Package ‘netmap’

October 13, 2022

Title Represent Network Objects on a Map
Version 0.1.1
Description Represent ‘network’ or ‘igraph’ objects whose vertices can be represented by features in an ‘sf’ object as a network graph surmising a ‘sf’ plot. Fits into ‘ggplot2’ grammar.
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.2
URL https://github.com/artod83/netmap
BugReports https://github.com/artod83/netmap/issues
Imports ggnetwork, igraph, network, rlang, sf, sna
Suggests rmarkdown, knitr, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
Depends R (>= 2.10)
LazyData true
NeedsCompilation no
Author Matteo Dimai [aut, cre] (<https://orcid.org/0000-0003-1126-5234>)
Maintainer Matteo Dimai <matteo.dimai@phd.units.it>
Repository CRAN
Date/Publication 2022-03-18 16:00:02 UTC

R topics documented:

 check_network_sf ... 2
 fvgmap ... 3
 ggcentrality .. 3
 ggconn_area ... 5
 ggnetmap ... 6
 is_lookup_table ... 7
check_network_sf

Internal checks before ggnetmap and ggcentrality

Description

Checks whether the proper packages are installed, whether the parameters are of the proper classes, whether the network-map link is possible, then performs the link.

Usage

check_network_sf(n, m, lkp = NULL, m_name = NULL, n_name = "vertex.names")

Arguments

n A network or igraph object.

m A sf object.

lkp An optional lookup table.

m_name Optional character, name of field in m and of column in lkp.

n_name Optional character, name of vertex attribute in n and of column in lkp.

Value

A list with a network or igraph object with only the vertices present in the sf object as the first element and a list with two vectors, one of features in m present both in the lookup table and in n, the other of nodes in n present both in the lookup table and in m.
fvmap

Map of municipality borders in the Friuli Venezia Giulia region, Italy

Description

An sf object containing the ISTAT municipality codes, geometry and the municipality names in the Friuli Venezia Giulia region in northeastern Italy, based on official ISTAT shapefiles.

Usage

fvmap

Format

An sf object with 215 features and 6 fields:

- **Cod_reg** region code, always =6 (Friuli Venezia Giulia)
- **Cod_pro** province code (93=Pordenone, 30=Udine, 31=Gorizia, 32=Trieste)
- **Pro_com** municipality code, consists of province code + progressive code of the municipality within the province
- **Shape_leng** length of municipality perimeter
- **Shape_area** municipality area
- **geometry** a MULTIPOLYGON

Source

https://www.istat.it/it/archivio/104317

ggcentrality

Calculate centrality indices for vertices linked to a sf object

Description

Given a sf object with features that can be linked to a network or igraph object, obtain centrality indices for linked features.
Usage

```
rgcentrality(
    n,
    m,
    lkp = NULL,
    m_name = NULL,
    n_name = "vertex.names",
    par.deg = NULL,
    par.bet = NULL,
    par.clo = NULL
)
```

Arguments

- `n`: A network or igraph object.
- `m`: A sf object.
- `lkp`: An optional lookup table.
- `m_name`: Optional character, name of field in `m` and of column in `lkp`.
- `n_name`: Optional character, name of vertex attribute in `n` and of column in `lkp`.
- `par.deg`: List with additional optional parameters to functions `degree` or `degree`.
- `par.bet`: List with additional optional parameters to functions `betweenness` or `betweenness`.
- `par.clo`: List with additional optional parameters to functions `closeness` or `closeness`.

Value

An sf object, input `m` with added columns for centrality indices (degree, betweenness, closeness; existing columns with the same name will be overwritten) and with only the features linked to vertices in input `n`.

