead of time period labels and a logical vector of length \(T\), vertices ids labels and a logical vector of length \(n\) should be provided.

When subsetting slices, the function modifies the toa vector as well as the adopt and cumadopt matrices collapsing network timing. For example, if a network goes from time 1 to 20 and we set \(k=3:10\), all individuals who adopted prior to time 3 will be set as adopters at time 3, and all individuals who adopted after time 10 will be set as adopters at time 10, changing the adoption and cumulative adoption matrices. Importantly, \(k\) have no gaps, and it should be within the graph time period range.

### Value

In the case of the assigning methods, a diffnet object. Otherwise, for \([.\) diffnet a vector extracted from one of the attributes data frames, and for \([.\) diffnet a list of length length(k) with the corresponding \([i,j]\) elements from the adjacency matrix.

### Author(s)

George G. Vega Yon

### See Also

Other diffnet methods: `%*%()`, `as.array.diffnet()`, `c.diffnet()`, `diffnet-arithmetic`, `diffnet-class`, `plot.diffnet()`, `summary.diffnet()`

### Examples

```r
Creating a random diffusion network -------------------------------
set.seed(111)
graph <- rdifnet(100,5)

Accessing to a static attribute
graph["real_threshold"]

Accessing to subsets of the adjacency matrix
```
```r
... Now, as diffnet objects (the default)
graph[1,,1:3, drop=FALSE]
graph[,,1:3, drop=FALSE]

Changing values in the adjacency matrix
graph[1,, drop=TRUE]
graph[1,,] <- -5
graph[1,, drop=TRUE]

Adding attributes (dynamic) ---
Preparing the data
set.seed(1122)
x <- rdiffnet(30, 5, seed.p.adopt=.15)

Calculating exposure, and storing it differently
expoM <- exposure(x)
expoL <- lapply(seq_len(x$meta$nper), function(x) expoM[,x,drop=FALSE])
expoD <- do.call(rbind, expoL)

Adding data (all these are equivalent)
x[["expoM"]]<- expoM
x[["expoL"]]<- expoL
x[["expoD"]]<- expoD

Lets compare
identical(x[["expoM"]], x[["expoL"]]) # TRUE
diffreg(x[["expoM"]], x[["expoD"]]) # TRUE
```

---

**diffreg**  
*Diffusion regression model*

**Description**

A wrapper of glm, this function estimates a lagged regression model of adoption as a function of exposure and other controls as specified by the user.

**Usage**

```r
diffreg(model, type = c("logit", "probit"))
```

**Arguments**

- **model**
  - An object of class formula where the right-hand-side is an object of class `diffnet`
- **type**
  - Character scalar. Either "probit" or "logit".
Details

The model must be in the following form:

<diffnet object> ~ exposure + covariate1 + covariate2 + ...

Where exposure can be specified either as a simple term, or as a call to the exposure function, e.g. to compute exposure with a lag of length 2, the formula could be:

<diffnet object> ~ exposure(lags = 2) + covariate1 + covariate2 + ...

When no argument is passed to exposure, the function sets a lag of length 1 by default (see the Lagged regression section).

This is a wrapper of glm. The function does the following steps:

1. Compute exposure by calling exposure on the LHS.
2. Modify the formula so that the model is on adoption as a function of exposure and whatever covariates the user specifies.
3. Selects either "probit" or "logit" and prepares the call to glm. This includes passing the following line:
   
   subset = ifelse(is.na(toa), TRUE, toa >= per)

   This results in including observations that either did not adopted or up to the time of adoption.
4. Estimates the model.

The data passed to glm is obtained by using as.data.frame.diffnet.

Value

An object of class glm.

Lagged regression

The model estimated is a lagged regression model that has two main assumptions:

1. The network is exogenous to the behavior (no selection effect)
2. The influence effect (diffusion) happens in a lagged fashion, hence, exposure is computed lagged.

If either of these two assumptions is not met, then the model becomes endogenous, and so inference becomes invalid.

In the case of the first assumption, the user can overcome the non-exogeneity problem by providing an alternative network. This can be done by specifying alt.graph in the exposure function so that the network becomes exogenous to the adoption.
Examples

```r
data("medInnovationsDiffNet")

Default model
ans <- diffreg(
 medInnovationsDiffNet ~ exposure + factor(city) + proage + per)
summary(ans)
```

---

**Description**

Diffusion Network Datasets

**Details**

The three classic network diffusion datasets included in netdiffuseR are the medical innovation data originally collected by Coleman, Katz & Menzel (1966); the Brazilian Farmers collected as part of the three country study implemented by Everett Rogers (Rogers, Ascroft, & Röling, 1970), and Korean Family Planning data collected by researchers at the Seoul National University's School of Public (Rogers & Kincaid, 1981). The table below summarizes the three datasets:

<table>
<thead>
<tr>
<th>Country</th>
<th>Medical Innovation</th>
<th>Brazilian Farmers</th>
<th>Korean Family Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>USA</td>
<td>Brazil</td>
<td>Korean</td>
</tr>
<tr>
<td># Respondents</td>
<td>125 Doctors</td>
<td>692 Farmers</td>
<td>1,047 Women</td>
</tr>
<tr>
<td># Communities</td>
<td>4</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>Innovation</td>
<td>Tetracycline</td>
<td>Hybrid Corn Seed</td>
<td>Family Planning</td>
</tr>
<tr>
<td>Time for Diffusion</td>
<td>18 Months</td>
<td>20 Years</td>
<td>11 Years</td>
</tr>
<tr>
<td>Year Data Collected</td>
<td>1955-1956</td>
<td>1966</td>
<td>1973</td>
</tr>
<tr>
<td>Ave. Time to 50%</td>
<td>6</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Highest Saturation</td>
<td>0.89</td>
<td>0.98</td>
<td>0.83</td>
</tr>
<tr>
<td>Lowest Saturation</td>
<td>0.81</td>
<td>0.29</td>
<td>0.44</td>
</tr>
</tbody>
</table>

All datasets include a column called *study* which is coded as (1) Medical Innovation (2) Brazilian Farmers, (3) Korean Family Planning.

**Right censored data**

By convention, non-adopting actors are coded as one plus the last observed time of adoption. Prior empirical event history approaches have used this approach (Valente, 2005; Marsden and Podolny, 1990) and studies have shown that omitting such observations leads to biased results (van den Bulte & Iyengar, 2011).
diffusionMap

Author(s)

Thomas W. Valente

References


See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations

diffusionMap

Creates a heatmap based on a graph layout and a vertex attribute

Description

Using bi-dimensional kernel smoothers, creates a heatmap based on a graph layout and colored accordingly to x. This visualization technique is intended to be used with large graphs.
diffusionMap

Usage

diffusionMap(graph, ...)
diffmap(graph, ...)

## Default S3 method:
diffusionMap(graph,
x, x.adj = round_to_seq,
layout = NULL,
jitter.args = list(),
kde2d.args = list(n = 100),
sharp.criter = function(x, w) { wvar(x, w) > (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))^2/12 },
...)

## S3 method for class 'diffnet'
diffusionMap(graph, slice = nslices(graph), ...)

## S3 method for class 'diffnet_diffmap'
image(x, ...)

## S3 method for class 'diffnet_diffmap'
print(x, ...)

## S3 method for class 'diffnet_diffmap'
plot(x, y = NULL, ...)

Arguments

graph A square matrix of size $n \times n$.
...
Arguments passed to method.
x An vector of length $n$. Usually a toa vector.
x.adj Function to adjust $x$. If not NULL then it is applied to $x$ at the beginning (see details).
layout Either a $n \times 2$ matrix of coordinates or a layout function applied to graph (must return coordinates).
jitter.args A list including arguments to be passed to jitter.
kde2d.args A list including arguments to be passed to kde2d.
sharp.criter A function choose whether to apply a weighted mean for each cell, or randomize over the values present in that cell (see details).
slice Integer scalar. Slice of the network to be used as baseline for drawing the graph.
y Ignored.
Details

The image is created using the function `kde2d` from the `MASS` package. The complete algorithm follows:

1. `x` is coerced into integer and the range is adjusted to start from 1. `NA` are replaced by zero.
2. If no layout is passed, layout is computed using `layout_nicely` from `igraph`.
3. Then, a `kde2d` map is computed for each level of `x`. The resulting matrices are added up as a weighted sum. This only holds if at the cell level the function `sharp.criter` returns `FALSE`.
4. The jitter function is applied to the repeated coordinates.
5. 2D kernel is computed using `kde2d` over the coordinates.

The function `sharp.criter` must take two values, a vector of levels and a vector of weights. It must return a logical scalar with value equal to `TRUE` when a randomization at the cell level must be done, in which case the final value of the cell is chosen using `sample(x,1,prob=w)`.

The resulting matrix can be passed to `image` or similar.

The argument `x.adj` uses by default the function `round_to_seq` which basically maps `x` to a fixed length sequence of numbers such that `x.adj(x)` resembles an integer sequence.

Value

A list of class `diffnet_diffmap`

- `coords` A matrix of size `n × 2` of vertices coordinates.
- `map` Output from `kde2d`. This is a list with 3 elements, vectors `x`, `y` and matrix `z` of size `n × n` (passed via `kde2d.args`).
- `h` Bandwidth passed to `kde2d`.

Author(s)

George G. Vega Yon

References

Vega Yon, George G., and Valente, Thomas W., Visualizing Large Annotated Networks as Heatmaps using Weighted Averages based on Kernel Smoothers (Working paper).

See Also

Other visualizations: `dgr()`, `drawColorKey()`, `grid_distribution()`, `hazard_rate()`, `plotadopters()`, `plot_diffnet2()`, `plot_diffnet()`, `plot_infectsuscep()`, `plot_threshold()`, `rescale_vertex_igraph()`

Examples

```r
Example with a random graph
set.seed(1231)
```
# Random scale-free diffusion network

```r
x <- rdiffnet(500, 4, seed.graph="scale-free", seed.p.adopt = .025,
 rewire = FALSE, seed.nodes = "central",
 rgraph.arg=list(self=FALSE, m=4),
 threshold.dist = function(id) runif(1,.2,.4))
```

# Diffusion map (no random toa)

```r
dm0 <- diffusionMap(x, kde2d.args=list(n=150, h=.5), layout=igraph::layout_with_fr)
```

# Random

```r
diffnet.toa(x) <- sample(x$toa, size = nnodes(x))
```

# Diffusion map (random toa)

```r
dm1 <- diffusionMap(x, layout = dm0$coords, kde2d.args=list(n=150, h=.5))
```

```r
oldpar <- par(no.readonly = TRUE)
col <- colorRampPalette(blues9)(100)
par(mfrow=c(1,2), oma=c(1,0,0,0))
image(dm0, col=col, main="Non-random Times of Adoption
Adoption from the core.")
image(dm1, col=col, main="Random Times of Adoption")
par(mfrow=c(1,1))
mtext("Both networks have the same distribution on times of adoption", 1,
 outer = TRUE)
par(oldpar)
```

# Example with Brazilian Farmers  
--------------------------------------

```r
dn <- brfarmersDiffNet
```

# Setting last TOA as NA

```r
diffnet.toa(dn)[dn$toa == max(dn$toa)] <-
 NA
```

# Coordinates

```r
coords <- sna::gplot.layout.fruchtermanreingold(
 as.matrix(dn$graph[[1]]), layout.par=NULL)
```

# Plotting diffusion

```r
plot_diffnet2(dn, layout=coords, vertex.size = 300)
```

# Adding diffusion map

```r
out <- diffusionMap(dn, layout=coords, kde2d.args=list(n=100, h=50))
col <- adjustcolor(colorRampPalette(c("white","lightblue", "yellow", "red"))(100),.5)
with(out$map, .filled.contour(x,y,z,pretty(range(z), 100),col))
```

---

**drawColorKey**  
**Draw a color key in the current device**

**Description**

Draw a color key in the current device
drawColorKey

Usage

drawColorKey(
  x,
  tick.marks = pretty_within(x),
  labels = tick.marks,
  main = NULL,
  key.pos = c(0.925, 0.975, 0.05, 0.95),
  pos = 2,
  nlevels = length(tick.marks),
  color.palette = viridisLite::viridis(nlevels),
  tick.width = c(0.01, 0.0075),
  add.box = TRUE,
  na.col = NULL,
  na.height = 0.1,
  na.lab = "n/a",
  ...
)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>A numeric vector with the data (it is used to extract the range).</td>
</tr>
<tr>
<td>tick.marks</td>
<td>A numeric vector indicating the levels to be included in the axis.</td>
</tr>
<tr>
<td>labels</td>
<td>Character vector. When provided, specifies using different labels for the tick marks than those provided by tick.marks.</td>
</tr>
<tr>
<td>main</td>
<td>Character scalar. Title of the key.</td>
</tr>
<tr>
<td>key.pos</td>
<td>A numeric vector of length 4 with relative coordinates of the key (as % of the plotting area, see par(&quot;usr&quot;))</td>
</tr>
<tr>
<td>pos</td>
<td>Integer scalar. Position of the axis as in text.</td>
</tr>
<tr>
<td>nlevels</td>
<td>Integer scalar. Number of levels (colors) to include in the color key.</td>
</tr>
<tr>
<td>color.palette</td>
<td>Color palette of length(nlevels).</td>
</tr>
<tr>
<td>tick.width</td>
<td>Numeric vector of length 2 indicating the length of the inner and outer tick marks as percentage of the axis.</td>
</tr>
<tr>
<td>add.box</td>
<td>Logical scalar. When TRUE adds a box around the key.</td>
</tr>
<tr>
<td>na.col</td>
<td>Character scalar. If specified, adds an additional box indicating the NA color.</td>
</tr>
<tr>
<td>na.height</td>
<td>Numeric scalar. Relative height of the NA box. Only use if na.col is not NULL.</td>
</tr>
<tr>
<td>na.lab</td>
<td>Character scalar. Label of the NA block. Only use if na.col is not NULL.</td>
</tr>
</tbody>
</table>

Value

Invisible NULL.

Author(s)

George G. Vega Yon
See Also

Other visualizations: `dgr()`, `diffusionMap()`, `grid_distribution()`, `hazard_rate()`, `plot_adopters()`, `plot_diffnet2()`, `plot_diffnet()`, `plot_infectsuscep()`, `plot_threshold()`, `rescale_vertex_igraph()`

Examples

```r
set.seed(166)
x <- rnorm(100)
col <- colorRamp(c("lightblue", "yellow", "red"))((x - min(x))/(max(x) - min(x)))
col <- rgb(col, maxColorValue = 255)
plot(x, col=col, pch=19)
drawColorKey(x, nlevels = 100, border="transparent",
main="Key\nLike A\nLike A\n\nLike A")
```

**edgelist_to_adjmat**  
Conversion between adjacency matrix and edgelist

Description

Generates adjacency matrix from an edgelist and vice versa.

Usage

```r
edgelist_to_adjmat(
 edgelist,
 w = NULL,
 t0 = NULL,
 t1 = NULL,
 t = NULL,
 simplify = TRUE,
 undirected = getOption("diffnet.undirected"),
 self = getOption("diffnet.self"),
 multiple = getOption("diffnet.multiple"),
 keep.isolates = TRUE,
 recode.ids = TRUE
)
```

```r
adjmat_to_edgelist(
 graph,
 undirected = getOption("diffnet.undirected", FALSE),
 keep.isolates = getOption("diffnet.keep.isolates", TRUE)
)
```

Arguments

- `edgelist`  
  Two column matrix/data.frame in the form of ego-source- and alter-target- (see details).
**edgelist_to_adjmat** 47

w  Numeric vector. Strength of ties (optional).

t0  Integer vector. Starting time of the ties (optional).

t1  Integer vector. Finishing time of the ties (optional).

t  Integer scalar. Repeat the network t times (if no t0,t1 are provided).

simplify  Logical scalar. When TRUE and times=NULL it will return an adjacency matrix, otherwise an array of adjacency matrices. (see details).

undirected  Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster).

self  Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).

multiple  Logical scalar. When TRUE allows multiple edges.

keep.isolates  Logical scalar. When FALSE, rows with NA/NULL values (isolated vertices unless have autolink) will be dropped (see details).

recode.ids  Logical scalar. When TRUE ids are recoded using as.factor (see details).

graph  Any class of accepted graph format (see netdiffuseR-graphs).

**Details**

When converting from edgelist to adjmat the function will recode the edgelist before starting. The user can keep track after the recording by checking the resulting adjacency matrices’ row.names. In the case that the user decides skipping the recoding (because wants to keep vertices index numbers, implying that the resulting graph will have isolated vertices), he can override this by setting recode.ids=FALSE (see example).

When multiple edges are included, multiple=TRUE, each vertex between \{i,j\} will be counted as many times it appears in the edgelist. So if a vertex \{i,j\} appears 2 times, the adjacency matrix element (i,j) will be 2.

Edges with incomplete information (missing data on w or times) are not included on the graph. Incomplete cases are tagged using complete.cases and can be retrieved by the user by accessing the attribute incomplete.

Were the case that either ego or alter are missing (i.e. NA values), the function will either way include the non-missing vertex. See below for an example of this.

The function performs several checks before starting to create the adjacency matrix. These are:

- Dimensions of the inputs, such as number of columns and length of vectors
- Having complete cases. If any edge has a non-numeric value such as NAs or NULL in either times or w, it will be removed. A full list of such edges can be retrieved from the attribute incomplete
- Nodes and times ids coding

recode.ids=FALSE is useful when the vertices ids have already been coded. For example, after having use adjmat_to_edgelist, ids are correctly encoded, so when going back (using edgelist_to_adjmat) recode.ids should be FALSE.
Value

In the case of `edgelist_to_adjmat` either an adjacency matrix (if `times` is NULL) or an array of these (if `times` is not null). For `adjmat_to_edgelist` the output is an edgelist with the following columns:

- **ego**: Origin of the tie.
- **alter**: Target of the tie.
- **value**: Value in the adjacency matrix.
- **time**: Either a 1 (if the network is static) or the time stamp of the tie.

Author(s)

George G. Vega Yon & Thomas W. Valente

See Also

Other data management functions: `diffnet-class`, `egonet_attrs()`, `isolated()`, `survey_to_diffnet()`

Examples

```r
Base data
set.seed(123)
n <- 5
edgelist <- rgraph_er(n, as.edgelist=TRUE, p=.2)[,c("ego","alter")]
times <- sample.int(3, nrow(edgelist), replace=TRUE)
w <- abs(rnorm(nrow(edgelist)))

Simple example
edgelist_to_adjmat(edgelist)
edgelist_to_adjmat(edgelist, undirected = TRUE)

Using w
edgelist_to_adjmat(edgelist, w)
edgelist_to_adjmat(edgelist, w, undirected = TRUE)

Using times
edgelist_to_adjmat(edgelist, t0 = times)
edgelist_to_adjmat(edgelist, t0 = times, undirected = TRUE)

Using times and w
edgelist_to_adjmat(edgelist, t0 = times, w = w)
edgelist_to_adjmat(edgelist, t0 = times, undirected = TRUE, w = w)

Not recoding ---
Notice that vertices 3, 4 and 5 are not present in this graph.
graph <- matrix(c(
 1,2,6,
 6,6,7
), ncol=2)

Generates an adjmat of size 4 x 4
```
edgelist_to_adjmat(graph)

# Generates an adjmat of size 7 x 7
edgelist_to_adjmat(graph, recode.ids=FALSE)

# Dynamic with spells ----------------------------------------------------------
edgelist <- rbind(
  c(1,2,NA,1990),
  c(2,3,NA,1991),
  c(3,4,1991,1992),
  c(4,1,1992,1993),
  c(1,2,1993,1993)
)

graph <- edgelist_to_adjmat(edgelist[,1:2], t0=edgelist[,3], t1=edgelist[,4])

# Creating a diffnet object with it so we can apply the plot_diffnet function
diffnet <- as_diffnet(graph, toa=1:4)
plot_diffnet(diffnet, label=rownames(diffnet))

# Missing alter in the edgelist ------------------------------------------------
data(fakeEdgelist)

# Notice that edge 202 is isolated
fakeEdgelist

# The function still includes vertex 202
edgelist_to_adjmat(fakeEdgelist[,1:2])

edgelist

---

edges_coords

\textit{Compute ego/alter edge coordinates considering alter’s size and aspect ratio}

\section*{Description}

Given a graph, vertices’ positions and sizes, calculates the absolute positions of the endpoints of the edges considering the plot’s aspect ratio.

\section*{Usage}

\begin{verbatim}
edges_coords(graph, toa, x, y, vertex_cex,)
\end{verbatim}
undirected = TRUE,
no_contemporary = TRUE,
dev = as.numeric(c()),
ran = as.numeric(c()),
curved = as.logical(c())
)

Arguments

graph A square matrix of size n. Adjacency matrix.
toa Integer vector of size n. Times of adoption.
x Numeric vector of size n. x-coordinta of vertices.
y Numeric vector of size n. y-coordinta of vertices.
vertex_cex Numeric vector of size n. Vertices’ sizes in terms of the x-axis (see symbols).
undirected Logical scalar. Whether the graph is undirected or not.
no_contemporary Logical scalar. Whether to return (compute) edges’ coordiantes for vertices with the same time of adoption (see details).
dev Numeric vector of size 2. Height and width of the device (see details).
ran Numeric vector of size 2. Range of the x and y axis (see details).
curved Logical vector.

Details

In order to make the plot’s visualization more appealing, this function provides a straight forward way of computing the tips of the edges considering the aspect ratio of the axes range. In particular, the following corrections are made at the moment of calculating the egdes coords:

• Instead of using the actual distance between ego and alter, a relative one is calculated as follows

\[
d' = \left[ (x_0 - x_1)^2 + (y_0' - y_1')^2 \right]^{\frac{1}{2}}
\]

where \( y_i' = y_i \times \frac{\max x - \min x}{\max y - \min y} \)

• Then, for the relative elevation angle, \( \alpha' \), the relative distance \( d' \) is used, \( \alpha' = \arccos((x_0 - x_1)/d') \)

• Finally, the edge’s endpoint’s (alter) coordinates are computed as follows:

\[
x_1' = x_1 + \cos(\alpha') \times v_1
\]

\[
y_1' = y_1 - \sin(\alpha') \times v_1 \times \frac{\max y - \min y}{\max x - \min x}
\]

Where \( v_1 \) is alter’s size in terms of the x-axis, and the sign of the second term in \( y_1' \) is negative iff \( y_0 < y_1 \).

The same process (with sign inverted) is applied to the edge starting point. The resulting values, \( x_1', y_1' \) can be used with the function arrows. This is the workhorse function used in plot_threshold.
The `dev` argument provides a reference to rescale the plot accordingly to the device, and former, considering the size of the margins as well (this can be easily fetched via `par("pin")`, plot area in inches).

On the other hand, `ran` provides a reference for the adjustment according to the range of the data, this is `range(x)[2] - range(x)[1]` and `range(y)[2] - range(y)[1]` respectively.

**Value**

A numeric matrix of size $m \times 5$ with the following columns:

- $x_0, y_0$ Edge origin
- $x_1, y_1$ Edge target
- $\alpha$ Relative angle between $(x_0, y_0)$ and $(x_1, y_1)$ in terms of radians

With $m$ as the number of resulting edges.

**Examples**

```r

data(medInnovationsDiffNet)
library(sna)

Computing coordinates
set.seed(79)
coords <- sna::gplot(as.matrix(medInnovationsDiffNet$graph[[1]]))

Getting edge coordinates
vcex <- rep(1.5, nnodes(medInnovationsDiffNet))
ecoords <- edges_coords(
 medInnovationsDiffNet$graph[[1]],
 diffnet.toa(medInnovationsDiffNet),
 x = coords[,1], y = coords[,2],
 vertex_cex = vcex,
 dev = par("pin")
)
ecoords <- as.data.frame(ecoords)

Plotting
symbols(coords[,1], coords[,2], circles=vcex,
inches=FALSE, xaxs="i", yaxs="i")

with(ecoords, arrows(x0,y0,x1,y1, length=.1))
```
egonet_attrs

Retrieve alter’s attributes (network effects)

Description

For a given set of vertices V, retrieves each vertex’s alter’s attributes. This function enables users to calculate exposure on variables other than the attribute that is diffusing. Further, it enables the specification of alternative functions to use to characterize ego’s personal network including calculating the mean, maximum, minimum, median, or sum of the alters’ attributes. These measures may be static or dynamic over the interval of diffusion and they may be binary or valued.

Usage

egonet_attrs(
graph,
attrs,
V = NULL,
direction = "outgoing",
fun = function(x) x,
as.df = FALSE,
self = getOption("diffnet.self"),
valued = getOption("diffnet.valued"),
...
)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).
attrs If graph is static, Numeric matrix with n rows, otherwise a list of numeric matrices with n rows.
V Integer vector. Set of vertices from which the attributes will be retrieved.
direction Character scalar. Either “outgoing”, “incoming”.
fun Function. Applied to each
as.df Logical scalar. When TRUE returns a data.frame instead of a list (see details).
self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
...
Further arguments to be passed to fun.

Details

By indexing inner/outer edges, this function retrieves ego network attributes for all \( v \in V \), which by default is the complete set of vertices in the graph.
When as.df=TRUE the function returns a data.frame of size $(|V| \times T) \times k$ where $T$ is the number of time periods and $k$ is the number of columns generated by the function.

The function can be used to create network effects as those in the RSiena package. The difference here is that the definition of the statistic directly relies on the user. For example, in the RSiena package, the dyadic covariate effect $s_{ij7}(x)$

$$s_{ij7}(x) = \sum_j x_{ij}(w_{ij} - \bar{w})$$

Which, having a diffnet object with attributes named $x$ and $w$, can be calculated as

```r
egonet_attrs(diffnet, as.df=TRUE, fun=function(dat) {
 sum(dat[, "x"]*(dat[, "w"] - mean(dat[, "w"])))
})
```

Furthermore, we could use the median centered instead, for example

```r
egonet_attrs(diffnet, as.df=TRUE, fun=function(dat) {
 sum(dat[, "x"]*(dat[, "w"] - median(dat[, "w"])))
})
```

Where for each $i$, dat will be a matrix with as many rows as individuals in his egonetwork. Such matrix holds the column names of the attributes in the network.

When self = TRUE, it will include ego’s attributes, regardless the network has loops or not.

**Value**

A list with ego alters’s attributes. By default, if the graph is static, the output is a list of length $\text{length}(V)$ with matrices having the following columns:

- **value**: Either the corresponding value of the tie.
- **id**: Alter’s id
- **...**: Further attributes contained in attrs

On the other hand, if graph is dynamic, the output is list of length $T$ of lists of length $\text{length}(V)$ with data frames having the following columns:

- **value**: The corresponding value of the adjacency matrix.
- **id**: Alter’s id
- **per**: Time id
- **...**: Further attributes contained in attrs

**Author(s)**

George G. Vega Yon
ego_variance

Computes variance of Y at ego level

Description

Computes variance of Y at ego level

Usage

ego_variance(graph, Y, funname, all = FALSE)
Arguments

graph: A matrix of size \( n \times n \) of class \( \text{dgCMatrix} \).

\( \) Y: A numeric vector of length \( n \).

funname: Character scalar. Comparison to make (see \text{vertex_covariate_compare}).

all: Logical scalar. When FALSE (default) \( f_i \) is mean at ego level. Otherwise is fix for all \( i \) (see details).

Details

For each vertex \( i \) the variance is computed as follows

\[
(\sum_{j} a_{ij})^{-1} \sum_{j} a_{ij} [f(y_i, y_j) - f_i]^2
\]

Where \( a_{ij} \) is the \( ij \)-th element of \( \text{graph} \), \( f \) is the function specified in \text{funname}, and, if \text{all}=FALSE \( f_i = \sum_j a_{ij} f(y_i, y_j)^2 / \sum_j a_{ij} \), otherwise \( f_i = f_j = \frac{1}{n^2} \sum_{i,j} f(y_i, y_j) \)

This is an auxiliary function for \text{struct_test}. The idea is to compute an adjusted measure of disimilarity between vertices, so the closest in terms of \( f \) is \( i \) to its neighbors, the smaller the relative variance.

Value

A numeric vector of length \( n \).

See Also

\text{struct_test}

Other statistics: \text{bass}, \text{classify_adopters}, \text{cumulative_adopt_count}, \text{dgr}, \text{exposure}, \text{hazard_rate}, \text{infection}, \text{moran}, \text{struct_equiv}, \text{threshold}, \text{vertex_covariate_dist}

---

exposure

\text{Ego exposure}

Description

Calculates exposure to adoption over time via multiple different types of weight matrices. The basic model is exposure to adoption by immediate neighbors (outdegree) at the time period prior to ego’s adoption. This exposure can also be based on (1) incoming ties, (2) structural equivalence, (3) indirect ties, (4) attribute weighted (5) network-metric weighted (e.g., central nodes have more influence), and attribute-weighted (e.g., based on homophily or tie strength).
Usage

exposure(
  graph,  
  cumadopt,  
  attrs = NULL,  
  alt.graph = NULL,  
  outgoing = getOption("diffnet.outgoing", TRUE),  
  valued = getOption("diffnet.valued", FALSE),  
  normalized = TRUE,  
  groupvar = NULL,  
  self = getOption("diffnet.self"),  
  lags = 0L,  
  ...
)

Arguments

graph A dynamic graph (see netdiffuseR-graphs).
cumadopt n × T matrix. Cumulative adoption matrix obtained from toa_mat
attrs Either a character scalar (if graph is diffnet), or a numeric matrix of size n × T. Weighting for each time, period (see details).
alt.graph Either a graph that should be used instead of graph, or "se" (see details).
outgoing Logical scalar. When TRUE, computed using outgoing ties.
valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
normalized Logical scalar. When TRUE, the exposure will be between zero and one (see details).
groupvar Passed to struct_equiv.
self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
lags Integer scalar. When different from 0, the resulting exposure matrix will be the lagged exposure as specified (see examples).

Details

Exposure is calculated as follows:

\[ E_t = \left( S_t \times [x_t \circ A_t] \right) / (S_t \times x_t) \]

Where \( S_t \) is the graph in time \( t \), \( x_t \) is an attribute vector of size \( n \) at time \( t \), \( A_t \) is the \( t \)-th column of the cumulative adopters matrix (a vector of length \( n \) with \( a_{ti} = 1 \) if \( i \) has adopted at or prior to \( t \)), \( \circ \) is the kronecker product (element-wise), and \( \times \) is the matrix product.

By default the graph used for this calculation, \( S \), is the social network. Alternatively, in the case of diffnet objects, the user can provide an alternative graph using alt.graph. An example of this
would be using $1/SE$, the element-wise inverse of the structural equivalence matrix (see example below). Furthermore, if `alt.graph="se"`, the inverse of the structural equivalence is computed via `struct_equiv` and used instead of the provided graph. Notice that when using a valued graph the option valued should be equal to TRUE, this check is run automatically when running the model using structural equivalence.

If the `alt.graph` is static, then the function will warn about it and will recycle the graph to compute exposure at each time point.

**An important remark** is that when calculating **structural equivalence** the function assumes that **this is to be done to the entire graph** regardless of disconnected communities (as in the case of the medical innovations data set). Hence, structural equivalence for individuals for two different communities may not be zero. If the user wants to calculate structural equivalence separately by community, he should create different `diffnet` objects and do so (see example below). Alternatively, for the case of `diffnet` objects, by using the option `groupvar` (see `struct_equiv`), the user can provide the function with the name of a grouping variable—which should one in the set of static vertex attributes—so that the algorithm is done by group (or community) instead of in an aggregated way.

If the user does not specifies a particular weighting attribute in `attrs`, the function sets this as a matrix of ones. Otherwise the function will return an attribute weighted exposure. When `graph` is of class `diffnet`, `attrs` can be a character scalar specifying the name of any of the graph’s attributes, both dynamic and static. See the examples section for a demonstration using degree.

When `outgoing=FALSE`, $S$ is replaced by its transposed, so in the case of a social network exposure will be computed based on the incoming ties.

If `normalize=FALSE` then denominator, $S_t \times x_t$, is not included. This can be useful when, for example, exposure needs to be computed as a count instead of a proportion. A good example of this can be found at the examples section of the function `rdiffnet`.

**Value**

A matrix of size $n \times T$ with exposure for each node.

**Author(s)**

George G. Vega Yon & Thomas W. Valente

**References**


**See Also**

Other statistics: `bass`, `classify_adopters()`, `cumulative_adopt_count()`, `dgr()`, `ego_variance()`, `hazard_rate()`, `infection()`, `moran()`, `struct_equiv()`, `threshold()`, `vertex_covariate_dist()`
Examples

# Calculating lagged exposure -----------------------------------------------
set.seed(8)
graph <- rdiffnet(20, 4)

expo0 <- exposure(graph)
expo1 <- exposure(graph, lags = 1)

# These should be equivalent
stopifnot(all(expo0[, -4] == expo1[, -1])) # No stop!

# Calculating the exposure based on Structural Equivalence ---------------
set.seed(113132)
graph <- rdiffnet(100, 10)

SE <- lapply(struct_equiv(graph), "[[", "SE")
SE <- lapply(SE, function(x) {
  x <- 1/x
  x[!is.finite(x)] <- 0
  x
})

# These three lines are equivalent to:
expo_se2 <- exposure(graph, alt.graph="se", valued=TRUE)
# Notice that we are setting valued=TRUE, but this is not necessary since when
# alt.graph = "se" the function checks this to be set equal to TRUE

# Weighted Exposure using degree ----------------------------------------
eDE <- exposure(graph, attrs=dgr(graph))

# Which is equivalent to
graph["deg"][] <- dgr(graph)
eDE2 <- exposure(graph, attrs="deg")

# Comparing using incoming edges --------------------------------------
eIN <- exposure(graph, outgoing=FALSE)

# Structural equivalence for different communities ---------------------
data(medInnovationsDiffNet)

# METHOD 1: Using the c.diffnet method:

# Creating subsets by city
cities <- unique(medInnovationsDiffNet["city"])

diffnet <- medInnovationsDiffNet[medInnovationsDiffNet["city"] == cities[1]]
diffnet["expo_se"] <- exposure(diffnet, alt.graph="se", valued=TRUE)

for (v in cities[-1]) {

exposure

```r
diffnet_v <- medInnovationsDiffNet[medInnovationsDiffNet["city"] == v]
diffnet_v["expo_se"] <- exposure(diffnet_v, alt.graph="se", valued=TRUE)
diffnet <- c(diffnet, diffnet_v)

We can set the original order (just in case) of the data
diffnet <- diffnet[medInnovationsDiffNet$meta$ids]
diffnet

Checking everything is equal
test <- summary(medInnovationsDiffNet, no.print=TRUE) ==
summary(diffnet, no.print=TRUE)
stopifnot(all(test[!is.na(test)]))

METHOD 2: Using the 'groupvar' argument
Further, we can compare this with using the groupvar
diffnet["expo_se2"] <- exposure(diffnet, alt.graph="se",
groupvar="city", valued=TRUE)

These should be equivalent
test <- diffnet["expo_se", as.df=TRUE] == diffnet["expo_se2", as.df=TRUE]
stopifnot(all(test[!is.na(test)]))

METHOD 3: Computing exposure, rbind and then adding it to the diffnet object
expo_se3 <- NULL
for (v in unique(cities))
 expo_se3 <- rbind(
 expo_se3,
 exposure(
 diffnet[diffnet["city"] == v],
 alt.graph = "se", valued=TRUE)
)

Just to make sure, we sort the rows
expo_se3 <- expo_se3[diffnet$meta$ids,]
diffnet["expo_se3"] <- expo_se3
test <- diffnet["expo_se", as.df=TRUE] == diffnet["expo_se3", as.df=TRUE]
stopifnot(all(test[!is.na(test)]))

METHOD 4: Using the groupvar in struct_equiv
se <- struct_equiv(diffnet, groupvar="city")
se <- lapply(se, "[[", "SE")
se <- lapply(se, function(x) {
 x <- 1/x
 x[!is.finite(x)] <- 0
 x
})
diffnet["expo_se4"] <- exposure(diffnet, alt.graph=se, valued=TRUE)
```
fakeDynEdgelist

```r
test <- diffnet["expo_se", as.df=TRUE] == diffnet["expo_se4", as.df=TRUE]
stopifnot(all(test[!is.na(test)]))
```

---

**fakeDynEdgelist**  
*Fake dynamic edgelist*

---

**Description**

A data frame used for examples in reading edgelist format networks. This edgelist can be merged with the dataset `fakesurveyDyn`.

**Format**

A data frame with 22 rows and 4 variables

- **ego**: Nominating individual
- **alter**: Nominated individual
- **value**: Strength of the tie
- **time**: Integer with the time of the spell

**Author(s)**

George G. Vega Yon

**Source**

Generated for the package

**See Also**

Other diffusion datasets: `brfarmersDiffNet`, `brfarmers`, `diffusion-data`, `fakeEdgelist`, `fakesurveyDyn`, `fakesurvey`, `kfamilyDiffNet`, `kfamily`, `medInnovationsDiffNet`, `medInnovations`
fakeEdgelist

```
fakeEdgelist Fake static edgelist
```

**Description**

A data frame used for examples in reading edgelist format networks. This edgelist can be merged with the dataset `fakesurvey`.

**Format**

A data frame with 11 rows and 3 variables

- **ego** Nominating individual
- **alter** Nominated individual
- **value** Strength of the tie

**Author(s)**

George G. Vega Yon

**Source**

Generated for the package

**See Also**

Other diffusion datasets: `brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet, medInnovations`

fakesurvey       Fake survey data

```
fakesurvey Fake survey data
```

**Description**

This data frame is used to illustrate some of the functions of the package, in particular, the `survey_to_diffnet` function. This dataset can be merged with the `fakeEdgelist`.

**Format**

A data frame with 9 rows and 9 variables

- **id** Unique id at group level
- **toa** Time of adoption
- **group** Group id
- **net1** Network nomination 1
Description

This data frame is used to illustrate some of the functions of the package, in particular, the `survey_to_diffnet` function. This dataset can be merged with the `fakeDynEdgelist`.

Format

A data frame with 18 rows and 10 variables

- **id**: Unique id at group level
- **toa**: Time of adoption
- **group**: Group id
- **net1**: Network nomination 1
- **net2**: Network nomination 2
- **net3**: Network nomination 3
- **age**: Age of the respondent
- **gender**: Gender of the respondent
- **note**: Description of the respondent
- **time**: Timing of the wave

Author(s)

George G. Vega Yon
grid_distribution

Description

Distribution of pairs over a grid of fix size.

Usage

grid_distribution(x, y, nlevels = 100L)

Arguments

x Numeric vector of size \( n \)
y Numeric vector of size \( n \)
nlevels Integer scalar. Number of bins to return

Details

This function ment for internal use only.

Value

Returns a list with three elements

x Numeric vector of size \( n \) levels with the class marks for x
y Numeric vector of size \( n \) levels with the class marks for y
z Numeric matrix of size \( n \) levels by \( n \) levels with the distribution of the elements in terms of frequency

Examples

# Generating random vectors of size 100
x <- rnorm(100)
y <- rnorm(100)

# Calculating distribution
grid_distribution(x, y, 20)
hazard_rate

See Also

Used by plot_infectsuscep

Other visualizations: dgr(), diffusionMap(), drawColorKey(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

hazard_rate

Network Hazard Rate

Description

The hazard rate is the instantaneous probability of adoption at each time representing the likelihood members will adopt at that time (Allison 1984). The shape of the hazard rate indicates the pattern of new adopters over time. Rapid diffusion with convex cumulative adoption curves will have hazard functions that peak early and decay over time whereas slow concave cumulative adoption curves will have hazard functions that are low early and rise over time. Smooth hazard curves indicate constant adoption whereas those that oscillate indicate variability in adoption behavior over time.

Usage

hazard_rate(obj, no.plot = FALSE, include.grid = TRUE, ...)

plot_hazard(x, ...)

## S3 method for class 'diffnet_hr'
plot(
  x,
  y = NULL,
  main = "Hazard Rate",
  xlab = "Time",
  ylab = "Hazard Rate",
  type = "b",
  include.grid = TRUE,
  bg = "lightblue",
  pch = 21,
  add = FALSE,
  ylim = c(0, 1),
  ...)

Arguments

obj A \( n \times T \) matrix (Cumulative adoption matrix obtained from toa_mat) or a diffnet object.

no.plot Logical scalar. When TRUE, suppress plotting (only returns hazard rates).

include.grid Logical scalar. When TRUE includes a grid on the plot.

... further arguments to be passed to the method.
hazard_rate

x
An object of class diffnet_hr.
y
main
Character scalar. Title of the plot
xlab
Character scalar. x-axis label.
ylab
Character scalar. y-axis label.
type
Character scalar. See par.
bg
Character scalar. Color of the points.
pch
Integer scalar. See par.
add
Logical scalar. When TRUE it adds the hazard rate to the current plot.
ylim
Numeric vector. See plot.

Details
This function computes hazard rate, plots it and returns the hazard rate vector invisible (so is not printed on the console). For \( t > 1 \), hazard rate is calculated as

\[
\frac{q_t - q_{t-1}}{n - q_{t-1}}
\]

where \( q_t \) is the number of adopters in time \( t \), and \( n \) is the number of vertices in the graph.

In survival analysis, hazard rate is defined formally as

\[
\lambda(t) = \lim_{h \to 0} \frac{F(t + h) - F(t)}{h} \frac{1}{1 - F(t)}
\]

Then, by approximating \( h = 1 \), we can rewrite the equation as

\[
\lambda(t) = \frac{F(t + 1) - F(t)}{1 - F(t)}
\]

Furthermore, we can estimate \( F(t) \), the probability of not having adopted the innovation in time \( t \), as the proportion of adopters in that time, this is \( F(t) \sim q_t/n \), so now we have

\[
\lambda(t) = \frac{q_{t+1}/n - q_t/n}{1 - q_t/n} = \frac{q_{t+1} - q_t}{n - q_t}
\]

As showed above.

The plot_hazard function is an alias for the plot.diffnet_hr method.

Value
A row vector of size \( T \) with hazard rates for \( t > 1 \) of class diffnet_hr. The class of the object is only used by the S3 plot method.
Author(s)

George G. Vega Yon & Thomas W. Valente

References


See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

# Creating a random vector of times of adoption

# Computing cumulative adoption matrix
cumadopt <- toa_mat(toa)$cumadopt

# Visualizing the hazard rate
hazard_rate(cumadopt)

igraph  Coercion between graph classes

Description

Coercion between graph classes

Usage

diffnet_to_igraph(graph, slices = 1:nslices(graph))

igraph_to_diffnet(
    graph = NULL,
    graph.list = NULL,
    toavar,
    t0 = NULL,
    t1 = NULL,
    ... )
###感染

**说明**

计算图中每个节点的传染性和易感性。

**用法**

```r
infection(
 graph,
 toa,
 t0 = NULL,
 normalize = TRUE,
 K = 1L,
 r = 0.5,
 expdiscount = FALSE,
 valued = getOption("diffnet.valued", FALSE),
 outgoing = getOption("diffnet.outgoing", TRUE)
)
```

**参数**

- **graph**: 一个diffnet or igraph图对象。
- **slices**: 一个整数向量，指示要切割的切片。
- **graph.list**: 一个igraph对象列表。
- **toavar**: 字符向量。持有采纳时间的属性名。
- **t0**: 整数标量。传递给new_diffnet。
- **t1**: 整数标量。传递给new_diffnet。
- **...**: 进一步的参数传递给as_diffnet。

**值**

返回长度为slices的igraph列表，或者diffnet对象。

**另见**

其他：network, read_pajek(), read_ucinet_head()
infection

susceptibility(
  graph,
  toa,
  t0 = NULL,
  normalize = TRUE,
  K = 1L,
  r = 0.5,
  expdiscount = FALSE,
  valued = getOption("diffnet.valued", FALSE),
  outgoing = getOption("diffnet.outgoing", TRUE)
)

Arguments

graph A dynamic graph (see netdiffuseR-graphs).
toa Integer vector of length \( n \) with the times of adoption.
t0 Integer scalar. See toa_mat.
normalize Logical. Whether or not to normalize the outcome.
K Integer scalar. Number of time periods to consider.
r Numeric scalar. Discount rate used when expdiscount=TRUE.
expdiscount Logical scalar. When TRUE, exponential discount rate is used (see details).
valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
outgoing Logical scalar. When TRUE, computed using outgoing ties.