Examples

```r
net=network::network(matrix(c(0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0), nrow=4, byrow=TRUE))
network::set.vertex.attribute(net, "name", value=c("a", "b", "c", "d"))
wkb = structure(list("010100002040710000000000000001A06410000000000AC5C1641",
                      "010100002040710000000000000001A06410000000000AC5C1441",
                      "010100002040710000000000000001A06410000000000AC5C1241",
                      "010100002040710000000000000001A02410000000000AC5C1841"), class = "WKB")
map=sf::st_sf(id=c("a1", "b2", "c3", "d4"), sf::st_as_sfc(wkb, EWKB=TRUE))
lkptbl=data.frame(id=c("a1", "b2", "c3", "d4"), name=c("a", "b", "c", "d"))
netmap::ggcentrality(net, map, lkptbl, "id", "name")
```
ggconn_area

Calculate connectedness to a specific vertex for vertices linked to a sf object

Description

Given a sf object with features that can be linked to a network or igraph object and given a node with id `id` in said graph that can be linked to the sf object, obtain an indicator variable denoting, for each node, a connection to id.

Usage

```r
ggconn_area(n, m, id, lkp = NULL, m_name = NULL, n_name = "vertex.names")
```

Arguments

- `n` A network or igraph object.
- `m` A sf object.
- `id` The identifier (as vertex attribute `n_name` of object `n`) of the feature that needs to be checked for connections.
- `lkp` An optional lookup table.
- `m_name` Optional character, name of field in `m` and of column in `lkp`.
- `n_name` Optional character, name of vertex attribute in `n` and of column in `lkp`.

Value

An sf object, input `m` with an added column `conn_area` with an indicator variable set to 1 if the feature is connected to the feature with vertex id `id`, 0 otherwise. In directed graphs, only outgoing links are considered a connection. Any existing column with the same name will be overwritten, the result will contain only the features linked to vertices in input. If the vertex `id` is not present in object `n`, `conn_area` will be set to 0 for all vertices.

Examples

```r
net=network::network(matrix(c(0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0), nrow=4, byrow=TRUE))
network::set.vertex.attribute(net, "name", value=c("a", "b", "c", "d"))
wkb = structure(list("01010000204071000000000000000001064100000000AC5C1641",  
"01010000204071000000000000000001064100000000AC5C1441",  
"01010000204071000000000000000001064100000000AC5C1241",  
"01010000204071000000000000000001064100000000AC5C1841"), class = "WKB")
map=sf::st_sf(id=c("a1", "b2", "c3", "d4"), sf::st_as_sfc(wkb, EWKB=TRUE))
lkptbl=data.frame(id=c("a1", "b2", "c3", "d4"), name=c("a", "b", "c", "d"))
ggconn_area(net, m, id, lkp=lkptbl, n_name = "name")
```
ggnetmap
Fortify a network over a map

Description

Link a network or igraph and a sf object in a data.frame for subsequent representation on a plot using ggplot2.

Usage

```r
ggnetmap(
  n,  
  m,  
  lkp = NULL,  
  m_name = NULL,  
  n_name = "vertex.names",  
  scale = FALSE,  
  ...  
)
```

Arguments

- `n` A network or igraph object.
- `m` A sf object.
- `lkp` An optional lookup table.
- `m_name` Optional character, name of field in `m` and of column in `lkp`.
- `n_name` Optional character, name of vertex attribute in `n` and of column in `lkp`.
- `scale` Whether coordinates should be scaled (defaults to FALSE since the network should be overlayed with the non-scaled sf object).
- `...` Additional parameters passed to `fortify`.

Details

Using a network or igraph and a sf object as inputs, with an optional lookup table (a data.frame) in case the IDs don’t match, produces a data.frame that can be used with ggnetwork’s `geom_edges` and `geom_nodes` functions to represent the network as overlayed on a sf object in a ggplot2 graph. Only vertices with a corresponding feature in the sf object are included.

Value

A data frame, produced by `fortify`, which can be used as data source in ggplot2 graphs.
is_lookup_table

Examples

```r
net = network::network(matrix(c(0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0), nrow=4, byrow=TRUE))
network::set.vertex.attribute(net, "name", value=c("a", "b", "c", "d"))
wkb = structure(list("010100002040710000000000000081A064100000000AC5C1641",
"010100002040710000000000000081A084100000000AC5C1441",
"010100002040710000000000000081A044100000000AC5C1241",
"010100002040710000000000000081A024100000000AC5C1841"), class = "WKB")
map = sf::st_sf(id=c("a1", "b2", "c3", "d4"), sf::st_as_sfc(wkb, EWKB=TRUE))
lkptbl = data.frame(id=c("a1", "b2", "c3", "d4"), name=c("a", "b", "c", "d"))
ggnetmap(net, map, lkptbl, "id", "name")
```

is_lookup_table
Is data frame a lookup table?