Details

Normalization, normalize=TRUE, is applied by dividing the resulting number from the infectiousness/susceptibility stat by the number of individuals who adopted the innovation at time \( t \).

Given that node \( i \) adopted the innovation in time \( t \), its Susceptibility is calculated as follows:

\[
S_i = \frac{\sum_{k=1}^{K} \sum_{j=1}^{n} x_{ij}(t-k+1)z_j(t-k) \times \frac{1}{w_k}}{\sum_{k=1}^{K} \sum_{j=1}^{n} x_{ij}(t-k+1)z_j(1 \leq t \leq t-k) \times \frac{1}{w_k}} \quad \text{for } i, j = 1, \ldots, n \quad i \neq j
\]

where \( x_{ij}(t-k+1) \) is 1 whenever there’s a link from \( i \) to \( j \) at time \( t-k+1 \), \( z_j(t-k) \) is 1 whenever individual \( j \) adopted the innovation at time \( t-k \), \( z_j(1 \leq t \leq t-k) \) is 1 whenever \( j \) had adopted the innovation up to \( t-k \), and \( w_k \) is the discount rate used (see below).

Similarly, infectiousness is calculated as follows:

\[
I_i = \frac{\sum_{k=1}^{K} \sum_{j=1}^{n} x_{ji}(t-k+1)z_j(t-k) \times \frac{1}{w_k}}{\sum_{k=1}^{K} \sum_{j=1}^{n} x_{ji}(t-k+1)z_j(t-k \leq T) \times \frac{1}{w_k}} \quad \text{for } i, j = 1, \ldots, n \quad i \neq j
\]

It is worth noticing that, as we can see in the formulas, while susceptibility is from alter to ego, infection is from ego to alter.
When outgoing=FALSE the algorithms are based on incoming edges, this is the adjacency matrices are transposed swapping the indexes \((i, j)\) by \((j, i)\). This can be useful for some users.

Finally, by default both are normalized by the number of individuals who adopted the innovation in time \(t - k\). Thus, the resulting formulas, when normalize=TRUE, can be rewritten as

\[
S'_i = \frac{S_i}{\sum_{k=1}^{K} \sum_{j=1}^{n} z_{j(t-k)} \times \frac{1}{w_k}} \quad I'_i = \frac{I_i}{\sum_{k=1}^{K} \sum_{j=1}^{n} z_{j(t-k)} \times \frac{1}{w_k}}
\]

For more details on these measurements, please refer to the vignette titled *Time Discounted Infection and Susceptibility*.

**Value**

A numeric column vector (matrix) of size \(n\) with either infection/susceptibility rates.

**Discount rate**

Discount rate, \(w_k\) in the formulas above, can be either exponential or linear. When expdiscount=TRUE, \(w_k = (1 + r)^{k-1}\), otherwise it will be \(w_k = k\).

Note that when \(K = 1\), the above formulas are equal to the ones presented in Valente et al. (2015).

**Author(s)**

George G. Vega Yon

**References**

Thomas W. Valente, Stephanie R. Dyal, Kar-Hai Chu, Heather Wipfli, Kayo Fujimoto Diffusion of innovations theory applied to global tobacco control treaty ratification, Social Science & Medicine, Volume 145, November 2015, Pages 89-97, ISSN 0277-9536 [http://dx.doi.org/10.1016/j.socscimed.2015.10.001](http://dx.doi.org/10.1016/j.socscimed.2015.10.001)


**See Also**

The user can visualize the distribution of both statistics by using the function `plot_infectsuscep`

Other statistics: `bass`, `classify_adopters()`, `cumulative_adopt_count()`, `dgr()`, `ego_variance()`, `exposure()`, `hazard_rate()`, `moran()`, `struct_equiv()`, `threshold()`, `vertex_covariate_dist()`

**Examples**

```r
Creating a random dynamic graph
set.seed(943)
graph <- rgraph_er(n=100, t=10)
toa <- sample.int(10, 100, TRUE)
```
# Computing infection and susceptibility (K=1)
infection(graph, toa)
susceptibility(graph, toa)

# Now with K=4
infection(graph, toa, K=4)
susceptibility(graph, toa, K=4)

---

### isolated

**Find and remove isolated vertices**

**Description**

Find and remove unconnected vertices from the graph.

**Usage**

```r
isolated(
 graph,
 undirected = getOption("diffnet.undirected", FALSE),
 self = getOption("diffnet.self", FALSE)
)

drop_isolated(
 graph,
 undirected = getOption("diffnet.undirected", FALSE),
 self = getOption("diffnet.self", FALSE)
)
```

**Arguments**

- **graph**: Any class of accepted graph format (see netdiffuser-graphs).
- **undirected**: Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster).
- **self**: Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).

**Value**

When graph is an adjacency matrix:

- **isolated**: a matrix of size $n \times 1$ with 1's where a node is isolated
- **drop_isolated**: a modified graph excluding isolated vertices.

Otherwise, when graph is a list:

- **isolated**: a matrix of size $n \times T$ with 1’s where a node is isolated
- **drop_isolated**: a modified graph excluding isolated vertices.
kfamily

Author(s)

George G. Vega Yon

See Also

Other data management functions: `diffnet-class`, `edgelist_to_adjmat()`, `egonet_attrs()`, `survey_to_diffnet()

Examples

```r
Generating random graph
set.seed(123)
adjmat <- rgraph_er()

Making nodes 1 and 4 isolated
adjmat[c(1,4),] <- 0
adjmat[,c(1,4)] <- 0
adjmat

Finding isolated nodes
iso <- isolated(adjmat)
iso

Removing isolated nodes
drop_isolated(adjmat)

Now with a dynamic graph
graph <- rgraph_er(n=10, t=3)

Making 1 and 5 isolated
graph <- lapply(graph, "[<-", i=c(1,5), j=1:10, value=0)
graph <- lapply(graph, "[<-", i=1:10, j=c(1,5), value=0)
graph
isolated(graph)
drop_isolated(graph)
```

kfamily

**Korean Family Planning**

Description

From Valente (1995) “Scholars at Seoul National University’s School of Public Health (Park, Chung, Han & Lee, 1974) collected data on the adoption of family planning methods among all married women of child-bearing age 25 in Korea villages in 1973 (N = 1,047).”
**Format**

A data frame with 1,047 rows and 432 columns:

- **village** Village of residence
- **id** Respondent ID number
- **recno1** Card number NA
- **studno1** Study number NA
- **area1** Village of residence
- **id1** Respondent ID number
- **nmage1** Number males age 0
- **nmage2** Number males age 0-4
- **nmage3** Number males age 5-9
- **nmage4** Number males age 10-14
- **nmage5** Number males age 15-19
- **nmage6** Number males age 20-24
- **nmage7** Number males age 25-29
- **nmage8** Number males age 30-34
- **nmage9** Number males age 35-39
- **nmage10** Number males age 40-44
- **nmage11** Number males age 45-49
- **nmage12** Number males age 50-54
- **nmage13** Number males age 55-59
- **nmage14** Number males age 60-64
- **nmage15** Number males age 65-69
- **nmage16** Number males age 70-74
- **nmage17** Number males age 75-79
- **nmage18** Number males age 80+
- **nfage1** Number females age 0
- **nfage2** Number females age 0-4
- **nfage3** Number females age 5-9
- **nfage4** Number females age 10-14
- **nfage5** Number females age 15-19
- **nfage6** Number females age 20-24
- **nfage7** Number females age 25-29
- **nfage8** Number females age 30-34
- **nfage9** Number females age 35-39
- **nfage10** Number females age 40-44
- **nfage11** Number females age 45-49
nfage12  Number females age 50-54
nfage13  Number females age 55-59
nfage14  Number females age 60-64
nfage15  Number females age 65-69
nfage16  Number females age 70-74
nfage17  Number females age 75-79
nfage18  Number females age 80+
pregs  total pregnancies
pregs1  number normal deliveries
pregs2  number of induced abortions
pregs3  number of spontaneous abortions
pregs4  number of still births
pregs5  number of deaths after live birth
pregs6  currently pregnant
sons  number of sons
daughts  number of daughters
planning  Ever heard of FP or birth control
loop1  Awareness of Loop
loop2  Detailed knowledge of Loop
loop3  Attitudes toward Loop
loop4  Knowledge of Loop used by neighbors
loop5  Knowledge of place of service for Loop
pill1  Awareness of Pill
pill2  Detailed knowledge of Pill
pill3  Attitudes toward Pill
pill4  Knowledge of Pill used by neighbors
pill5  Knowledge of place of service for Pill
vase1  Awareness of Vasectomy
vase2  Detailed knowledge of Vasectomy
vase3  Attitudes toward Vasectomy
vase4  Knowledge of Vasectomy used by neighbors
vase5  Knowledge of place of service for Vasectomy
cond1  Awareness of Condoms
cond2  Detailed knowledge Condoms
cond3  Attitudes toward Condoms
cond4  Knowledge of Condoms used by neighbors
cond5  Knowledge of place of service for Condoms
rhyt1  Awareness of Rhythm
rhyt2  Detailed knowledge Rhythm
rhyt3  Attitudes toward Rhythm
rhyt4  Knowledge of Rhythm used by neighbors
bbt1  Awareness of Basic Body Temperature
bbt2  Detailed knowledge Basic Body Temperature
bbt3  Attitudes toward BBT
recno2  Record Number NA
studno2  Study Number NA
area2  village number
id2  id number
bbt4  Knowledge of BBT used by neighbors
diap1  Awareness of Diaphragm
diap2  Detailed knowledge Diaphragm
diap3  Attitudes toward Diaphragm
diap4  Knowledge of Diaphragm used by neighbors
with1  Awareness of Withdrawal
with2  Detailed knowledge Withdrawal
with3  Attitudes toward Withdrawal
with4  Knowledge of Withdrawal used by neighbors
tuba1  Awareness of Tubal Ligation
tuba2  Detailed knowledge TL
tuba3  Attitudes toward TL
tuba4  Knowledge of TL used by neighbors
fp1  Experience with an FP practice
fp2  Reasons for not practicing
fp3  What would you do if problem was solved
fp4  Any other reason for not practicing
fp5  Reasons for practicing
fp6  time between decision and adoption
fp7  reasons for time lag
fp8  Ever discontinued practicing
fp9  Reasons for discontinuing
fp10  Attitude toward FP
child1  Ideal number of sons
child2  Ideal number of daughters
child3  Ideal number of children regardless of sex
child4 what do if kept having girls
comop1 Spousal communication on # of children
comop2 Spousal communication on FP
comop3 Consensus on opinion between couple
comop4 What was the difference
comop5 Opinion on who should practice
comop6 Different opinions on who should practice
comop7 Who should make final decision
comop8 Residence in old age
net11 Neighbors talk to about FP- 1
net12 Neighbors talk to about FP- 2
net13 Neighbors talk to about FP- 3
net14 Neighbors talk to about FP- 4
net15 Neighbors talk to about FP- 5
famawe1 Family members of FP Practice
famawe2 Parents awareness of FP Practice
famawe3 How did parents-in-law become aware
famawe4 How did parents become aware
famawe5 How did husband become aware
advic1 Advice given to neighbors where to go
advic2 Advice given on method
advic3 Ever met persons who give advice on FP
advic4 Credibility of person advising on FP
advic5 Counter advice given to others
rumor1 Rumors on Loop
rumor2 Rumors on Pill
rumor3 Rumors on Vasectomy
rumor4 Rumors on Condom
rumor5 Rumors on Tuballigation
media1 Possession of Radio
media2 Possession of TV
media3 Subscription to Newspaper
media4 Subscription to Happy Home
media5 Subscription to other magazine
media6 Radio exposure to FP
media7 TV exposure to FP
media8 Daily paper exposure to FP
media9  Happy Home exposure to FP
media10 Magazine exposure to FP
media11 Movie or slide exposure to FP
media12 Poster exposure to FP
media13 Pamphlet exposure to FP
media14 FP Meeting exposure to FP
recono3  Record number NA
studno3  Study number NA
area3  village
id3  id
media15 Public lecture exposure to FP
media16 Mobile van exposure to FP
media17 Neighbors exposure to FP
media18 Workers home visiting exposure to FP
media19 Husband exposure to FP
club1  Awareness of clubs in community
club2  Membership in club
club3  Reasons for not becoming a member
club4  Feeling of necessity of club
club5  Visit of mobile van to area
club6  Service received from van
club7  Decision-making on FP on # children
club8  Decision-making on important goods
club9  Decision-making on childrens discipline
club10  Decision making on purchase wife clothes
net21  Closest neighbor most frequently met
n1adv  Advice received from neighbor 1
n1prac  practice of FP by neighbor 1
net22  Closest neighbor person 2
n2adv  Advice received from neighbor 2
n2prac  Practice of FP by neighbor 2
net23  Closest neighbor person 3
n3adv  Advice received from neighbor 3
n3prac  Practice of FP by neighbor 3
net24  Closest neighbor 4
n4adv  Advice received from neighbor 4
n4prac  Practice of FP by neighbor 4
Net25 Closest neighbor 5
n5adv  Advice received from neighbor 5
n5prac  Practice of FP by neighbor 5
stand  Standard living of above neighbors
educ  Education level of named neighbors
net31  Advice on FP sought from 1
net32  Advice on FP sought from 2
net33  Advice on FP sought from 3
net34  Advice on FP sought from 4
net35  Advice on FP sought from 5
net41  Information provided on FP by 1
net42  Information provided on FP by 1
net43  Information provided on FP by 1
net44  Information provided on FP by 1
net45  Information provided on FP by 1
net51  Seek advice on induced abortion 1
net52  Seek advice on induced abortion 2
net53  Seek advice on induced abortion 3
net54  Seek advice on induced abortion 4
net55  Seek advice on induced abortion 5
age  Age of respondent
agemar  Age at first marriage
recno4  Rec no NA
studno4  Study no NA
area4  village
id4  id
net61  Advice on health sought from 1
net62  Advice on health sought from 2
net63  Advice on health sought from 3
net64  Advice on health sought from 4
net65  Advice on health sought from 5
net71  Advice on purchase of goods 1
net72  Advice on purchase of goods 2
net73  Advice on purchase of goods 3
net74  Advice on purchase of goods 4
net75  Advice on purchase of goods 5
net81  Advice on childrens education 1
net82 Advice on childrens education 2
net83 Advice on childrens education 3
net84 Advice on childrens education 4
net85 Advice on childrens education 5
rfampl1 Advice on FP sought by 1
rfampl2 Advice on FP sought by 2
rfampl3 Advice on FP sought by 3
rfampl4 Advice on FP sought by 4
rfampl5 Advice on FP sought by 5
rfampl Leadership score - indegree FP
rabort1 Advice on abortion sought by 1
rabort2 Advice on abortion sought by 2
rabort3 Advice on abortion sought by 3
rabort4 Advice on abortion sought by 4
rabort5 Advice on abortion sought by 5
rabortl Leadership score - indegree abortion
rhealth1 Advice on health sought by 1
rhealth2 Advice on health sought by
rhealth3 Advice on health sought by
rhealth4 Advice on health sought by
rhealth5 Advice on health sought by
rhealthl Leadership score - indegree health
recono5 rec no NA
studno5 study no NA
area5 village
id5 id
rgoods1 Advice on purchases sought by 1
rgoods2 Advice on purchases sought by 2
rgoods3 Advice on purchases sought by 3
rgoods4 Advice on purchases sought by 4
rgoods5 Advice on purchases sought by 5
rgoodsl Leadership score - indegree purchases
reduc1 Advice on education sought by 1
reduc2 Advice on education sought by 2
reduc3 Advice on education sought by 3
reduc4 Advice on education sought by 4
reduc5 Advice on education sought by 5
cawe2  Awareness of contraceptive method at the time

cawe3  Awareness of service site

cawe4  Credibility

recono6  rec no NA

studno6  study no NA

area6  village

id6  id

fpt1  FP Status time 1

fatt1t1  Husbands attitude T1

fatt2t1  In-laws attitude T1

fatt3t1  Own parents attitude T1

byrt1  Start of Time 1 from year

lnght1  Length of Time 1

awe1t1  FP Contact Time 1

awe2t1  Methods known at Time 1

awe3t1  Knowledge of service sites Time 1

awe4t1  Credibility of service site Time 1

fpt2  FP Status time 2

fatt1t2  Husbands attitude T2

fatt2t2  In-laws attitude T2

fatt3t2  Own parents attitude T2

byrt2  Start of Time 2 from year

lnght2  Length of Time 2

awe1t2  FP Contact Time 2

awe2t2  Methods known at Time 2

awe3t2  Knowledge of service sites Time 2

awe4t2  Credibility of service site Time 2

fpt3  FP Status time 3

fatt1t3  Husbands attitude T3

fatt2t3  In-laws attitude T3

fatt3t3  Own parents attitude T3

byrt3  Start of Time 3 from year

lnght3  Length of Time 3

awe1t3  FP Contact Time 3

awe2t3  Methods known at Time 3

awe3t3  Knowledge of service sites Time 3

awe4t3  Credibility of service site Time 3
fpt4  FP Status time 4
fatt1t4  Husbands attitude T4
fatt2t4  In-laws attitude T4
fatt3t4  Own parents attitude T4
byrt4  Start of Time 4 from year
lnghtt4  Length of Time 4
awe1t4  FP Contact Time 4
awe2t4  Methods known at Time 4
awe3t4  Knowledge of service sites Time 4
awe4t4  Credibility of service site Time 4
fpt5  FP Status time 5
fatt1t5  Husbands attitude T5
fatt2t5  In-laws attitude T5
fatt3t5  Own parents attitude T5
byrt5  Start of Time 5 from year
lnghtt5  Length of Time 5
awe1t5  FP Contact Time 5
awe2t5  Methods known at Time 5
awe3t5  Knowledge of service sites Time 5
awe4t5  Credibility of service site Time 5
fpt6  FP Status time 6
fatt1t6  Husbands attitude T6
fatt2t6  In-laws attitude T6
fatt3t6  Own parents attitude T6
byrt6  Start of Time 6 from year
lnghtt6  Length of Time 6
awe1t6  FP Contact Time 6
awe2t6  Methods known at Time 6
awe3t6  Knowledge of service sites Time 6
awe4t6  Credibility of service site Time 6
reco7  rec no NA
studno7  study no NA
area7  village
id7  id
fpt7  FP Status time 7
fatt1t7  Husbands attitude T7
fatt2t7  In-laws attitude T7
fatt3t7  Own parents attitude T7
byrt7  Start of Time 7 from year
lnght7  Length of Time 7
awe1t7  FP Contact Time 7
awe2t7  Methods known at Time 7
awe3t7  Knowledge of service sites Time 7
awe4t7  Credibility of service site Time 7
fpt8  FP Status time 8
fatt1t8  Husbands attitude T8
fatt2t8  In-laws attitude T8
fatt3t8  Own parents attitude T8
byrt8  Start of Time 8 from year
lnght8  Length of Time 8
awe1t8  FP Contact Time 8
awe2t8  Methods known at Time 8
awe3t8  Knowledge of service sites Time 8
awe4t8  Credibility of service site Time 8
fpt9  FP Status time 9
fatt1t9  Husbands attitude T9
fatt2t9  In-laws attitude T9
fatt3t9  Own parents attitude T9
byrt9  Start of Time 9 from year
lnght9  Length of Time 9
awe1t9  FP Contact Time 9
awe2t9  Methods known at Time 9
awe3t9  Knowledge of service sites Time 9
awe4t9  Credibility of service site Time 9
fpt10  FP Status time 10
fatt1t10  Husbands attitude T10
fatt2t10  In-laws attitude T10
fatt3t10  Own parents attitude T10
byrt10  Start of Time 10 from year
lnght10  Length of Time 10
awe1t10  FP Contact Time 10
awe2t10  Methods known at Time 10
awe3t10  Knowledge of service sites Time 10
awe4t10  Credibility of service site Time 10
The dataset has 1,047 respondents (women) from 25 communities. Collected during 1973 it spans 11 years of data.

Source

The Korean Family Planning data were stored on a Vax tape that Rogers had given to Marc Granovetter who then gave it to his colleague Roland Soong (see Granovetter & Soong, 1983). Granovetter instructed Song to send the tape to me and I had it loaded on the Vax machine at USC in 1990 and was able to download the data to a PC. The first two datasets were acquired for my dissertation (Valente, 1991) and the third added as I completed my book on Network Models of the Diffusion of Innovations (Valente, 1995; also see Valente, 2005).
References


See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, medInnovationsDiffNet, medInnovations

matrix_compare

Non-zero element-wise comparison between two sparse matrices

Description

Taking advantage of matrix sparseness, the function only evaluates fun between pairs of elements of A and B where either A or B have non-zero values. This can be helpful to implement other binary operators between sparse matrices that may not be implemented in the Matrix package.

Usage

matrix_compare(A, B, fun)

compare_matrix(A, B, fun)
Matrix Compare

Arguments

- **A**: A matrix of size \(n \times m\) of class `dgCMatrix`.
- **B**: A matrix of size \(n \times m\) of class `dgCMatrix`.
- **fun**: A function that receives 2 arguments and returns a scalar.

Details

Instead of comparing element by element, the function loops through each matrix non-zero elements to make the comparisons, which in the case of sparse matrices can be more efficient (faster). Algorithmically it can be described as follows:

```r
Matrix initialization
init ans[n,m];

Looping through non-zero elements of A
for e_A in E_A:
 ans[e_A] = fun(A[e_A], B[e_A])

Looping through non-zero elements of B and applying the function # in e_B only if it was not applied while looping in E_A.
for e_B in E_B:
 if (ans[e_B] == Empty)
 ans[e_B] = fun(A[e_B], B[e_B])
```

`compare_matrix` is just an alias for `matrix_compare`.

Value

An object of class `dgCMatrix` of size \(n \times m\).

See Also

Other dyadic-level comparison functions: `vertex_covariate_compare()`, `vertex_covariate_dist()`

Examples

```
These two should yield the same results -----------------------------------
Creating two random matrices
set.seed(89)
A <- rgraph_ba(t = 9, m = 4)
B <- rgraph_ba(t = 9, m = 4)
A;B

Comparing
ans0 <- matrix_compare(A,B, function(a,b) (a+b)/2)
ans1 <- matrix(0, ncol=10, nrow=10)
```
```r
for (i in 1:10)
 for (j in 1:10)
 ans1[i,j] <- mean(c(A[i,j], B[i,j]))

Are these equal?
all(ans0[] == ans1[]) # Should yield TRUE
```

<table>
<thead>
<tr>
<th>medInnovations</th>
<th>Medical Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>From Valente (1995) “Coleman, Katz and Menzel from Columbia University’s Bureau of Applied Research studied the adoption of tetracycline by physicians in four Illinois communities in 1954. [...] Tetracycline was a powerful and useful antibiotic just introduced in the mid-1950s”</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>A data frame with 125 rows and 59 columns:</td>
</tr>
<tr>
<td>city</td>
<td>city id</td>
</tr>
<tr>
<td>id</td>
<td>sequential respondent id</td>
</tr>
<tr>
<td>detail</td>
<td>detail man</td>
</tr>
<tr>
<td>meet</td>
<td>meetings, lectures, hospitals</td>
</tr>
<tr>
<td>coll</td>
<td>colleagues</td>
</tr>
<tr>
<td>attend</td>
<td>attend professional meets</td>
</tr>
<tr>
<td>proage</td>
<td>professional age</td>
</tr>
<tr>
<td>length</td>
<td>length of reside in community</td>
</tr>
<tr>
<td>here</td>
<td>only practice here</td>
</tr>
<tr>
<td>science</td>
<td>science versus patients</td>
</tr>
<tr>
<td>position</td>
<td>position in home base</td>
</tr>
<tr>
<td>journ2</td>
<td>journal subscriptions</td>
</tr>
<tr>
<td>paadico</td>
<td>Percent alter adoption date imp</td>
</tr>
<tr>
<td>ado</td>
<td>adoption month 1 to 18</td>
</tr>
<tr>
<td>thresh</td>
<td>threshold</td>
</tr>
<tr>
<td>ctl</td>
<td>corrected tl tl-exp level</td>
</tr>
<tr>
<td>catbak</td>
<td>category 1-init 2-marg 3-low tl</td>
</tr>
<tr>
<td>sourinfo</td>
<td>source of information</td>
</tr>
<tr>
<td>origid</td>
<td>original respondent id</td>
</tr>
<tr>
<td>adopt</td>
<td>adoption date 1= 11/53</td>
</tr>
<tr>
<td>recon</td>
<td>reconstructed med innov</td>
</tr>
</tbody>
</table>
date  date became aware
info  information source
most  most important info source
journ  journals
drug  drug houses
net1_1  advisor nomination1
net1_2  advisor nomination2
net1_3  advisor nomination3
net2_1  discuss nomination1
net2_2  discuss nomination2
net2_3  discuss nomination3
net3_1  friends nomination1
net3_2  friends nomination2
net3_3  friends nomination3
nojourn  number of pro journals receive
free  free time companions
social  med discussions during social
club  club membership
friends  friends are doctors
young  young patients
nonpoor  nonpoverty patients
office  office visits
house  house calls
tend  tendency to prescribe drugs
reltend  relative tendency to prescribe
perc  perceived drug competition
proximty  physical proximity to other doc
home  home base hospital affiliation
special  specialty
belief  belief in science
proage2  profesional age 2
presc  prescription prone
detail2  contact with detail man
dichot  dichotomous personal preference
expect  adoption month expected
recall  recalls adopting
commun  Number of community
toa  Time of Adoption
study  Number of study in Valente (1995)
Details

The collected dataset has 125 respondents (doctors), and spans 17 months of data collected in 1955. Time of adoption of non-adopters has been set to month 18 (see the manual entry titled Diffusion Network Datasets).

Source

The Medical Innovation data were stored in file cabinets in a basement building at Columbia University. Ron Burt (1987) acquired an NSF grant to develop network diffusion models and retrieve the original surveys and enter them into a database. He distributed copies of the data on diskette and sent one to me, Tom Valente, and I imported onto a PC environment.

References


See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovationsDiffNet

Description

A directed dynamic graph with 125 vertices and 18 time periods. The attributes in the graph are static and described in medInnovations.

Format

A diffnet class object.

See Also

Other diffusion datasets: brfarmersDiffNet, brfarmers, diffusion-data, fakeDynEdgelist, fakeEdgelist, fakesurveyDyn, fakesurvey, kfamilyDiffNet, kfamily, medInnovations
mentor_matching  

**Optimal Leader/Mentor Matching**

**Description**

Implements the algorithm described in Valente and Davis (1999)

**Usage**

```r
mentor_matching(
 graph,
 n,
 cmode = "indegree",
 lead.ties.method = "average",
 geodist.args = list()
)

leader_matching(
 graph,
 n,
 cmode = "indegree",
 lead.ties.method = "average",
 geodist.args = list()
)
```

```r
S3 method for class 'diffnet_mentor'
plot(
 x,
 y = NULL,
 vertex.size = "degree",
 minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
 lead.cols = grDevices::topo.colors(attr(x, "nleaders")),
 vshapes = c(Leader = "square", Follower = "circle"),
 add.legde = TRUE,
 main = "Mentoring Network",
 ...
)
```

**Arguments**

- `graph`  
  Any class of accepted graph format (see `netdiffuseR-graphs`).
- `n`  
  Number of leaders
- `cmode`  
  Passed to `dgr`
- `lead.ties.method`  
  Passed to `rank`
- `geodist.args`  
  Passed to `approx_geodesic`
An object of class `diffnet_mentor`.

Ignored.

Either a numeric scalar or vector of size \( n \), or any of the following values: "indegree", "degree", or "outdegree" (see details).

Passed to `rescale_vertex_igraph`.

Character vector of length \( \text{attr(x,"nleaders")} \). Colors to be applied to each group. (see details)

Character scalar of length 2. Shapes to identify leaders (mentors) and followers respectively.

Logical scalar. When TRUE generates a legend to distinguish between leaders and followers.

Passed to `title`... Further arguments passed to `plot.igraph`

The algorithm works as follows:

1. Find the top \( n \) individuals ranking them by \( \text{dgr(graph, cmode)} \). The rank is computed by the function `rank`. Denote this set \( M \).
2. Compute the geodesic matrix.
3. For each \( v \) in \( V \) do:
   (a) Find the mentor \( m \) in \( M \) such that is closest to \( v \)
   (b) Were there a tie, choose the mentor that minimizes the average path length from \( v \)'s direct neighbors to \( m \).
   (c) If there are no paths to any member of \( M \), or all have the same average path length to \( v \)'s neighbors, then assign one randomly.

Plotting is done via the function `plot.igraph`.

When `vertex.size` is either of "degree", "indegree", or "outdegree", `vertex.size` will be replace with `dgr(., cmode = )` so that the vertex size reflects the desired degree.

The argument `minmax.relative.size` is passed to `rescale_vertex_igraph` which adjusts `vertex.size` so that the largest and smallest vertices have a relative size of `minmax.relative.size[2]` and `minmax.relative.size[1]` respectively with respect to the x-axis.

An object of class `diffnet_mentor` and data.frame with the following columns:

Character. Labels of the vertices

Numeric. Degree of each vertex in the graph

Logical. TRUE when the vertex was picked as a leader.

Character. The corresponding matched leader.
The object also contains the following attributes:

- nleaders: Integer scalar. The resulting number of leaders (could be greater than \( n \)).
- graph: The original graph used to run the algorithm.

References


Examples

```r
A simple example ---
set.seed(1231)
graph <- rgraph_ws(n=50, k = 4, p = .5)

Looking for 3 mentors
ans <- mentor_matching(graph, n = 3)

head(ans)
table(ans$match) # We actually got 9 b/c of ties

Visualizing the mentor network
plot(ans)
```

---

**moran**

*Computes Moran’s I correlation index*

**Description**

Natively built for computing Moran’s I on `dgCMatrix` objects, this routine allows computing the I on large sparse matrices (graphs). Part of its implementation was based on `ape::Moran.I`, which computes the I for dense matrices.

**Usage**

```r
moran(x, w, normalize.w = TRUE, alternative = "two.sided")
```

**Arguments**

- `x`: Numeric vector of size \( n \).
- `w`: Numeric matrix of size \( n \times n \). Weights. It can be either a object of class `matrix` or `dgCMatrix` from the `Matrix` package.
- `normalize.w`: Logical scalar. When TRUE normalizes rowsums to one (or zero).
- `alternative`: Character String. Specifies the alternative hypothesis that is tested against the null of no autocorrelation; must be of one “two.sided”, “less”, or “greater”.
Details

In the case that the vector \( x \) is close to constant (degenerate random variable), the statistic becomes irrelevant, and furthermore, the standard error tends to be undefined (\( \text{NaN} \)).

Value

A list of class \texttt{diffnet_moran} with the following elements:

- \texttt{observed} Numeric scalar. Observed correlation index.
- \texttt{expected} Numeric scalar. Expected correlation index equal to \(-1/(N - 1)\).
- \texttt{sd} Numeric scalar. Standard error under the null.
- \texttt{p.value} Numeric scalar. p-value of the specified alternative.

Author(s)

George G. Vega Yon

References


See Also

Other statistics: \texttt{bass}, \texttt{classify_adopters()}, \texttt{cumulative_adopt_count()}, \texttt{dgr()}, \texttt{ego_variance()}, \texttt{exposure()}, \texttt{hazard_rate()}, \texttt{infection()}, \texttt{struct_equiv()}, \texttt{threshold()}, \texttt{vertex_covariate_dist()}

Other Functions for inference: \texttt{bootnet()}, \texttt{struct_test()}

Examples

```r
if (require("ape")) {
 # Generating a small random graph
 set.seed(123)
 graph <- rgraph.ba(t = 4)
 w <- approx_geodesic(graph)
 x <- rnorm(5)

 # Computing Moran's I
 moran(x, w)

 # Comparing with the ape's package version
 ape::Moran.I(x, as.matrix(w))
}
```
Description

Statistical analysis, visualization and simulation of diffusion and contagion processes on networks. The package implements algorithms for calculating stats such as innovation threshold levels, infectiousness (contagion) and susceptibility, and hazard rates as presented in Burt (1987), Valente (1995), and Myers (2000) (among others).

You can access to the project website at https://github.com/USCCANA/netdiffuseR

Details

Analysis of Diffusion and Contagion Processes on Networks

Acknowledgements

netdiffuseR was created with the support of grant R01 CA157577 from the National Cancer Institute/National Institutes of Health.

Workshops and Tutorials

Online you can find several learning resources:

- Sunbelt 2018 https://github.com/USCCANA/netdiffuser-sunbelt2018

Author(s)

George G. Vega Yon & Thomas W. Valente

Description

List of accepted graph formats
Details

The netdiffuseR package can handle different types of graph objects. Two general classes are defined across the package’s functions: static graphs, and dynamic graphs.

- In the case of static graphs, these are represented as adjacency matrices of size $n \times n$ and can be either matrix (dense matrices) or dgCMatrix (sparse matrix from the Matrix package). While most of the package functions are defined for both classes, the default output graph is sparse, i.e. dgCMatrix.

- With respect to dynamic graphs, these are represented by either a diffnet object, an array of size $n \times n \times T$, or a list of size $T$ with sparse matrices (class dgCMatrix) of size $n \times n$. Just like the static graph case, while most of the functions accept both graph types, the default output is dgCMatrix.

diffnet objects

In the case of diffnet-class objects, the following arguments can be omitted when calling functions suitable for graph objects:

- toa: Time of Adoption vector
- adopt: Adoption Matrix
- cumadopt: Cumulative Adoption Matrix
- undirected: Whether the graph is directed or not

Objects’ names

When possible, netdiffuseR will try to reuse graphs dimensional names, this is, rownames, colnames, dimnames and names (in the case of dynamic graphs as lists). Otherwise, when no names are provided, these will be created from scratch.

Author(s)

George G. Vega Yon

netdiffuseR-options  netdiffuseR default options

Description

netdiffuseR default options

Details

Set of default options used by the package. These can be retrieved via getOption using the prefix diffnet (see examples)
Value

The full list of options follows:

- undirected: FALSE
- self: FALSE
- multiple: FALSE
- tol: 1e-8 (used for package testing)
- valued: FALSE
- outgoing: TRUE
- keep.isolates: TRUE
- minmax.relative.size: c(0.025, 0.05)

Author(s)

George G. Vega Yon

Examples

getOption("diffnet.undirected")
getOption("diffnet.multiple")
getOption("diffnet.self")

Description

**WARNING:** This function is still in development and has not been tested thoroughly. Following Aral et al. (2009), netmatch computes matching estimators for network data. The function `netmatch_prepare`, which prepares the data to be used with `matchit` from the `MatchIt` package, is called by `netmatch`.

Usage

```r
netmatch_prepare(
 dat,
 graph,
 timevar,
 depvar,
 covariates,
 treat_thr = rep(1L, length(graph)),
 adopt_thr = rep(1L, length(graph)),
 expo_pcent = FALSE,
 expo_lag = 0L
)```
netmatch(
 dat,
 graph,
 timevar,
 depvar,
 covariates,
 treat_thr = rep(1L, length(graph)),
 adopt_thr = rep(1L, length(graph)),
 expo_pcent = FALSE,
 expo_lag = 0L,
 ...
)

Arguments

dat data.frame with dynamic data. Must be of nrow(dat)==nslices(graph)*nnodes(graph).
graph List with sparse matrices.
timevar Character scalar. Name of time variable
depvar Character scalar. Name of the dependent variable
covariates Character vector. Name(s) of the control variable(s).
treat_thr Either a numeric scalar or vector of length nslices(graph). Sets the threshold of exposure at which it is considered that an observation is treated.
adopt_thr Either a numeric scalar or vector of length nslices(graph). Sets the threshold of depvar at which it is considered that an observation has adopted a behavior.
expo_pcent Logical scalar. When TRUE, exposure is computed non-normalized (so it is a count rather than a percentage).
expo_lag Integer scalar. Number of lags to consider when computing exposure. expo_lag=1 defines exposure in T considering behavior and network at T-1.
...

Further arguments to be passed to matchit.

Details

In Aral et al. (2009), the matching estimator is used as a response to the fact that the observed network is homophilous. Essentially, using exposure as a treatment indicator, which is known to be endogenous, we can apply the same principle of matching estimators in which, after controlling for characteristics (covariates), individuals from the treated group (exposed to some behavior) can be compared to individuals from the control group (not exposed to that behavior), as the only difference between the two is the exposure.

As pointed out in King & Nielsen (2015), it is suggested that, contrary to what Aral et al. (2009), the matching is not performed over propensity score since it is know that the later can increase imbalances in the data and thus obtaining exactly the opposed outcome that matching based estimators pursue.

A couple of good references for matching estimators are Imbens and Wooldridge (2009), and Sekhon (2008).
Value

In the case of `netmatch_prepare`

- **dat**: A data.frame with the original data (covariates), plus the following new variables: `treat`, `adopt`, `exposure`.
- **match_model**: A formula to be passed to `netmatch`

`netmatch` returns the following:

- **fATT**: A numeric vector of length N_1 (number of treated used in the matching process). Treatment effects on the treated at the individual level
- **match_obj**: The output from `matchit`.

Author(s)

George G. Vega Yon

References

network

Coercion between `diffnet`, `network` and `networkDynamic`

Description

Coercion between `diffnet`, `network` and `networkDynamic`

Usage

```r
diffnet_to_network(graph, slices = 1:nslices(graph), ...)

diffnet_to_networkDynamic(
  graph,
  slices = 1:nslices(graph),
  diffnet2net.args = list(),
  netdyn.args = list()
)
```
networkDynamic_to_diffnet(graph, toavar)

network_to_diffnet(
 graph = NULL,
 graph.list = NULL,
 toavar,
 t0 = NULL,
 t1 = NULL
)

Arguments

graph An object of class diffnet
slices An integer vector indicating the slices to subset
... Further arguments passed to networkDynamic
diffnet2net.args List of arguments passed to diffnet_to_network.
netdyn.args List of arguments passed to networkDynamic
toavar Character scalar. Name of the vertex attribute that holds the times of adoption.
graph.list A list of network objects.
t0 Integer scalar. Passed to new_diffnet.
t1 Integer scalar. Passed to new_diffnet.

Details

diffnet_to_networkDynamic calls diffnet_to_network and uses the output to call networkDynamic, passing the resulting list of network objects as network.list (see networkDynamic).

By default, diffnet_to_networkDynamic passes net.obs.period as

```
net.obs.period = list(
    observations = list(range(graph$meta$pers)),  
    mode="discrete",  
    time.increment = 1,  
    time.unit = "step"
)
```

By default, networkDynamic_to_diffnet uses the first slice as reference for vertex attributes and times of adoption.

By default, network_to_diffnet uses the first element of graph (a list) as reference for vertex attributes and times of adoption.

Value

diffnet_to_network returns a list of length length(slices) in which each element is a network object corresponding a slice of the graph (diffnet object). The attributes list will include toa (time of adoption).

An object of class networkDynamic.
Caveats

Since diffnet does not support edges attributes, these will be lost when converting from network-type objects. The same applies to network attributes.

See Also

Other Foreign: igraph, read_pajek(), read_ucinet_head()

Examples

Cohering a diffnet to a list of networks ---------------------------------
set.seed(1)
ans <- diffnet_to_network(rdiffnet(20, 2))
ans

and back
network_to_diffnet(graph.list = ans, toavar="toa")

If it was static, we can use -graph- instead
network_to_diffnet(ans[[1]], toavar="toa")

A random diffusion network --
set.seed(87)
dn <- rdiffnet(50, 4)
ans <- diffnet_to_networkDynamic(dn)

and back
networkDynamic_to_diffnet(ans, toavar = "toa")

nvertices

Count the number of vertices/edges/slices in a graph

Description

Count the number of vertices/edges/slices in a graph

Usage

nvertices(graph)
nnodes(graph)
nedges(graph)
nlinks(graph)
slices(graph)
Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

Details

nnodes and nlinks are just aliases for nvertices and nedges respectively.

Value

For nvertices and nslices, an integer scalar equal to the number of vertices and slices in the graph. Otherwise, from nedges, either a list of size t with the counts of edges (non-zero elements in the adjacency matrices) at each time period, or, when graph is static, a single scalar with such number.

Examples

Creating a dynamic graph (we will use this for all the classes) ----------
set.seed(13133)
diffnet <- rdifference(100, 4)

Lets use the first time period as a static graph
graph_mat <- diffnet$graph[[1]]
graph_dgCMatrix <- methods::as(graph_mat, "dgCMatrix")

Now lets generate the other dynamic graphs
graph_list <- diffnet$graph
graph_array <- as.array(diffnet) # using the as.array method for diffnet objects

Now we can compare vertices counts
nvertices(diffnet)
nvertices(graph_list)
nvertices(graph_array)
nvertices(graph_mat)
nvertices(graph_dgCMatrix)

... and edges count
nedges(diffnet)
nedges(graph_list)
nedges(graph_array)
nedges(graph_mat)
nedges(graph_dgCMatrix)
Description

`permute_graph` Shuffles the values of a matrix either considering *loops* and *multiple* links (which are processed as cell values different than 1/0). `rewire_qap` generates a new graph `graph'` that is isomorphic to `graph`.

Usage

```r
permute_graph(graph, self = FALSE, multiple = FALSE)
rewire_permute(graph, self = FALSE, multiple = FALSE)
rewire_qap(graph)
```

Arguments

- **graph**: Any class of accepted graph format (see `netdiffuseR-graphs`).
- **self**: Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
- **multiple**: Logical scalar. When TRUE allows multiple edges.

Value

A permuted version of `graph`.

Author(s)

George G. Vega Yon

References

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2), 209–20. http://cancerres.aacrjournals.org/content/27/2_Part_1/209

See Also

This function can be used as null distribution in `struct_test`

Other simulation functions: `rdiffnet()`, `rewire_graph()`, `rgraph_ba()`, `rgraph_er()`, `rgraph_ws()`, `ring_lattice()`
Examples

```r
# Simple example
set.seed(1231)
g <- rgraph.ba(t=9)
g

# These preserve the density
permute_graph(g)
permute_graph(g)

# These are isomorphic to g
rewire_qap(g)
rewire_qap(g)
```

`plot.diffnet`
S3 plotting method for diffnet objects.

Description

S3 plotting method for diffnet objects.

Usage

```r
## S3 method for class 'diffnet'
plot(x, y = NULL, t = 1, vertex.color = c(adopt = "steelblue", noadopt = "white"), vertex.size = "degree", main = "Diffusion network in time %d", minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)), ...)
```

Arguments

- `x`
 An object of class `diffnet`
- `y`
 Ignored.
- `t`
 Integer scalar indicating the time slice to plot.
- `vertex.color`
 Character scalar/vector. Color of the vertices.
- `vertex.size`
 Either a numeric scalar or vector of size `n`, or any of the following values: "in-degree", "degree", or "outdegree" (see details).
- `main`
 Character. A title template to be passed to sprintf.
- `minmax.relative.size`
 Passed to `rescale_vertex_igraph`.
- `...`
 Further arguments passed to `plot.igraph`.
Details

Plotting is done via the function `plot.igraph`.

When `vertex.size` is either of "degree", "indegree", or "outdegree", `vertex.size` will be replaced with `dgr(., cmode =)` so that the vertex size reflects the desired degree.

The argument `minmax.relative.size` is passed to `rescale_vertex.igraph` which adjusts `vertex.size` so that the largest and smallest vertices have a relative size of `minmax.relative.size[2]` and `minmax.relative.size[1]` respectively with respect to the x-axis.

Value

A matrix with the coordinates of the vertices.

Author(s)

George G. Vega Yon

See Also

Other `diffnet` methods: `%*%()`, `as.array.diffnet()`., `c.diffnet()`, `diffnet-arithmetic`, `diffnet-class`, `diffnet_index`, `summary.diffnet()`

Examples

data(medInnovationsDiffNet)
plot(medInnovationsDiffNet)
ylim = if (!freq) c(0, 1) else NULL,
lty = c(1, 1),
col = c("black", "black"),
bg = c("tomato", "gray"),
xlab = "Time",
ylab = ifelse(freq, "Frequency", "Proportion"),
main = "Adopters and Cumulative Adopters",
...)

Arguments

obj Either a diffnet object or a cumulative adoption matrix.
freq Logical scalar. When TRUE frequencies are plotted instead of proportions.
what Character vector of length 2. What to plot.
add Logical scalar. When TRUE lines and dots are added to the current graph.
include.legend Logical scalar. When TRUE a legend of the graph is plotted.
include.grid Logical scalar. When TRUE, the grid of the graph is drawn
pch Integer vector of length 2. See matplot.
type Character vector of length 2. See matplot.
ylim Numeric vector of length 2. Sets the plotting limit for the y-axis.
lty Numeric vector of length 2. See matplot.
col Character vector of length 2. See matplot.
bg Character vector of length 2. See matplot.
xlab Character scalar. Name of the x-axis.
ylab Character scalar. Name of the y-axis.
main Character scalar. Title of the plot
...

Further arguments passed to matplot.

Value

A matrix as described in cumulative_adopt_count.

Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()
Examples

Generating a random diffnet ---
set.seed(821)
diffnet <- rdiffnet(100, 5, seed.graph="small-world", seed.nodes="central")
plot_adopters(diffnet)

Alternatively, we can use a TOA Matrix
toa <- sample(c(NA, 2010L, 2015L), 20, TRUE)
mat <- toa_mat(toa)
plot_adopters(mat$cumadopt)

plot_diffnet
Plot the diffusion process

Description

Creates a colored network plot showing the structure of the graph through time (one network plot for each time period) and the set of adopter and non-adopters in the network.

Usage

plot_diffnet(...)

S3 method for class 'diffnet'
plot_diffnet(graph, ...)

Default S3 method:
plot_diffnet(
 graph,
 cumadopt,
 slices = NULL,
 vertex.color = c("white", "tomato", "steelblue"),
 vertex.shape = c("square", "circle", "circle"),
 vertex.size = "degree",
 mfrow.par = NULL,
 main = c("Network in period %s", "Diffusion Network"),
 legend.args = list(),
 minmax.relative.size =getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
 background = NULL,
 ...
)

Arguments

... Further arguments to be passed to plot.igraph.

graph A dynamic graph (see netdiffuseR-graphs).
cumadopt \(n \times T \) matrix.
slices Integer vector. Indicates what slices to plot. By default all are plotted.
vertex.color A character vector of size 3 with colors names.
vertex.shape A character vector of size 3 with shape names.
vertex.size Either a numeric scalar or vector of size \(n \), or any of the following values: "indegree", "degree", or "outdegree" (see details).
mfrow.par Vector of size 2 with number of rows and columns to be passed to \texttt{par}.
main Character scalar. A title template to be passed to \texttt{sprintf}.
legend.args List of arguments to be passed to \texttt{legend}.
minmax.relative.size Passed to \texttt{rescale_vertex_igraph}.
background Either a function to be called before plotting each slice, a color to specify the background color, or NULL (in which case nothing is done).

Details

Plotting is done via the function \texttt{plot.igraph}.

When \texttt{vertex.size} is either of "degree", "indegree", or "outdegree", \texttt{vertex.size} will be replace with \texttt{dgr(.,cmode =)} so that the vertex size reflects the desired degree.

The argument \texttt{minmax.relative.size} is passed to \texttt{rescale_vertex_igraph} which adjusts \texttt{vertex.size} so that the largest and smallest vertices have a relative size of \texttt{minmax.relative.size[2]} and \texttt{minmax.relative.size[1]} respectively with respect to the x-axis.

Plotting is done via the function \texttt{plot.igraph}.

In order to center the attention on the diffusion process itself, the positions of each vertex are computed only once by aggregating the networks through time, this is, instead of computing the layout for each time \(t \), the function creates a new graph accumulating links through time.

The \texttt{mfrow.par} sets how to arrange the plots on the device. If \(T = 5 \) and \texttt{mfrow.par=c(2,3)}, the first three networks will be in the top of the device and the last two in the bottom.

The argument \texttt{vertex.color} contains the colors of non-adopters, new-adopters, and adopters respectively. The new adopters (default color "tomato") have a different color that the adopters when the graph is at their time of adoption, hence, when the graph been plotted is in \(t = 2 \) and \texttt{toa = 2} the vertex will be plotted in red.

\texttt{legend.args} has the following default parameter:

\begin{verbatim}
x "bottom"
legend c("Non adopters","New adopters","Adopters")
pch sapply(vertex.shape, switch, circle = 21, square = 22, 21)
bt "n"
horiz TRUE
\end{verbatim}

Value

Calculated coordinates for the grouped graph (invisible).
Author(s)
George G. Vega Yon

See Also
Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Examples

Generating a random graph
set.seed(1234)
n <- 6
nper <- 5
graph <- rgraph_er(n, nper, p = .3, undirected = FALSE)
toa <- sample(2000:(2000+nper-1), n, TRUE)
adopt <- toa_mat(toa)

plot_diffnet(graph, adopt$cumadopt)

plot_diffnet2

Another way of visualizing diffusion

Description
Another way of visualizing diffusion

Usage

plot_diffnet2(graph, ...)

S3 method for class 'diffnet'
plot_diffnet2(graph, toa, slice = nslices(graph), ...)

Default S3 method:
plot_diffnet2(
 graph,
 toa,
 pers = min(toa, na.rm = TRUE):max(toa, na.rm = TRUE),
 color.ramp = grDevices::colorRamp(viridisLite::magma(20)),
 layout = NULL,
 key.width = 0.1,
 key.args = list(),
 main = "Diffusion dynamics",
 add.map = NULL,
 diffmap.args = list(kde2d.args = list(n = 100)),
 diffmap.alpha = 0.5,
include.white = "first",
vertex.size = "degree",
minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
no.graph = FALSE,
...
)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).
... Further arguments passed to plot.igraph.
toa Integer vector of length n with the times of adoption.
slice Integer scalar. Number of slice to use as baseline for drawing the graph.
pers Integer vector of length T indicating the time periods of the data.
color.ramp A function as returned by colorRamp.
layout Passed to plot.igraph.
key.width Numeric scalar. Sets the proportion of the plot (x-axis) that the key uses.
key.args List. Further arguments to be passed to drawColorKey.
main Character scalar. Title of the graph.
add.map Character scalar. When "first" plots a diffusionMap before the graph itself.
If "last" then it adds it at the end. When NULL adds nothing.
diffmap.args List. If add.map=TRUE, arguments passed to diffusionMap.
diffmap.alpha Numeric scalar between [0,1]. Alpha level for the map.
include.white Character scalar. Includes white in the color palette used in the map. When include.white=NULL then it won’t include it.
vertex.size Either a numeric scalar or vector of size n, or any of the following values: "indegree", "degree", or "outdegree" (see details).
minmax.relative.size Passed to rescale_vertex_igraph.
no.graph Logical scala. When TRUE the graph is not drawn. This only makes sense when the option add.map is active.

Details

Plotting is done via the function plot.igraph.

When vertex.size is either of "degree", "indegree", or "outdegree", vertex.size will be replace with dgr(. , cmode =) so that the vertex size reflects the desired degree.

The argument minmax.relative.size is passed to rescale_vertex_igraph which adjusts vertex.size so that the largest and smallest vertices have a relative size of minmax.relative.size[2] and minmax.relative.size[1] respectively with respect to the x-axis.
If key.width<=0 then no key is created.

By defult, the function passes the following values to plot.igraph:
plot_infectsuscep

- vertex.label equals to ""
- vertex.frame.color equals to "white"
- add equals to TRUE
- rescale equals to FALSE
- vertex.size equals to rescale.fun(vertex.size)

Value

A list with the following elements

- layout: A numeric matrix with vertex coordinates.
- vertex.color: A character vector with computed colors for each vertex.
- vertex.label: The value passed to plot_diffnet2.
- vertex.shape: A character vector with assigned shapes.
- vertex.size: A numeric vector with vertices sizes
- diffmap: If add.map=TRUE, the returned values from diffmap

Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adaptors(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

plot_infectsuscep Plot distribution of infect/suscep

Description

After calculating infectiousness and susceptibility of each individual on the network, it creates an \(n_{\text{levels}} \times n_{\text{levels}} \) matrix indicating the number of individuals that lie within each cell, and draws a heatmap.

Usage

plot_infectsuscep(
 graph,
 toa,
 t0 = NULL,
 normalize = TRUE,
 K = 1L,
 r = 0.5,
 expdiscount = FALSE,
)
plot_infectsuscep

```r
plot_infectsuscep(bins = 20, 
nlevels = round(bins/2), 
h = NULL, 
logscale = TRUE, 
main = "Distribution of Infectiousness and Susceptibility", 
xlab = "Infectiousness of ego", 
ylab = "Susceptibility of ego", 
sub = ifelse(logscale, "(in log-scale)", NA), 
color.palette = function(n) viridisLite::viridis(n), 
include.grid = TRUE, 
exclude.zeros = FALSE, 
valued = getOption("diffnet.valued", FALSE), 
...)
```

Arguments

- **graph**
 - A dynamic graph (see netdiffuseR-graphs).

- **toa**
 - Integer vector of length n with the times of adoption.

- **t0**
 - Integer scalar. See toa_mat.

- **normalize**
 - Logical scalar. Passed to infection/susceptibility.

- **K**
 - Integer scalar. Passed to infection/susceptibility.

- **r**
 - Numeric scalar. Passed to infection/susceptibility.

- **expdiscount**
 - Logical scalar. Passed to infection/susceptibility.

- **bins**
 - Integer scalar. Size of the grid (n).

- **nlevels**
 - Integer scalar. Number of levels to plot (see filled.contour).

- **h**
 - Numeric vector of length 2. Passed to kde2d in the MASS package.

- **logscale**
 - Logical scalar. When TRUE the axis of the plot will be presented in log-scale.

- **main**
 - Character scalar. Title of the graph.

- **xlab**
 - Character scalar. Title of the x-axis.

- **ylab**
 - Character scalar. Title of the y-axis.

- **sub**
 - Character scalar. Subtitle of the graph.

- **color.palette**
 - a color palette function to be used to assign colors in the plot (see filled.contour).

- **include.grid**
 - Logical scalar. When TRUE, the grid of the graph is drawn.

- **exclude.zeros**
 - Logical scalar. When TRUE, observations with zero values are excluded from the graph. This is done explicitly when logscale=TRUE.

- **valued**
 - Logical scalar. When FALSE non-zero values in the adjmat are set to one. in infect or suscept are excluded from the graph. This is done explicitly when logscale=TRUE.

- **...**
 - Additional parameters to be passed to filled.contour.
Details

This plotting function was inspired by Aral, S., & Walker, D. (2012).

By default the function will try to apply a kernel smooth function via kde2d. If not possible (because not enough data points), then the user should try changing the parameter h or set it equal to zero.
toa is passed to infection/susceptibility.

Value

A list with three elements:

- infect: A numeric vector of size n with infectiousness levels
- suscep: A numeric vector of size n with susceptibility levels
- coords: A list containing the class marks and counts used to draw the plot via filled.contour (see grid_distribution)
- complete: A logical vector with TRUE when the case was included in the plot. (this is relevant whenever logscale=TRUE)

Author(s)

George G. Vega Yon

References

See Also

Infectiousness and susceptibility are computed via infection and susceptibility.

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_threshold(), rescale_vertex_igraph()

Examples

Generating a random graph ---
set.seed(1234)
n <- 100
nper <- 20
graph <- rgraph_er(n,nper, p=.2, undirected = FALSE)
toa <- sample(1:(1+nper-1), n, TRUE)

Visualizing distribution of suscep/infect
out <- plot_infectsuscep(graph, toa, K=3, logscale = FALSE)
plot_threshold

Threshold levels through time

Description

Draws a graph where the coordinates are given by time of adoption, x-axis, and threshold level, y-axis.

Usage

plot_threshold(graph, expo, ...)

S3 method for class 'diffnet'
plot_threshold(graph, expo, ...)

S3 method for class 'array'
plot_threshold(graph, expo, ...)

Default S3 method:
plot_threshold(
 graph,
 expo,
 toa,
 include_censored = FALSE,
 t0 = min(toa, na.rm = TRUE),
 attrs = NULL,
 undirected = getOption("diffnet.undirected"),
 no.contemporary = TRUE,
 main = "Time of Adoption by Network Threshold",
 xlab = "Time",
 ylab = "Threshold",
 vertex.size = "degree",
 vertex.color = NULL,
 vertex.label = "",
 vertex.label.pos = NULL,
 vertex.label.color = NULL,
 vertex.sides = 40L,
 vertex.rot = 0,
 edge.width = 2,
 edge.color = NULL,
 arrow.width = NULL,
 arrow.length = NULL,
 arrow.color = NULL,
 include.grid = FALSE,
 vertex.frame.color = NULL,
Arguments

- **graph**: A dynamic graph (see `netdiffuseR-graphs`).
- **expo**: $n \times T$ matrix. Exposure to the innovation obtained from `exposure`.
- **...**: Additional arguments passed to `plot`.
- **toa**: Integer vector of length n with the times of adoption.
- **include_censored**: Logical scalar. Passed to `threshold`.
- **t0**: Integer scalar. Passed to `threshold`.
- **attrs**: Passed to `exposure` (via `threshold`).
- **undirected**: Logical scalar. When `TRUE` only the lower triangle of the adjacency matrix will be considered (faster).
- **no.contemporary**: Logical scalar. When `TRUE`, edges for vertices with the same `toa` won’t be plotted.
- **main**: Character scalar. Title of the plot.
- **xlab**: Character scalar. x-axis label.
- **ylab**: Character scalar. y-axis label.
- **vertex.size**: Numeric vector of size n. Relative size of the vertices.
- **vertex.color**: Either a vector of size n or a scalar indicating colors of the vertices.
- **vertex.label**: Character vector of size n. Labels of the vertices.
- **vertex.label.pos**: Integer value to be passed to `text` via `pos`.
- **vertex.label.cex**: Either a numeric scalar or vector of size n. Passed to `text`.
- **vertex.label.adj**: Passed to `text`.
- **vertex.label.color**: Passed to `text`.
- **vertex.sides**: Either a vector of size n or a scalar indicating the number of sides of each vertex (see details).
- **vertex.rot**: Either a vector of size n or a scalar indicating the rotation in radians of each vertex (see details).
edge.width Numeric. Width of the edges.
edge.color Character. Color of the edges.
arrow.width Numeric value to be passed to arrows.
arrow.length Numeric value to be passed to arrows.
arrow.color Color.
include.grid Logical. When TRUE, the grid of the graph is drawn.
vertex.frame.color Either a vector of size \(n \) or a scalar indicating colors of vertices’ borders.
bty See par.
jitter.factor Numeric vector of size 2 (for x and y) passed to jitter.
jitter.amount Numeric vector of size 2 (for x and y) passed to jitter.
xlim Passed to plot.
ylim Passed to plot.
edge.curved Logical scalar. When curved, generates curved edges.
background TBD

Details

When vertex.label=NULL the function uses vertices ids as labels. By default vertex.label="" plots no labels.

Vertices are drawn using an internal function for generating polygons. Polygons are inscribed in a circle of radius vertex.size, and can be rotated using vertex.rot. The number of sides of each polygon is set via vertex.sides.

Author(s)

George G. Vega Yon

See Also

Use threshold to retrieve the corresponding threshold obtained returned by exposure.

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), rescale_vertex_igraph()

Examples

Generating a random graph
set.seed(1234)
n <- 6
nper <- 5
graph <- rgraph_er(n, nper, p=.3, undirected = FALSE)
toa <- sample(2000:(2000+nper-1), n, TRUE)
adopt <- toa_mat(toa)

Computing exposure
expos <- exposure(graph, adopt$cumadopt)
plot_threshold(graph, expos, toa)

Calculating degree (for sizing the vertices)
plot_threshold(graph, expos, toa, vertex.size = "indegree")

pretty_within

Pretty numbers within a range.

Description

A wrapper for `pretty`.

Usage

```r
pretty_within(x, min.n = 5, xrange = range(x, na.rm = TRUE), ...)
```

Arguments

- `x`
 Numeric vector passed to `pretty`.
- `min.n`
 Integer scalar passed to `pretty`.
- `xrange`
 Numeric vector of length 2. Indicates the range in which the output vector should lie on.
- `...`
 Further arguments passed to the method.

The only difference with `pretty` is that this function subsets the resulting vector as

```
tick[(tick >= xrange[1]) & (tick <= xrange[2])]
```

Examples

```r
# Simple example
set.seed(3331)
x <- runif(10)
pretty(x)
pretty_within(x)
range(x)
```
rdiffnet

Random diffnet network

Description
Simulates a diffusion network by creating a random dynamic network and adoption threshold levels.

Usage

```r
diffnet_multiple(R, statistic, ..., ncpus = 1L, cl = NULL)
diffnet(  
n,  
t,  
seed.nodes = "random",  
seed.p.adopt = 0.05,  
seed.graph = "scale-free",  
rgraph.args = list(),  
rewire = TRUE,  
rewire.args = list(),  
threshold.dist = runif(n),  
exposure.args = list(),  
name = "A diffusion network",  
behavior = "Random contagion",  
stop.no.diff = TRUE  )
```

Arguments

- **R**
 Integer scalar. Number of simulations to be done.
- **statistic**
 A Function to be applied to each simulated diffusion network.
- **...**
 Further arguments to be passed to `rdiffnet`.
- **ncpus**
 Integer scalar. Number of processors to be used (see details).
- **cl**
 An object of class `c("SOCKcluster","cluster")` (see details).
- **n**
 Integer scalar. Number of vertices.
- **t**
 Integer scalar. Time length.
- **seed.nodes**
 Either a character scalar or a vector. Type of seed nodes (see details).
- **seed.p.adopt**
 Numeric scalar. Proportion of early adopters.
- **seed.graph**
 Baseline graph used for the simulation (see details).
- **rgraph.args**
 List. Arguments to be passed to `rgraph`.
- **rewire**
 Logical scalar. When TRUE, network slices are generated by rewiring (see `rewire_graph`).
- **rewire.args**
 List. Arguments to be passed to `rewire_graph`.
threshold.dist Either a function to be applied via `sapply`, a numeric scalar, or a vector/matrix with \(n \) elements. Sets the adoption threshold for each node.

exposure.args List. Arguments to be passed to `exposure`.

name Character scalar. Passed to `as.diffnet`.

behavior Character scalar. Passed to `as.diffnet`.

stop.no.diff Logical scalar. When `TRUE`, the function will return with error if there was no diffusion. Otherwise it throws a warning.

Details

Instead of randomizing whether an individual adopts the innovation or not, this toy model randomizes threshold levels, seed adopters and network structure, so an individual adopts the innovation in time \(T \) iff his exposure is above or equal to his threshold. The simulation is done in the following steps:

1. Using `seed.graph`, a baseline graph is created.
2. Given the baseline graph, the set of initial adopters is defined using `seed.nodes`.
3. Afterwards, if `rewire=TRUE` \(t - 1 \) slices of the network are created by iteratively rewiring the baseline graph.
4. The `threshold.dist` function is applied to each node in the graph.
5. Simulation starts at \(t = 2 \) assigning adopters in each time period accordingly to each vertex’s threshold and exposure.

When `seed.nodes` is a character scalar it can be "marginal", "central" or "random". So each of these values sets the initial adopters using the vertices with lowest degree, with highest degree or completely randomly. The number of early adopters is set as `seed.p.adopt * n`. Please note that when marginal nodes are set as seed it may be the case that no diffusion process is attained as the chosen set of first adopters can be isolated. Any other case will be considered as an index (via `[<`-methods), hence the user can manually set the set of initial adopters, for example if the user sets `seed.nodes=c(1,4,7)` then nodes 1, 4 and 7 will be selected as initial adopters.

The argument `seed.graph` can be either a function that generates a graph (Any class of accepted graph format (see netdiffuseR-graphs)), a graph itself or a character scalar in which the user sets the algorithm used to generate the first network (network in \(t=1 \)), this can be either "scale-free" (Barabasi-Albert model using the `rgraph_ba` function, the default), "bernoulli" (Erdos-Renyi model using the `rgraph_er` function), or "small-world" (Watts-Strogatz model using the `rgraph_ws` function). The list `rgraph.args` passes arguments to the chosen algorithm.

When `rewire=TRUE`, the networks that follow \(t=1 \) will be generated using the `rewire_graph` function as \(G(t) = R(G(t-1)) \), where `R` is the rewiring algorithm.

If a function, the argument `threshold.dist` sets the threshold for each vertex in the graph. It is applied using `sapply` as follows

\[
sapply(1:n, \text{threshold.dist})
\]

By default sets the threshold to be random for each node in the graph.

If `seed.graph` is provided, no random graph is generated and the simulation is applied using that graph instead.

`rewire.args` has the following default options:
exposure.args has the following default options:

- **outgoing**: TRUE
- **valued**: getOption("diffnet.valued", FALSE)
- **normalized**: TRUE

The function `rdiffnet_multiple` is a wrapper of `rdiffnet` which allows simulating multiple diffusion networks with the same parameters and apply the same function to all of them. This function is designed to allow the user to perform larger simulation studies in which the distribution of a particular statistic is observed.

When `cl` is provided, then simulations are done via `parSapply`. If `ncpus` is greater than 1, then the function creates a cluster via `makeCluster` which is stopped (removed) once the process is complete.

Value

A random `diffnet` class object.

`rdiffnet_multiple` returns either a vector or an array depending on what statistic is (see `sapply` and `parSapply`).

Author(s)

George G. Vega Yon

See Also

Other simulation functions: `permute_graph()`, `rewire_graph()`, `rgraph_ba()`, `rgraph_er()`, `rgraph_ws()`, `ring_lattice()`

Examples

```r
# A simple example -----------------------------------------------
set.seed(123)
z <- rdiffnet(100, 10)
z
summary(z)

# A more complex example: Adopt if at least one neighbor has adopted ------
y <- rdiffnet(100, 10, threshold.dist=function(x) 1,
  exposure.args=list(valued=FALSE, normalized=FALSE))

# Re thinking the Adoption of Tetracycline -------------------------
newMI <- rdiffnet(seed.graph = medInnovationsDiffNet$graph,
  threshold.dist = threshold(medInnovationsDiffNet), rewire=FALSE)
```
Simulation study comparing the diffusion with diff sets of seed nodes -----

Random seed nodes
set.seed(1)
an0 <- rdiffnet_multiple(R=50, statistic=function(x) sum(!is.na(x$toa)),
n = 100, t = 4, seed.nodes = "random", stop.no.diff=FALSE)

Central seed nodes
set.seed(1)
an1 <- rdiffnet_multiple(R=50, statistic=function(x) sum(!is.na(x$toa)),
n = 100, t = 4, seed.nodes = "central", stop.no.diff=FALSE)

boxplot(cbind(Random = an0, Central = an1), main="Number of adopters")

read_pajek

Read foreign graph formats

Description

Reading pajek and Ucinet files, this function returns weighted edgelists in the form of data frames including a data frame of the vertices. (function on development)

Usage

```r
read_pajek(x)
read_ml(x)
```

Arguments

- **x**
 Character scalar. Path to the file to be imported.

Details

Since .net files allow working with multi-relational networks (more than one class of edge), the function returns lists of edges and edgeslist with the corresponding tag on the .net file. For example, if the .net file contains

```plaintext
*Arcslist :9 "SAMPPR"
...
*Arcslist :10 "SAMNPR"
```

The output will include data frames of edgelists with those tags.
Value

In the case of `read_pajek`, a list with three elements

- **vertices**: A data frame with \(n \) rows and two columns: id and label
- **edges**: If not null, a list of data frames with three columns: ego, alter, w (weight)
- **edgelist**: If not null, a list of data frame with three columns: ego, alter, w (weight)

For `read_ml`, a list with two elements:

- **adjmat**: An array with the graph
- **meta**: A list with metadata

Author(s)

George G. Vega Yon

Source

From the pajek manual http://mrvar.fdv.uni-lj.si/pajek/pajekman.pdf

See Also

Other Foreign: `igraph`, `network`, `read_ucinet_head()`

Examples

```r
# From .net: Sampson monastery data from UCINET dataset -----------------------

# Reading the arcs/edges format
path <- system.file("extdata", "SAMPSON.NET", package = "netdiffuseR")
SAMPSON <- read_pajek(path)

# Reading the arcslist/edgelist format
path <- system.file("extdata", "SAMPSONL.NET", package = "netdiffuseR")
SAMPSONL <- read_pajek(path)

# From DL (UCINET): Sampson monastery data (again) --------------------------

path <- system.file("extdata", "SAMPSON.DAT", package = "netdiffuseR")
SAMPSONL <- read_ml(path)
```
Description

Reads UCINET files
Read UCINET files (binary)

Usage

read_ucinet_head(f)
read_ucinet(f, echo = FALSE)

Arguments

f Character scalar. Name of the header file. e.g. mydata.##h.
echo Logical scalar. When TRUE shows a message.

Value

An array including dimnames (if there are) and the following attributes:

headerversion Character scalar
year Integer. Year the file was created
month Integer. Month of the year the file was created.
day Integer. Day of the month the file was created.
dow Integer. Day of the week the file was created.
labtype infile.dt Character scalar. Type of data of the array.
dim Integer vector. Dimensions of the array.
tit Character scalar. Title of the file.
haslab Logical vector. Whether each dim has a label.

See Also

Other Foreign: igraph, network, read_pajek()
recod

Recodes an edgelist such that ids go from 1 to n

Description

Recodes an edgelist such that ids go from 1 to n

Usage

recode(data, ...)

S3 method for class 'data.frame'
recode(data, ...)

S3 method for class 'matrix'
recode(data, ...)

Arguments

data Edgelist as either a matrix or dataframe with ego and alter
...
Further arguments for the method (ignored)

Details

Required for using most of the package’s functions, as ids are used as a reference for accessing elements in adjacency matrices.

Value

A recoded edgelist as a two-column matrix/data.frame depending on the class of data. The output includes an attribute called "recode" which contains a two column data.frame providing a mapping between the previous code and the new code (see the examples)

Author(s)

George G. Vega Yon

See Also

edgelist_to_adjmat

Examples

Simple example

edgelist <- cbind(c(1,1,3,6),c(4,3,200,1))
edgelist
recoded_edgelist <- recode(edgelist)
recoded_edgelist
Retrieving the "recode" attribute
attr(recoded_edgelist, "recode")

rescale_vertex_igraph Rescale vertex size to be used in plot.igraph.

Description

This function rescales a vertex size before passing it to plot.igraph so that the resulting vertices have the desired size relative to the x-axis.

Usage

```r
rescale_vertex_igraph(
  vertex.size,
  par.usr = par("usr"),
  minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
  adjust = 200
)

igraph_vertex_rescale(
  vertex.size,
  par.usr = par("usr"),
  minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
  adjust = 200
)

vertex_rescale_igraph(
  vertex.size,
  par.usr = par("usr"),
  minmax.relative.size = getOption("diffnet.minmax.relative.size", c(0.01, 0.04)),
  adjust = 200
)
```

Arguments

- `vertex.size`: Numeric vector of unscaled vertices' sizes. This is unit-free.
- `par.usr`: Integer vector of length 4 with the coordinates of plotting region. by default uses par("usr").
- `minmax.relative.size`: A numeric vector of length 2. Represents the desired min and max vertex sizes relative to the x-axis in terms of percentage (see details).
- `adjust`: Numeric scalar. Adjustment made to the resulting adjusted size (see details).
rescale_vertex_igraph

Details

minmax.relative.size limits the minimum and maximum size that a vertex can take in the plot relative to the x-axis scale. The values for the x-axis scale are by default retrieved by accessing to par("usr"). By default the vertex are rescaled to be at least 1% of the size of the plotting region and no more than 5% of the plotting region, minmax.relative.size=c(.01,.05).

The default value for adjust is taken from igraph version 1.0.1. In particular, the function igraph:::.igraph.shape.circle.plot, in which before passing the vertex.size to the function symbols, the vertex size is reduced by 200.

The rescaling is as follows:

$$v' = \frac{v - \bar{v}}{\bar{\bar{v}} - \bar{v}} \times (\bar{\bar{s}} - \bar{s}) + \bar{s}$$

Where v is the vertex size, \bar{v} and \bar{y} are the max and min values of v respectively, and $\bar{\bar{s}}$ and \bar{s} are the max and min size that vertices take in terms of minmax.relative.size and par.usr. The adjusted value v' is then multiplied by adjust.

igraph_vertex_rescale and vertex_rescale_igraph are aliases.

Value

An integer vector of the same length as vertex.size with rescaled values.

Author(s)

George G. Vega Yon

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet, plot_infectsuscep(), plot_threshold()

Examples

library(igraph)

Random graph and coordinates
set.seed(2134)
g <- barabasi.game(10)
coords <- layout_nicely(g)

Random size and figures
size <- runif(10)
size <- cbind(size, size)
shap <- sample(c("circle", "square"),10,TRUE)

Plotting
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(2,2), mai=rep(.5,4))
for (i in seq(1, 1000, length.out = 4)) {
 # New plot-window
rewire_graph

Graph rewiring algorithms

Description

Changes the structure of a graph by altering ties.

Usage

rewire_graph(
 graph,
 p,
 algorithm = "endpoints",
 both.ends = FALSE,
 self = FALSE,
 multiple = FALSE,
 undirected = getOption("diffnet.undirected"),
 pr.change = ifelse(self, 0.5, 1),
 copy.first = TRUE,
 althexagons = FALSE
)

Arguments

graph Any class of accepted graph format (see netdiffuseR-graphs).

p Either a [0,1] vector with rewiring probabilities (algorithm="endpoints"), or an integer vector with number of iterations (algorithm="swap").

algorithm Character scalar. Either "swap", "endpoints", or "qap" (see rewire_qap).

both.ends Logical scalar. When TRUE rewires both ends.
rewire_graph

self Logical scalar. When TRUE, allows loops (self edges).
multiple Logical scalar. When TRUE allows multiple edges.
undirected Logical scalar. When TRUE only the lower triangle of the adjacency matrix will be considered (faster).
pr.change Numeric scalar. Probability ([0,1]) of doing a rewire (see details).
copy.first Logical scalar. When TRUE and graph is dynamic uses the first slice as a baseline for the rest of slices (see details).
althehexagons Logical scalar. When TRUE uses the compact alternating hexagons algorithm (currently ignored [on development]).

Details

The algorithm "qap" is described in rewire_qap, and only uses graph from the arguments (since it is simply relabelling the graph).

In the case of "swap" and "endpoints", both algorithms are implemented sequentially, this is, edge-wise checking self edges and multiple edges over the changing graph; in other words, at step \(m \) (in which either a new endpoint or edge is chosen, depending on the algorithm), the algorithms verify whether the proposed change creates either multiple edges or self edges using the resulting graph at step \(m - 1 \).

The main difference between the two algorithms is that the "swap" algorithm preserves the degree sequence of the graph and "endpoints" does not. The "swap" algorithm is specially useful to assess the non-randomness of a graph’s structural properties, furthermore it is this algorithm the one used in the struct_test routine implemented in netdiffuseR.

Rewiring assumes a weighted network, hence \(G(i,j) = k = G(i',j') \), where \(i', j' \) are the new endpoints of the edge and \(k \) may not be equal to one.

In the case of dynamic graphs, when copy.first=TRUE, after rewiring the first slice – \(t = 1 \) – the rest of slices are generated by rewiring the rewired version of the first slice. Formally:

\[
G(t)' = \begin{cases}
R(G(t)) & \text{if } t = 1 \\
R(G(1)') & \text{otherwise}
\end{cases}
\]

Where \(G(t) \) is the \(t \)-th slice, \(G(t)' \) is the \(t \)-th rewired slice, and \(R \) is the rewiring function. Otherwise, copy.first=FALSE (default), The rewiring function is simply \(G(t)' = R(G(t)) \).

The following sections describe the way both algorithms were implemented.

Swap algorithm

The "swap" algorithm chooses randomly two edges \((a, b)\) and \((c, d)\) and swaps the 'right' endpoint of boths such that we get \((a, d)\) and \((c, b)\) (considering self and multiple edges).

Following Milo et al. (2004) testing procedure, the algorithm shows to be well behaved in terms of been unbiased, so after each iteration each possible structure of the graph has the same probability of been generated. The algorithm has been implemented as follows:

Let \(E \) be the set of edges of the graph \(G \). For \(i = 1 \) to \(p \), do:

1. With probability \(1-\text{pr. change} \) got to the last step.
2. Choose \(e_0 = (a, b) \) from \(E \). If \(!self \& a == b\) then go to the last step.

3. Choose \(e_1 = (c, d) \) from \(E \). If \(!self \& c == d\) then go to the last step.

4. Define \(e'_0 = (a, d) \) and \(e'_1 = (c, b) \). If \(!multiple \& [G[e'_0]] != 0 \| G[e'_1] != 0\) then go to the last step. (*

5. Define \(v_0 = G[e_0] \) and \(v_1 = G[e_1] \), set \(G[e_0] = 0 \) and \(G[e_1] = 0 \) (and the same to the diagonally opposed coordinates in the case of undirected graphs)

6. Set \(G[e'_0] = v_0 \) and \(G[e'_1] = v_1 \) (and so with the diagonally opposed coordinates in the case of undirected graphs).

7. Next \(i \).

(*) When althexagons=TRUE, the algorithm changes and applies what Rao et al. (1996) describe as Compact Alternating Hexagons. This modification assures the algorithm to be able to achieve any structure. The algorithm consists on doing the following swapping: \((i_1;i_2,i_3;i_2;i_1,i_3;i_1;i_2)\) with values \((1,0,1,0,1,0,1,0)\) respectively with \(i_1! = i_2! = i_3\). See the examples and references.

In Milo et al. (2004) is suggested that in order for the rewired graph to be independent from the original one researchers usually iterate around \(nlinks(graph) \times 100\) times, so \(p=nlinks(graph) \times 100\).

On the other hand in Ray et al (2012) it is shown that in order to achieve such it is needed to perform \(nlinks(graph) \times \log(1/\epsilon)\), where \(\epsilon \sim 1e^{-7}\), in other words, around \(nlinks(graph) \times 16\). We set the default to be 20.

In the case of Markov chains, the variable pr.change allows making the algorithm aperiodic. This is relevant only if the probability self-loop to a particular state is null, for example, if we set self=TRUE and multiple=TRUE, then in every step the algorithm will be able to change the state. For more details see Stanton and Pinar (2012) [p. 3.5:9].

Endpoints algorithm

This reconnect either one or both of the endpoints of the edge randomly. As a big difference with the swap algorithm is that this does not preserves the degree sequence of the graph (at most the outgoing degree sequence). The algorithm is implemented as follows:

Let \(G \) be the baseline graph and \(G' \) be a copy of it. Then, For \(l = 1 \) to \(|E|\) do:

1. Pick the \(l \)-th edge from \(E \), define it as \(e = (i, j) \).
2. Draw \(r \) from \(U(0, 1) \), if \(r > p \) go to the last step.
3. If \(!undirected \& i < j\) go to the last step.
4. Randomly select a vertex \(j' \) (and \(i' \) if both_ends==TRUE). And define \(e' = (i, j') \) (or \(e' = (i', j') \) if both_ends==TRUE).
5. If \(!self \& i == j'\) (or if both_ends==TRUE & \(i'==j\)) go to the last step.
6. If \(!multiple \& G'[e'] != 0\) then go to the last step.
7. Define \(v = G[e], set G'[e] = 0 \) and \(G'[e'] = v \) (and the same to the diagonally opposed coordinates in the case of undirected graphs).
8. Next \(l \).

The endpoints algorithm is used by default in rdiffnet and used to be the default in struct_test (now swap is the default).
Author(s)

George G. Vega Yon

References

See Also

Other simulation functions: permute_graph(), rdifnet(), rgraph_ba(), rgraph_er(), rgraph_ws(), ring_lattice()

Examples

Checking the consistency of the "swap" ------------------------------------

A graph with known structure (see Milo 2004)

n <- 5
x <- matrix(0, ncol=n, nrow=n)
x <- as(x, "dgCMatrix")
x[,c(-1,-n)] <- 1
x[c(-1,-n),n] <- 1

x

Simulations (increase the number for more precision)
set.seed(8612)
nsim <- 1e4
w <- sapply(seq_len(nsim), function(y) {
 # Creating the new graph
 g <- rewire_graph(x,p=nlinks(x)*100, algorithm = "swap")

 # Categorizing (tag of the generated structure)
 paste0(as.vector(g), collapse="")})
rgraph_ba

})

Counting
coded <- as.integer(as.factor(w))

plot(table(coded)/nsim*100, type="p", ylab="Frequency %", xlab="Class of graph", pch=3,
main="Distribution of classes generated by rewiring")

Marking the original structure
baseline <- paste0(as.vector(x), collapse="")
points(x=7,y=table(as.factor(w))[baseline]/nsim*100, pch=3, col="red")

rgraph_ba Scale-free and Homophilic Random Networks

Description

Generates a scale-free random graph based on Bollabas et al. (2001), also know as Linearized Chord Diagram (LCD) which has nice mathematical properties. And also scale-free homophilic networks when an vertex attribute eta is passed.

Usage

rgraph_ba(m0 = 1L, m = 1L, t = 10L, graph = NULL, self = TRUE, eta = NULL)

Arguments

m0 Integer scalar. Number of initial vertices in the graph.
m Integer scalar. Number of new edges per vertex added.
t Integer scalar. Number of time periods (steps).
graph Any class of accepted graph format (see netdiffuserR-graphs).
self Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
eta Numeric vector of length t+m0. When specified, it generates a scale-free homophilic network (see details).

Details

Based on Ballobás et al. (2001) creates a directed random graph of size t + m0. A big difference with B-A model is that this allows for loops (self/auto edges) and further multiple links, nevertheless, as t increases, the number of such cases reduces.

By default, the degree of the first m0 vertices is set to be 2 (loops). When m>1, as described in the paper, each new link from the new vertex is added one at a time “counting ‘outward half’ of the edge being added as already contributing to the degrees”.

When `self=FALSE`, the generated graph is created without autolinks. This means that at the beginning, if the number of links equals zero, all vertices have the same probability of receiving a new link.

When `eta` is passed, it implements the model specified in De Almeida et al. (2013), a scale-free homophilic network. To do so `eta` is rescaled to be between 0 and 1 and the probability that the node i links to node j is as follows:

$$\frac{(1 - A_{ij})k_j}{\sum_j (1 - A_{ij})k_j}$$

Where $A_{ij} = |\eta_i - \eta_j|$ and k_j is the degree of the j-th vertex.

Value

If `graph` is not provided, a static graph, otherwise an expanded graph (additional vertices) of the same class as `graph`.

The resulting graph will have `graph$meta$undirected = FALSE` if it is of class `diffnet` and `attr(graph, "undirected") = FALSE` otherwise.

Author(s)

George G. Vega Yon

References

See Also

Other simulation functions: `permute_graph()`, `rdiffnet()`, `rewire_graph()`, `rgraph_er()`, `rgraph_ws()`, `ring_lattice()`

Examples

```r
# Using another graph as a base graph ---------------------------------------
graph <- rgraph_ba()
graph

graph <- rgraph_ba(graph=graph)
```
Generating a scale-free homophilic graph (no loops) ------------------------
set.seed(112)
etta <- rep(c(1,1,1,2,2,2,2), 20)
ans <- rgraph.ba(t=length(eta) - 1, m=3, self=FALSE, eta=eta)

Converting it to igraph (so we can plot it)
ig <- igraph::graph_from_adjacency_matrix(ans)

Neat plot showing the output
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(1,2))
plot(ig, vertex.color=c("red","blue")[factor(eta)], vertex.label=NA,
 vertex.size=5, main="Scale-free homophilic graph")
suppressWarnings(plot(dgr(ans), main="Degree distribution"))
par(oldpar)

rgraph_er

Erdos-Renyi model

Description

Generates a bernoulli random graph.

Usage

```r
rgraph_er(
  n = 10,
  t = 1,
  p = 0.01,
  undirected = getOption("diffnet.undirected"),
  weighted = FALSE,
  self = getOption("diffnet.self"),
  as.edgelist = FALSE
)
```

Arguments

- `n` Integer. Number of vertices
- `t` Integer. Number of time periods
- `p` Double. Probability of a link between ego and alter.
- `undirected` Logical scalar. Whether the graph is undirected or not.
- `weighted` Logical. Whether the graph is weighted or not.
- `self` Logical. Whether it includes self-edges.
- `as.edgelist` Logical. When TRUE the graph is presented as an edgelist instead of an adjacency matrix.
Details

For each pair of nodes \(\{i,j\} \), an edge is created with probability \(p \), this is, \(\Pr\{\text{Link}_i - j\} = \Pr\{x < p\} \), where \(x \) is drawn from a \(Uniform(0,1) \).

When \(\text{weighted}=\text{TRUE} \), the strength of ties is given by the random draw \(x \) used to compare against \(p \), hence, if \(x < p \) then the strength will be set to \(x \).

In the case of dynamic graphs, the algorithm is repeated \(t \) times, so the networks are uncorrelated.

Value

A graph represented by an adjacency matrix (if \(t=1 \)), or an array of adjacency matrices (if \(t>1 \)).

Note

The resulting adjacency matrix is store as a dense matrix, not as a sparse matrix, hence the user should be careful when choosing the size of the network.

Author(s)

George G. Vega Yon

References

See Also

Other simulation functions: \(\text{permute_graph()}, \text{rdiffnet()}, \text{rewire_graph()}, \text{rgraph_ba()}, \text{rgraph_ws()}, \text{ring_lattice()} \)

Examples

Setting the seed
set.seed(13)

Generating an directed graph
rgraph_er(undirected=FALSE, p = 0.1)

Comparing P(tie)
x <- rgraph_er(1000, p=.1)
sum(x)/length(x)

Several period random gram
rgraph_er(t=5)
rgraph_ws

Watts-Strogatz model

Description
Generates a small-world random graph.

Usage
rgraph_ws(
 n, k, p,
 both.ends = FALSE, self = FALSE,
 multiple = FALSE, undirected = FALSE
)

Arguments
n
Integer scalar. Set the size of the graph.

k
Integer scalar. Set the initial degree of the ring (must be less than n).

p
Numeric scalar/vector of length T. Set the probability of changing an edge.

both.ends
Logical scalar. When TRUE rewires both ends.

self
Logical scalar. When TRUE, allows loops (self edges).

multiple
Logical scalar. When TRUE allows multiple edges.

undirected
Logical scalar. Passed to ring_lattice

Details
Implemented as in Watts and Strogatz (1998). Starts from an undirected ring with n vertices all with degree k (so it must be an even number), and then rewire each edge by setting the endpoint (so now you treat it as a digraph) randomly any vertex in N \ i avoiding multiple links (by default) using the rewiring algorithm described on the paper.

Value
A random graph of size n x n following the small-world model. The resulting graph will have attr(graph,"undirected")=FALSE.

Author(s)
George G. Vega Yon
References

See Also

Other simulation functions: permute_graph(), rdiffnet(), rewire_graph(), rgraph_ba(), rgraph_er(), ring_lattice()

Examples

```r
library(igraph)
set.seed(7123)
x0 <- graph_from_adjacency_matrix(rgraph_ws(10,2, 0))
x1 <- graph_from_adjacency_matrix(rgraph_ws(10,2, .3))
x2 <- graph_from_adjacency_matrix(rgraph_ws(10,2, 1))

oldpar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(x0, layout=layout_in_circle, edge.curved=TRUE, main="Regular")
plot(x1, layout=layout_in_circle, edge.curved=TRUE, main="Small-world")
plot(x2, layout=layout_in_circle, edge.curved=TRUE, main="Random")
par(oldpar)
```

ing_lattice

Ring lattice graph

Description

Creates a ring lattice with \(n \) vertices, each one of degree (at most) \(k \) as an undirected graph. This is the basis of rgraph.ws.

Usage

```r
ring_lattice(n, k, undirected = FALSE)
```

Arguments

- \(n \) Integer scalar. Size of the graph.
- \(k \) Integer scalar. Out-degree of each vertex.
- undirected Logical scalar. Whether the graph is undirected or not.
Details
when undirected=TRUE, the degree of each node always even. So if k=3, then the degree will be 2.

Value
A sparse matrix of class dgCMatrix of size \(n \times n \).

References

See Also
Other simulation functions: permute_graph(), rdiffnet(), rewire_graph(), rgraph_ba(), rgraph_er(), rgraph_ws()

round_to_seq(x, nlevels = 20, as_factor = FALSE)

Usage
round_to_seq(x, nlevels = 20, as_factor = FALSE)

Arguments
- \(x \) A numeric or integer vector.
- \(nlevels \) Integer scalar. Length of the sequence to be map onto.
- \(as_factor \) Logical scalar. When TRUE the resulting vector is factor.

Value
A vector of length length(\(x \)) with values mapped to a sequence with \(nlevels \) unique values.

See Also
Used in diffmap and plot_diffnet2

Examples
\begin{verbatim}
x <- rnorm(100)
w <- data.frame(as.integer(round_to_seq(x, as_factor = TRUE)),x)
plot(w,x)
\end{verbatim}
select_egoalter

Calculate the number of adoption changes between ego and alter.

Description

This function calculates the 16 possible configurations between ego and alter over two time points in terms of their behavior and tie changes. From time one to time two, given a binary state of behavior, ego and alter can be related in 16 different ways. The function adopt_changes is just an alias for select_egoalter.

Usage

select_egoalter(graph, adopt, period = NULL)

adopt_changes(graph, adopt, period = NULL)

S3 method for class 'diffnet_adoptChanges'
summary(object, ...)

Arguments

graph A dynamic graph (see netdiffuseR-graphs).

adopt $n \times T$ matrix. Cumulative adoption matrix obtained from toa_mat.

period Integer scalar. Optional to make the count for a particular period of time.

object An object of class diffnet_adoptChanges.

... Ignored.

Details

The 16 possibilities are summarized in this matrix:

<table>
<thead>
<tr>
<th>Alter t−1</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>t−1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ego</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>7</td>
</tr>
</tbody>
</table>

The first two Yes/No columns represent Ego’s adoption of the innovation in $t−1$ and t; while the first two Yes/No rows represent Alter’s adoption of the innovation in $t−1$ and t respectively. So for example, number 4 means that while neither of the two had adopted the innovation in $t−1$, both have in t. At the same time, number 12 means that ego adopted the innovation in t, but alter had already adopted in $t−1$ (so it has it in both, t and $t−1$).
struct_equiv

Value

An object of class `diffnet_adoptChanges` and `data.frame` with \(n \times (T - 1) \) rows and \(2 + 16 \times 3 \) columns. The column names are:

- **time**: Integer representing the time period
- **id**: Node id
- **select_a_01**, ..., **select_a_16**: Number of new links classified between categories 1 to 16.
- **select_d_01**, ..., **select_d_16**: Number of remove links classified between categories 1 to 16.
- **select_s_01**, ..., **select_s_16**: Number of unchanged links classified between categories 1 to 16.

Author(s)

George G. Vega Yon & Thomas W. Valente

References

Thomas W. Valente, Stephanie R. Dyal, Kar-Hai Chu, Heather Wipfli, Kayo Fujimoto, *Diffusion of innovations theory applied to global tobacco control treaty ratification*, Social Science & Medicine, Volume 145, November 2015, Pages 89-97, ISSN 0277-9536 (http://dx.doi.org/10.1016/j.socscimed.2015.10.001)

Examples

```r
# Simple example ---------------------------------------------------------------
set.seed(1312)
 dn <- rdiffnet(20, 5, seed.graph="small-world")

 ans <- adopt_changes(dn)
 str(ans)
 summary(ans)
```

struct_equiv

Structural Equivalence

Description

Computes structural equivalence between ego and alter in a network

Usage

```r
struct_equiv(graph, v = 1, inf.replace = 0, groupvar = NULL, ...)
```

S3 method for class 'diffnet_se'

```r
print(x, ...)
```
Arguments

- **graph**: Any class of accepted graph format (see `netdiffuseR-graphs`).
- **v**: Numeric scalar. Cohesion constant (see details).
- **inf.replace**: Deprecated.
- **groupvar**: Either a character scalar (if `graph` is `diffnet`), or a vector of size `n`.
- ... Further arguments to be passed to `approx_geodesic` (not valid for the print method).
- **x**: A `diffnet_se` class object.

Details

Structure equivalence is computed as presented in Valente (1995), and Burt (1987), in particular

\[SE_{ij} = \frac{(d_{max} - d_{ji})^v}{\sum_{k \neq i}(d_{max} - d_{ki})^v} \]

with the summation over \(k \neq i \), and \(d_{ji} \), Euclidean distance in terms of geodesics, is defined as

\[d_{ji} = \left[(z_{ji} - z_{ij})^2 + \sum_k (z_{jk} - z_{ik})^2 + \sum_k (z_{ki} - z_{kj})^2 \right]^{\frac{1}{2}} \]

with \(z_{ij} \) as the geodesic (shortest path) from \(i \) to \(j \), and \(d_{max} \) equal to largest Euclidean distance between \(i \) and any other vertex in the network. All summations are made over \(k \notin \{i,j\} \).

Here, the value of \(v \) is interpreted as cohesion level. The higher its value, the higher will be the influence that the closest alters will have over ego (see Burt’s paper in the reference).

Structural equivalence can be computed either for the entire graph or by groups of vertices. When, for example, the user knows before hand that the vertices are distributed accross separated communities, he can make this explicit to the function and provide a `groupvar` variable that accounts for this. Hence, when `groupvar` is not `NULL` the algorithm will compute structural equivalence within communities as marked by `groupvar`.

Value

If `graph` is a static graph, a list with the following elements:

- **SE**: Matrix of size \(n \times n \) with Structural equivalence
- **d**: Matrix of size \(n \times n \) Euclidean distances
- **gdist**: Matrix of size \(n \times n \) Normalized geodesic distance

In the case of dynamic graph, is a list of size \(t \) in which each element contains a list as described before. When `groupvar` is specified, the resulting matrices will be of class `dgCMatrix`, otherwise will be of class `matrix`.

Author(s)

George G. Vega Yon & Thomas W. Valente
struct_test

References

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), threshold(), vertex_covariate_dist()

Examples

Computing structural equivalence for the fakedata -------------------------
data(fakesurvey)

Coercing it into a diffnet object
fakediffnet <- survey_to_diffnet(
 fakesurvey, "id", c("net1", "net2", "net3"), "toa", "group"
)

Computing structural equivalence without specifying group
se_all <- struct_equiv(fakediffnet)

Notice that pairs of individuals from different communities have
non-zero values
se_all
se_all[[1]]$SE

... Now specifying a groupvar
se_group <- struct_equiv(fakediffnet, groupvar="group")

Notice that pairs of individuals from different communities have
only zero values.
se_group
se_group[[1]]$SE

struct_test Structure dependence test

Description

Test whether or not a network estimates can be considered structurally dependent, i.e. a function of the network structure. By rewiring the graph and calculating a particular statistic t, the test compares the observed mean of t against the empirical distribution of it obtained from rewiring the network.
Usage

n_rewires(graph, p = c(20L, rep(0.1, nslices(graph) - 1)))

struct_test(graph, statistic, R, rewire.args = list(), ...)

S3 method for class 'diffnet_struct_test'
c(..., recursive = FALSE)

S3 method for class 'diffnet_struct_test'
print(x, ...)

S3 method for class 'diffnet_struct_test'
hist(
x,
 main = "Empirical Distribution of Statistic",
 xlab = expression(Values ~ of ~ t),
 breaks = 20,
 annotated = TRUE,
 b0 = expression(atop(plain(""), t[0]),
 b = expression(atop(plain(""), t[1]),
 ask = TRUE,
 ...
)

struct_test_asymp(graph, Y, statistic_name = "distance", p = 2, ...)

Arguments

graph A diffnet graph.
p Either a Numeric scalar or vector of length nslices(graph)-1 with the number of rewires per links.
statistic A function that returns either a scalar or a vector.
R Integer scalar. Number of repetitions.
rewire.args List. Arguments to be passed to rewire_graph
... Further arguments passed to the method (see details).
recursive Ignored
x A diffnet_struct_test class object.
main Character scalar. Title of the histogram.
xlab Character scalar. x-axis label.
breaks Passed to hist.
annotated Logical scalar. When TRUE marks the observed data average and the simulated data average.
b0 Character scalar. When annotated=TRUE, label for the value of b0.
b Character scalar. When annotated=TRUE, label for the value of b.
struct_test

ask Logical scalar. When TRUE, asks the user to type <Enter> to see each plot (as many as statistics where computed).
Y Numeric vector of length n.
statistic_name Character scalar. Name of the metric to compute. Currently this can be either "distance", ",","<","="",">="", or "<=".

Details

struct_test computes the test by generating the null distribution using Monte Carlo simulations (rewiring). struct_test_asym computes the test using an asymptotic approximation. While available, we do not recommend using the asymptotic approximation since it has not shown good results when compared to the MC approximation. Furthermore, the asymptotic version has only been implemented for graph as static graph.

The output from the hist method is the same as hist.default.

struct_test is a wrapper for the function boot from the boot package. Instead of resampling data–vertices or edges–in each iteration the function rewires the original graph using rewire_graph and applies the function defined by the user in statistic.

The default values to rewire_graph via rewire.args are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Number or Integer with default n.rewires(graph).</td>
</tr>
<tr>
<td>undirected</td>
<td>Logical scalar with default getOption("diffnet.undirected", FALSE).</td>
</tr>
<tr>
<td>copy.first</td>
<td>Logical scalar with TRUE.</td>
</tr>
<tr>
<td>algorithm</td>
<td>Character scalar with default "swap".</td>
</tr>
</tbody>
</table>

In struct_test ... are passed to boot, otherwise are passed to the corresponding method (hist for instance).

From the print method, p-value for the null of the statistic been equal between graph and its rewired versions is computed as follows

\[p(\tau) = 2 \times \min (\Pr(t \leq \tau), \Pr(t \geq \tau)) \]

Where \(\Pr(\cdot) \) is approximated using the Empirical Distribution Function retrieved from the simulations.

For the case of the asymptotic approximation, under the null we have

\[\sqrt{n} \left(\hat{\beta}(Y,G) - \mu_{\beta} \right) \sim_d N(0, \sigma_{\beta}^2) \]

The test is actually on development by Vega Yon and Valente. A copy of the working paper can be distributed upon request to <g.vegayon@gmail.com>.

n.rewires proposes a vector of number of rewirings that are performed in each iteration.

Value

A list of class diffnet_struct_test containing the following:
The graph passed to `struct_test`.

- **p.value**: The resulting p-value of the test (see details).

- **t0**: The observed value of the statistic.

- **mean_t**: The average value of the statistic applied to the simulated networks.

- **R**: Number of simulations.

- **statistic**: The function `statistic` passed to `struct_test`.

- **boot**: A boot class object as return from the call to `boot`.

- **rewire.args**: The list `rewire.args` passed to `struct_test`.

Author(s)

George G. Vega Yon

References

See Also

Other Functions for inference: `bootnet()`, `moran()`

Examples

```r
# Creating a random graph
set.seed(881)
 diffnet <- rdiffnet(100, 5, seed.graph="small-world")

# Testing structure-dependency of threshold
res <- struct_test(
  diffnet,
  function(g) mean(threshold(g), na.rm=TRUE),
  R=100
)

res
hist(res)

# Adding a legend
legend("topright", bty="n",
  legend=c(
    expression(t[0]:~Baseline),
    expression(t:~Rewired~average)
  )
)

# Concatenating results
 c(res, res)
```
Running in parallel fashion
res <- struct_test(
 diffnet, function(g) mean(threshold(g), na.rm=TRUE),
 R=100, ncpus=2, parallel="multicore"
)

res
hist(res)

summary.diffnet Summary of diffnet objects

Description
Summary of diffnet objects

Usage
S3 method for class 'diffnet'
summary(
 object,
 slices = NULL,
 no.print = FALSE,
 skip.moran = FALSE,
 valued = getOption("diffnet.valued", FALSE),
 ...
)

Arguments

object An object of class diffnet.
slices Either an integer or character vector. While integer vectors are used as indexes, character vectors are used jointly with the time period labels.
no.print Logical scalar. When TRUE suppress screen messages.
skip.moran Logical scalar. When TRUE Moran’s I is not reported (see details).
valued Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
...

Further arguments to be passed to approx_geodesic.

Details
Moran’s I is calculated over the cumulative adoption matrix using as weighting matrix the inverse of the geodesic distance matrix. All this via moran. For each time period t, this is calculated as:

\[m = \text{moran}(C[,t], G^{-1}) \]
Where \(C[,t] \) is the \(t \)-th column of the cumulative adoption matrix, \(G^{-1} \) is the element-wise inverse of the geodesic matrix at time \(t \), and \(\text{moran} \) is \texttt{netdiffuseR}'s moran's I routine. When \(\text{skip.moran} = \text{TRUE} \) Moran's I is not reported. This can be useful for both: reducing computing time and saving memory as geodesic distance matrix can become large. Since version 1.18.0, geodesic matrices are approximated using \texttt{approx_geodesic} which, as a difference from \texttt{geodist} from the \texttt{sna} package, and \texttt{distances} from the \texttt{igraph} package returns a matrix of class \texttt{dgCMatrix} (more details in \texttt{approx_geodesic}).

Value

A data frame with the following columns:

- \texttt{adopt} Integer. Number of adopters at each time point.
- \texttt{cum_adopt} Integer. Number of cumulative adopters at each time point.
- \texttt{cum_adopt_pcent} Numeric. Proportion of cumulative adopters at each time point.
- \texttt{hazard} Numeric. Hazard rate at each time point.
- \texttt{density} Numeric. Density of the network at each time point.
- \texttt{moran_obs} Numeric. Observed Moran's I.
- \texttt{moran_exp} Numeric. Expected Moran's I.
- \texttt{moran_sd} Numeric. Standard error of Moran's I under the null.
- \texttt{moran_pval} Numeric. P-value for the observed Moran's I.

Author(s)

George G. Vega Yon

See Also

Other \texttt{diffnet} methods: \%\%(), \texttt{as.array.diffnet()}, \texttt{c.diffnet()}, \texttt{diffnet-arithmetic}, \texttt{diffnet-class}, \texttt{diffnet_index}, \texttt{plot.diffnet()}

Examples

\begin{verbatim}
data(medInnovationsDiffNet) summary(medInnovationsDiffNet)
\end{verbatim}
survey_to_diffnet

Convert survey-like data and edgelists to a diffnet object

Description

These convenient functions turn network nomination datasets and edgelists with vertex attributes datasets into diffnet objects. Both work as wrappers of edgelist_to_adjmat and new_diffnet.

Usage

survey_to_diffnet(
 dat,
 idvar,
 netvars,
 toavar,
 groupvar = NULL,
 no.unsurveyed = TRUE,
 timevar = NULL,
 t = NULL,
 undirected =getOption("diffnet.undirected", FALSE),
 self =getOption("diffnet.self", FALSE),
 multiple =getOption("diffnet.multiple", FALSE),
 keep.isolates = TRUE,
 recode.ids = TRUE,
 warn.coercion = TRUE,
 ...
)

edgelist_to_diffnet(
 edgelist,
 w = NULL,
 t0 = NULL,
 t1 = NULL,
 dat,
 idvar,
 toavar,
 timevar = NULL,
 undirected =getOption("diffnet.undirected", FALSE),
 self =getOption("diffnet.self", FALSE),
 multiple =getOption("diffnet.multiple", FALSE),
 fill.missing = NULL,
 keep.isolates = TRUE,
 recode.ids = TRUE,
 warn.coercion = TRUE
)
Arguments

dat
A data frame.

idvar
Character scalar. Name of the id variable.

netvars
Character vector. Names of the network nomination variables.

toavar
Character scalar. Name of the time of adoption variable.

groupvar
Character scalar. Name of cohort variable (e.g. city).

no.unsurveyed
Logical scalar. When TRUE the nominated individuals that do not show in idvar are set to NA (see details).

timevar
Character scalar. In the case of longitudinal data, name of the time var.

t
Integer scalar. Repeat the network t times (if no t0, t1 are provided).

undirected
Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster).

self
Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).

multiple
Logical scalar. When TRUE allows multiple edges.

keep.isolates
Logical scalar. When FALSE, rows with NA/NULL values (isolated vertices unless have autolink) will be dropped (see details).

recode.ids
Logical scalar. When TRUE ids are recoded using as.factor (see details).

warn.coercion
Logical scalar. When TRUE warns coercion from numeric to integer.

...
Further arguments to be passed to new_diffnet.

edgelist
Two column matrix/data.frame in the form of ego -source- and alter -target- (see details).

w
Numeric vector. Strength of ties (optional).

t0
Integer vector. Starting time of the ties (optional).

t1
Integer vector. Finishing time of the ties (optional).

fill.missing
Character scalar. In the case of having unmatching ids between dat and edgelist, fills the data (see details).

Details

All of netvars, toavar and groupvar must be integers. Were these numeric they are coerced into integers, otherwise, when neither of both, the function returns with error. idvar, on the other hand, should only be integer when calling survey_to_diffnet, on the contrary, for edgelist_to_diffnet, idvar may be character.

In field work it is not unusual that some respondents nominate unsurveyed individuals. In such case, in order to exclude them from the analysis, the user can set no.unsurveyed=TRUE (the default), telling the function to exclude such individuals from the adjacency matrix. This is done by setting variables in netvars equal to NA when the nominated id can’t be found in idvar.

If the network nomination process was done in different groups (location for example) the survey id numbers may be define uniquely within each group but not across groups (there may be many individuals with id=1, for example). To encompass this issue, the user can tell the function what variable can be used to distinguish between groups through the groupvar argument. When groupvar is provided, function redifines idvar and the variables in netvars as follows:
survey_to_diffnet

\[\text{dat}[\text{idvar}] \leftarrow \text{dat}[\text{idvar}] + \text{dat}[\text{groupvar}] \times z \]

Where \(z = 10^{\text{nchar}(\max(\text{dat}[\text{idvar}]))} \).

For longitudinal data, it is assumed that the toavar holds the same information through time, this is, time-invariable. This as the package does not yet support variable times of adoption.

The fill.missing option can take any of these three values: "edgelist", "dat", or "both". This argument works as follows:

1. When fill.missing="edgelist" (or "both") the function will check which vertices show in dat but do not show in edgelist. If there is any, the function will include these in edgelist as ego to NA (so they have no link to anyone), and, if specified, will fill the t0, t1 vectors with NAs for those cases. If w is also specified, the new vertices will be set to \(\min(w, \text{na.rm}=\text{TRUE}) \).

2. When fill.missing="dat" (or "both") the function checks which vertices show in edgelist but not in dat. If there is any, the function will include these in dat by adding one row per individual.

Value

A diffnet object.

Author(s)

Vega Yon

See Also

fakesurvey, fakesurveyDyn

Other data management functions: diffnet-class, edgelist_to_adjmat(), egonet_attrs(), isolated()

Examples

Loading a fake survey (data frame)
data(fakesurvey)

Diffnet object keeping isolated vertices ----------------------------------
dn1 <- survey_to_diffnet(fakesurvey, "id", c("net1", "net2", "net3"), "toa", "group", keep.isolates=TRUE)

Diffnet object NOT keeping isolated vertices
dn2 <- survey_to_diffnet(fakesurvey, "id", c("net1", "net2", "net3"), "toa", "group", keep.isolates=FALSE)

dn1 has an extra vertex than dn2
dn1
dn2

Loading a longitudinal survey data (two waves) ----------------------------
data(fakesurveyDyn)
threshold

Retrieve threshold levels from the exposure matrix

Description

Thresholds are each vertexes exposure at the time of adoption. Substantively it is the proportion of adopters required for each ego to adopt. (see exposure).

Usage

```r
threshold(
  obj,
 toa,
  t0 = min(toa, na.rm = TRUE),
  include_censored = FALSE,
  lags = 0L,
  ...
)
```
Arguments

- **obj**: Either a $n \times T$ matrix (exposure to the innovation obtained from `exposure`) or a `diffnet` object.
- **toa**: Integer vector. Indicating the time of adoption of the innovation.
- **t0**: Integer scalar. See `toa_mat`.
- **include_censored**: Logical scalar. When `TRUE` (default), threshold
- **lags**: Integer scalar. Number of lags to consider when computing thresholds. `lags=1` defines threshold as exposure at $T - 1$, where T is time of adoption. Levels are not reported for observations adopting in the first time period.
- **...**: Further arguments to be passed to `exposure`.

Details

By default exposure is not computed for vertices adopting at the first time period, `include_censored=FALSE`, as estimating threshold for left censored data may yield biased outcomes.

Value

A vector of size n indicating the threshold for each node.

Author(s)

George G. Vega Yon & Thomas W. Valente

See Also

Threshold can be visualized using `plot_threshold`

Other statistics: `bass`, `classify_adopters()`, `cumulative_adopt_count()`, `dgr()`, `ego_variance()`, `exposure()`, `hazard_rate()`, `infection()` , `moran()`, `struct_equiv()`, `vertex_covariate_dist()`

Examples

```r
# Generating a random graph with random Times of Adoption
set.seed(783)
toa <- sample.int(4, 5, TRUE)
graph <- rgraph_er(n=5, t=max(toa) - min(toa) + 1)

# Computing exposure using Structural Equivalence
adopt <- toa_mat(toa)
se <- struct_equiv(graph)
se <- lapply(se, function(x) methods::as((x$SE)^(-1), "dgCMatrix"))
expo <- exposure(graph, adopt$cumadopt, alt.graph=se)

# Retrieving threshold
threshold(expo, toa)

# We can do the same by creating a diffnet object
diffnet <- as_diffnet(graph, toa)
```
Difference in Time of Adoption (TOA) between individuals

Description

Creates $n \times n$ matrix indicating the difference in times of adoption between each pair of nodes.

Usage

```r
toa_diff(obj, t0 = NULL, labels = NULL)
```

Arguments

- **obj**: Either an integer vector of size n containing time of adoption of the innovation, or a `diffnet` object.
- **t0**: Integer scalar. Sets the lower bound of the time window (e.g. 1955).
- **labels**: Character vector of size n. Labels (ids) of the vertices.

Details

Each cell ij of the resulting matrix is calculated as $toa_j - toa_i$, so that whenever its positive it means that the j-th individual (alter) adopted the innovation sooner.

Value

An $n \times n$ symmetric matrix indicating the difference in times of adoption between each pair of nodes.

Author(s)

George G. Vega Yon & Thomas W. Valente

Examples

```r
# Generating a random vector of time
set.seed(123)
times <- sample(2000:2005, 10, TRUE)

toa_diff(times)
```
Description

Creates two matrices recording times of adoption of the innovation. One matrix records the time period of adoption for each node with zeros elsewhere. The second records the cumulative time of adoption such that there are ones for the time of adoption and every time period thereafter.

Usage

```
toa_mat(obj, labels = NULL, t0 = NULL, t1 = NULL)
```

Arguments

- **obj**: Either an integer vector of size n containing time of adoption of the innovation, or a `diffnet` object.
- **labels**: Character vector of size n. Labels (ids) of the vertices.
- **t0**: Integer scalar. Sets the lower bound of the time window (e.g. 1955).
- **t1**: Integer scalar. Sets the upper bound of the time window (e.g. 2000).

Details

In order to be able to work with time ranges other than 1,\ldots,T the function receives as input the boundary labels of the time windows through the variables t0 and t. While by default the function assumes that the the boundaries are given by the range of the times vector, the user can set a personalized time range exceeding the one given by the times vector. For instance, times of adoption may range between 2001 and 2005 but the actual data, the network, is observed between 2000 and 2005 (so there is not left censoring in the data), hence, the user could write:

```
adopmats <- toa_mat(times, t0=2000, t1=2005)
```

That way the resulting `cumadopt` and `adopt` matrices would have $2005 - 2000 + 1 = 6$ columns instead of $2005 - 2001 + 1 = 5$ columns, with the first column of the two matrices containing only zeros (as the first adoption happen after the year 2000).

Value

A list of two $n \times T$

- `cumadopt` has 1’s for all years in which a node indicates having the innovation.
- `adopt` has 1’s only for the year of adoption and 0 for the rest.

Author(s)

George G. Vega Yon & Thomas W. Valente
Examples

Random set of times of adoptions
times <- sample(c(NA, 2001:2005), 10, TRUE)
toa_mat(times)

Now, suppose that we observe the graph from 2000 to 2006
toa_mat(times, t0=2000, t1=2006)

transformGraphBy(A function to a graph considering non-diagonal structural zeros)

Description

When there are structural zeros given by groups, this function applies a particular transformation function of a graph by groups returning a square matrix of the same size of the original one with structural zeros and the function applied by INDICES.

Usage

transformGraphBy(graph, INDICES, fun = function(g, ...) g, ...)

S3 method for class 'diffnet'
transformGraphBy(graph, INDICES, fun = function(g, ...) g, ...)

S3 method for class 'dgCMatrix'
transformGraphBy(graph, INDICES, fun = function(g, ...) g, ...)

Arguments

graph A graph

INDICES A vector of length \(n \).

fun A function. This function must return a matrix of class \(\text{dgCMatrix} \) with the same dimension as \(\text{dim}(g) \).

... Further arguments passed to fun

Details

The transformation function \(\text{fun} \) must return a square matrix of size \(m \times m \), where \(m \) is the size of the subgroup given by INDICES. See examples below.
Rewiring a graph by community --

Two Random graphs of different size
set.seed(123)
g0 <- rgraph_ba(m=2, self=FALSE)
g1 <- rgraph_ba(m=3, t=19, self=FALSE)

Need a place to store both networks together!
G <- methods::new(
 Class = "dgCMatrix",
 Dim = c(1L,1L)*(nnodes(g0) + nnodes(g1)),
 p = rep(0L, (nnodes(g0) + nnodes(g1)) + 1L)
)

Filling the matrix
G[1:nnodes(g0),1:nnodes(g0)] <- g0
G[(nnodes(g0) + 1):nnodes(G), (nnodes(g0) + 1):nnodes(G)] <- g1

Creating an index (community)
indx <- c(rep(1, nnodes(g0)), rep(2, nnodes(g1)))

Apply the rewiring algorithm per group
ans <- transformGraphBy(G, indx, function(g, ...) {
 rewire_graph(g, 100, "swap")
})

ans

vertex_covariate_compare

Comparisons at dyadic level

Description

Comparisons at dyadic level

Usage

`vertex_covariate_compare(graph, X, funname)`

Arguments

- `graph` A matrix of size $n \times n$ of class `dgCMatrix`.
- `X` A numeric vector of length n.
- `funname` Character scalar. Comparison to make (see details).
vertex_covariate_dist

Details

This auxiliary function takes advantage of the sparseness of graph and applies a function in the form of \(\text{funname}(x_i, x_j) \) only to \((i, j)\) that have no empty entry. In other words, applies a compares elements of \(X \) only between vertices that have a link; making \(n_{\text{links}}(\text{graph}) \) comparisons instead of looping through \(n \times n \), which is much faster.

\(\text{funname} \) can take any of the following values: "distance", "^2" or "quaddistance", "\(\geq \)" or "greater", "\(\leq \)" or "smaller", "\(>\)" or "greaterequal", "\(<\)" or "smallerequal", "\(==\)" or "equal".

Value

A matrix \(\text{dgCMatrix} \) of size \(n \times n \) with values in the form of \(\text{funname}(x_i, x_j) \).

See Also

Other dyadic-level comparison functions: \text{matrix_compare()}, \text{vertex_covariate_dist()}\)

Examples

```r
# Basic example -------------------------------
set.seed(1313)
G <- rgraph_ws(10, 4, .2)
x <- rnorm(10)

vertex_covariate_compare(G, x, "distance")
vertex_covariate_compare(G, x, "^2")
vertex_covariate_compare(G, x, "\( \geq \)")
vertex_covariate_compare(G, x, "\( \leq \)")
```

vertex_covariate_dist

Computes covariate distance between connected vertices

Description

Computes covariate distance between connected vertices

Usage

```r
vertex_covariate_dist(graph, X, p = 2)
vertex_mahalanobis_dist(graph, X, S)
```

Arguments

- **graph**: A square matrix of size \(n \) of class \(\text{dgCMatrix} \).
- **X**: A numeric matrix of size \(n \times K \). Vertices attributes
- **p**: Numeric scalar. Norm to compute
- **S**: Square matrix of size \(\text{ncol}(x) \). Usually the var-covar matrix.
vertex_covariate_dist

Details

Faster than dist, these functions compute distance metrics between pairs of vertices that are connected (otherwise skip).

The function vertex_covariate_dist is the stickiest of dist and returns p-norms (Minkowski distance). It is implemented as follows (for each pair of vertices):

\[D_{ij} = \left(\sum_{k=1}^{K} |X_{ik} - X_{jk}|^p \right)^{1/p} \text{ if } graph_{i,j} \neq 0 \]

In the case of mahalanobis distance, for each pair of vertex \((i,j)\), the distance is computed as follows:

\[D_{ij} = \left((X_i - X_j) \times S \times (X_i - X_j)' \right)^{1/2} \text{ if } graph_{i,j} \neq 0 \]

Value

A matrix of size \(n \times n\) of class dgCMatrix. Will be symmetric only if graph is symmetric.

Author(s)

George G. Vega Yon

References

See Also

mahalanobis in the stats package.

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold()

Other dyadic-level comparison functions: matrix_compare(), vertex_covariate_compare()

Examples

Distance (aka p norm) ---
set.seed(123)
G <- rgraph_ws(20, 4, .1)
X <- matrix(runif(40), ncol=2)
vertex_covariate_dist(G, X)[1:5, 1:5]

Mahalanobis distance ---
S <- var(X)
M <- vertex_mahalanobis_dist(G, X, S)
Example with diffnet objects --

data(medInnovationsDiffNet)
X <- cbind(
 medInnovationsDiffNet["proage"],
 medInnovationsDiffNet["attend"]
)

S <- var(X, na.rm=TRUE)
ans <- vertex_mahalanobis_dist(medInnovationsDiffNet, X, S)

weighted_var

Computes weighted variance

Description

Computes weighted variance

Usage

```r
weighted_var(x, w)
wvar(x, w)
```

Arguments

- `x` A numeric vector of length `n`.
- `w` A numeric vector of length `n`.

Details

`weighted_variance` implements weighted variance computation in the following form:

\[
\frac{\sum_i w'_i (x_i - \bar{x})^2}{(1 - n)}
\]

where \(w'_i = w_i / \sum_i w_i\), and \(\bar{x} = \sum_i w'_i x_i\).

Value

Numeric scalar with the weighted variance.

See Also

This function is used in `diffmap`.
Matrix multiplication

Description

Matrix multiplication methods, including diffnet objects. This function creates a generic method for \%\% allowing for multiplying diffnet objects.

Usage

x \%\% y

Default S3 method:
x \%\% y

S3 method for class 'diffnet'
x \%\% y

Arguments

x Numeric or complex matrices or vectors, or diffnet objects.
y Numeric or complex matrices or vectors, or diffnet objects.

Details

This function can be useful to generate alternative graphs, for example, users could compute the n-steps graph by doing net \%\% net (see examples).

Value

In the case of diffnet objects performs matrix multiplication via mapply using x$graph and y$graph as arguments, returning a diffnet. Otherwise returns the default according to \%\%.

See Also

Other diffnet methods: \texttt{as.array.diffnet()}, \texttt{c.diffnet()}, \texttt{diffnet-arithmetic}, \texttt{diffnet-class}, \texttt{diffnet_index}, \texttt{plot.diffnet()}, \texttt{summary.diffnet()}

Examples

Finding the Simmelian Ties network --
Random diffnet graph
set.seed(773)
net <- rdiffnet(100, 4, seed.graph='small-world', rgraph.args=list(k=8))
netsim <- net

According to Dekker (2006), Simmelian ties can be computed as follows
netsim <- net * t(net) # Keeping mutal
netsim <- netsim * (netsim %*% netsim)

Checking out differences (netsim should have less)
nlinks(net)
nlinks(netsim)

mapply('-\cdot\cdot', nlinks(net), nlinks(netsim))
Index

* Topic **datasets**
 - brfarmers, 13
* Topic **distribution**
 - rgraph.ba, 129
 - rgraph.er, 131
* Topic **dplot**
 - edges.coords, 49
 - grid_distribution, 63
* Topic **hplot**
 - plot.diffnet, 105
 - plot.infectsuscep, 109
 - plot.threshold, 112
* Topic **manip**
 - edgelist_to_adjmat, 46
 - isolated, 70
 - toa_diff, 150
 - toa_mat, 151
* Topic **misc**
 - drawColorKey, 44
 - edges.coords, 49
 - grid_distribution, 63
 - pretty_within, 115
 - recode, 122
* Topic **univar**
 - cumulative.adopt.count, 23
 - dgr, 24
 - exposure, 55
 - hazard_rate, 64
 - infection, 67
 - struct.equiv, 137
 - threshold, 148
*.diffnet (diffnet-arithmetic), 28
.-.diffnet (diffnet-arithmetic), 28
./.diffnet (diffnet-arithmetic), 28
[.diffnet (diffnet-index), 36
[-.diffnet (diffnet-index), 36
[.diffnet (diffnet-index), 36
[[.diffnet (diffnet-index), 36
[[[.diffnet (diffnet-index), 36
&.diffnet (diffnet-arithmetic), 28

**%, 6, 19, 29, 33, 37, 103, 144, 157, 157
%^*.diffnet (diffnet-arithmetic), 28
adjmat_to_edgelist
 (edgelist_to_adjmat), 46
adopt_changes (select.egoalter), 136
ape::Moran.I, 91
approx.geodesic, 4, 89, 138, 143, 144
approx.geodist (approx.geodesic), 4
array, 94
arrows, 50, 114
as.array.diffnet, 5, 19, 29, 33, 37, 103, 144, 157
as.data.frame, 20
as.data.frame.diffnet, 39
as.data.frame.diffnet (diffnet-class), 29
as.data.frame.diffnet.adopters
 (classify.adopters), 19
as.dgCMatrix (as_dgCMatrix), 6
as.factor, 47, 146
as.matrix.network, 7
as_adj, 7
as_dgCMatrix, 6
as_diffnet, 22, 23, 67, 117
as_diffnet (diffnet-class), 29
as_spmat (as_dgCMatrix), 6
bass, 8, 21, 24, 25, 55, 57, 66, 69, 92, 139, 149, 155
bass_df (bass), 8
bass_F (bass), 8
bass_f (bass), 8
bernoulli (rgraph.er), 131
binary-functions (matrix.compare), 84
boot, 10, 141
bootnet, 10, 92, 142
brfarmers, 13, 18, 41, 60–63, 84, 88
brfarmersDiffNet, 17, 18, 41, 60–63, 84, 88
c.diffnet, 6, 18, 29, 33, 37, 103, 144, 157
c.diffnet_bootnet (bootnet), 10
c.diffnet_struct_test (struct_test), 139
classify (classify_adopters), 19
classify_adopters, 10, 19, 24, 25, 55, 57, 66, 69, 92, 139, 149, 155
classify_graph, 22
colnames, 94
colorRamp, 108
compare_matrix (matrix_compare), 84
complete_cases, 47
CUG (permute_graph), 100
cumulative_adopt_count, 10, 21, 23, 25, 55, 57, 66, 69, 89, 92, 104, 107, 109, 111, 114, 124, 139, 149, 155
degree (dgr), 24
dgCMatrix, 5, 6, 27, 32, 85, 91, 94, 135, 138, 152
dgr, 10, 21, 24, 24, 43, 46, 55, 57, 64, 66, 69, 89, 92, 104, 107, 109, 111, 114, 124, 139, 149, 155
diag_expand, 26
diffmap, 109, 135, 156
diffmap (diffusionMap), 41
diffnet, 6, 18, 23, 38, 46, 67, 84, 88, 94, 98, 102, 118, 140, 143, 147, 150, 151, 157
diffnet (diffnet-class), 29
diffnet-arithmetic, 28
diffnet-class, 29
diffnet.attrs (diffnet-class), 29
diffnet.attrs <- (diffnet-class), 29
diffnet.toa (diffnet-class), 29
diffnet.toa <- (diffnet-class), 29
diffnet_check_attr_class, 35
diffnet_index, 6, 19, 29, 33, 35, 36, 103, 144, 157
diffnet_to_igraph (igraph), 66
diffnet_to_network (network), 97
diffnet_to_networkDynamic (network), 97
diffnetLapply (diffnet-class), 29
diffreg, 38
diffusion-data, 40
diffusionMap, 25, 41, 46, 64, 66, 104, 107–109, 111, 114, 124
Difussion Network Datasets, 88
dim.diffnet (diffnet-class), 29
dimnames, 94
dimnames.diffnet (diffnet-class), 29
dist, 155
distances, 144
drawColorKey, 25, 43, 44, 64, 66, 104, 107–109, 111, 114, 124
drop_isolated (isolated), 70
edgelist_to_adjmat, 33, 46, 54, 71, 122, 145, 147
edgelist_to_diffnet
(survey_to_diffnet), 145
edges_coords, 49
ego_variance, 10, 21, 24, 25, 54, 57, 66, 69, 92, 139, 149, 155
egonet_attrs, 33, 48, 52, 71, 147
exposure, 10, 21, 24, 25, 55, 55, 66, 69, 92, 113, 114, 117, 139, 148, 149, 155
Extract, 32
fakeDynEdgelist, 17, 18, 41, 60, 61–63, 84, 88
fakeEdgelist, 17, 18, 41, 60, 61, 62, 63, 84, 88
dakesurvey, 17, 18, 41, 60, 61, 63, 84, 88, 147
dakesurveyDyn, 17, 18, 41, 60–62, 62, 84, 88, 147
filled.contour, 110, 111
fitbass (bass), 8
ftable, 20
ftable.diffnet_adopters (classify_adopters), 19
Geodesic (approx_geodesic), 4
gedist, 144
getOption, 94
glm, 39
graph_power (diffnet-arithmetic), 28
grid_distribution, 25, 43, 46, 63, 66, 104, 107, 109, 111, 114, 124
hazard_rate, 10, 21, 24, 25, 43, 46, 55, 57, 64, 64, 69, 92, 104, 107, 109, 111, 114, 124, 139, 149, 155
hist, 11, 25, 140, 141
hist.default, 141
hist.diffnet_bootnet (bootnet), 10
hist.diffnet_struct_test (struct_test), 139
histogram, 25
igraph, 66, 67, 99, 120, 121, 124
igraph_to_diffnet (igraph), 66
igraph_vertex_rescale
 (rescale_vertex_igraph), 123
image, 43
image.diffnet_diffmap (diffusionMap), 41
indegree, 10, 21, 24, 25, 55, 57, 66, 67, 92, 111, 139, 149, 155
isolated, 33, 48, 54, 70, 147
jitter, 42, 114
kde2d, 42, 110
kfamily, 17, 18, 41, 60–63, 71, 84, 88
kfamilyDiffNet, 17, 18, 41, 60–63, 84, 88
layout_nicely, 43
leader_matching (mentor_matching), 89
legend, 106
mahalanobis, 155
mahalanobis (vertex_covariate_dist), 154
makeCluster, 118
mapply, 157
MatchIt, 95
matchit, 95, 96
matplot, 9, 104
Matrix, 91, 94
matrix, 91, 94, 138
matrix_compare, 84, 154, 155
mediNnovations, 17, 18, 41, 60–63, 84, 86, 88
mediNnovationsDiffNet, 17, 18, 41, 60–63, 84, 88
mentor_matching, 89
moran, 10, 12, 21, 24, 25, 55, 57, 66, 69, 91, 139, 142, 143, 149, 155
mosaicplot, 21
n_rewires (struct_test), 139
names, 94
nedges (nvertices), 99
netdiffuser, 93
netdiffuserR-graphs, 93
netdiffuserR-options, 94
netmatch, 95
netmatch_prepare (netmatch), 95
network, 67, 97, 98, 120, 121
network_to_diffnet (network), 97
networkDynamic, 98
networkDynamic (network), 97
networkDynamic_to_diffnet (network), 97
gen_diffnet, 67, 98, 145, 146
gen_diffnet (diffnet-class), 29
nlinks (nvertices), 99
nls, 9
nnodes (nvertices), 99
nSlices (nvertices), 29
nvertices, 99
outdegree (dgr), 24
p-norm (vertex_covariate_dist), 154
par, 25, 65, 106, 114
par(usr), 45
parSapply, 118
permute_graph, 100, 118, 128, 130, 132, 134, 135
plot, 25, 65, 113, 114
plot.diffnet, 6, 19, 29, 33, 37, 102, 144, 157
plot.diffnet_adopters
 (classify_adopters), 19
plot.diffnet_bass (bass), 8
plot.diffnet_degSeq (dgr), 24
plot.diffnet_diffmap (diffusionMap), 41
plot.diffnet_hr (hazard_rate), 64
plot.diffnet_mentor (mentor_matching), 89
plot.igraph, 90, 102, 103, 105, 106, 108, 123
plot.table, 21
plot_adopters, 25, 43, 46, 64, 66, 103, 107, 109, 111, 114, 124
plot.diffnet, 25, 43, 46, 64, 66, 104, 105, 109, 111, 114, 124
plot.diffnet2, 25, 43, 46, 64, 66, 104, 107, 107, 111, 114, 124, 135
plot_hazard (hazard_rate), 64
plot_hazardrate (hazard_rate), 64
plot_infectsuscep, 25, 43, 46, 64, 66, 69, 104, 107, 109, 109, 114, 124
plot_threshold, 25, 43, 46, 50, 64, 66, 104, 107, 109, 111, 112, 124, 149
pretty, 115
pretty_within, 115
print.diffnet (diffnet-class), 29
print.diffnet_bootnet (bootnet), 10
print.diffnet_diffmap(diffusionMap), 41
print.diffnet_se(struct_equiv), 137
print.diffnet_struct_test
 (struct_test), 139
QAP (permute_graph), 100
rank, 89, 90
rdiffnet, 57, 101, 116, 127, 128, 130, 132,
 134, 135
rdiffnet_multiple (rdiffnet), 116
read_dl (read_pajek), 119
read_ml (read_pajek), 119
read_net (read_pajek), 119
read_pajek, 67, 99, 119, 121
read_ucinet (read_ucinet_head), 121
read_ucinet_head, 67, 99, 120, 121
recode, 47, 122
rect, 45
resample_graph, 11
resample_graph (bootnet), 10
rescale_vertex_igraph, 25, 43, 46, 64, 66,
 90, 102–104, 106–109, 111, 114,
 123
rewire_graph, 101, 116–118, 125, 130, 132,
 134, 135, 140, 141
rewire_qap (permute_graph), 100
rewire_qap, 125, 126
rewire_qap (permute_graph), 100
rgraph_ba, 101, 117, 118, 128, 129, 132, 134,
 135
rgraph_er, 101, 117, 118, 128, 130, 131, 134,
 135
rgraph_ws, 101, 117, 118, 128, 130, 132, 133,
 134, 135
ring_lattice, 101, 118, 128, 130, 132–134,
 135
round, 20
round_to_seq, 43, 135
row.names, 47
rownames, 94
sapply, 117, 118
scale-free (rgraph_ba), 129
select_egoalter, 136
Shortest-Path (approx_geodesic), 4
small-world (rgraph_ws), 133
sna::geodist, 4
sprintf, 106
str.diffnet (diffnet-class), 29
struct_equiv, 10, 21, 24, 25, 55–57, 66, 69,
 92, 137, 149, 155
struct_test, 12, 55, 92, 126, 127, 139
struct_test_asym (struct_test), 139
summary.diffnet, 6, 19, 29, 33, 37, 103, 143,
 157
summary.diffnet_adoptChanges
 (select_egoalter), 136
survey_to_diffnet, 33, 48, 54, 61, 62, 71,
 145
susceptibility, 111
susceptibility (infection), 67
symbols, 50, 124
t.diffnet (diffnet-class), 29
table, 20
text, 45, 113
threshold, 10, 20, 21, 24, 25, 55, 57, 66, 69,
 92, 113, 114, 139, 148, 155
toa_diff, 150
toa_mat, 20, 23, 31, 32, 56, 64, 68, 110, 136,
 149, 151
transformGraphBy, 152
UCINET (read_ucinet_head), 121
ucinet (read_ucinet_head), 121
vertex_covariate_compare, 55, 85, 153,
 155
vertex_covariate_dist, 10, 21, 24, 25, 55,
 57, 66, 69, 85, 92, 139, 149, 154, 154
vertex_mahalanobis_dist
 (vertex_covariate_dist), 154
vertex_rescale_igraph
 (rescale_vertex_igraph), 123
weighted_var, 156
wvar (weighted_var), 156