Description

Checks whether a data.frame is a valid lookup table.

Usage

```r
is_lookup_table(lkp, m_name = NULL, n_name = NULL)
```

Arguments

- `lkp`: A data.frame.
- `m_name`: Optional, a character string with the name of the column in `lkp` to check against `m`.
- `n_name`: Optional, a character string with the name of the column in `lkp` to check against `n`.

Value

FALSE on error, a vector with `m_name` and `n_name` if the lookup table is valid.

is_network
Is object a network?

Description

Checks whether an object is a network object or an igraph object, returns message if it's not.

Usage

```r
is_network(n)
```
Arguments
n
Object of class network or igraph.

Value
TRUE if object of class network, FALSE otherwise.

is_sf
Is object a map?

Description
Checks whether an object is an sf object, returns message if it’s not

Usage
is_sf(m)

Arguments
m
Object of class sf.

Value
TRUE if object of classes sf and data.frame, FALSE otherwise.

link_network_map
Link a network and a map

Description
Checks which vertices of a network object can be represented with features of a sf object.

Usage
link_network_map(m, n, m_name, n_name = "vertex.names")

Arguments
m
Object of class sf.
n
Object of class network or igraph.
m_name
Name of the map field to use for the link.
n_name
Name of the vertex attribute to use for the link, defaults to vertex.names.

Value
On success a list with two vectors, one of features in m present in n, the other of nodes in n present in m, -1 on error.
link_network_map2
Link a network and a map with a lookup table

Description
Checks which vertices of a network object can be represented with features of a sf object with a lookup table.

Usage

```r
link_network_map2(m, n, lkp, m_name = NULL, n_name = NULL)
```

Arguments
- `m` Object of class `sf`.
- `n` Object of class `network` or `igraph`.
- `lkp` Lookup table, a `data.frame`.
- `m_name` Optional character, name of field in `m` and of column in `lkp` (first column of `lkp` is used if `NULL`).
- `n_name` Optional character, name of vertex attribute in `n` and of column in `lkp` (second column of `lkp` is used if `NULL`).

Value
On success a list with two vectors, one of features in `m` present both in the lookup table and in `n`, the other of nodes in `n` present both in the lookup table and in `m`, -1 on error.

netmap
netmap: Plot network and igraph objects on a sf map using ggplot2

Description
The netmap package extends the ggnetwork package by providing functions to plot networks, with vertices usually representing objects with a spatial attribute (cities, regions, countries, users with location data attached etc.) on a map, provided by a sf object (which in turn is able to represent more or less all spatial data available). Networks and maps need not have the same set of elements: if they don’t, only the intersection will be represented.

netmap functions
The main function is `ggnetmap`, which produces a `data.frame` that is then used as data within ggplot2 calls. For those wishing to use the `plot.network` or the `plot.igraph` function to plot the network (without overlaying it on an sf object), both a custom layout function, `network.layout.extract_coordinates`, and a wrapper that provides convenient manipulation of network and sf objects, `netmap_plot`, are available.
netmap_plot

Description

Wrapper for plot.network and plot.igraph using a custom network layout that extracts coordinates of centroids from a sf object. Only vertices with a corresponding feature are plotted.

Usage

netmap_plot(n, m, lkp = NULL, m_name = NULL, n_name = "vertex.names", ...)

Arguments

n A network or igraph object.
m A sf object.
lkp An optional lookup table.
m_name Optional character, name of field in m and of column in lkp.
n_name Optional character, name of vertex attribute in n and of column in lkp.
... Additional parameters passed to plot.network.

Value

A plot of the network.

Examples

net=network::network(matrix(c(0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0), nrow=4, byrow=TRUE))
network::set.vertex.attribute(net, "name", value=c("a", "b", "c", "d"))
wkb = structure(list("01010000204071000000000000000081A064100000000AC5C1641", "01010000204071000000000000000081A064100000000AC5C1441", "01010000204071000000000000000081A044100000000AC5C1241", "01010000204071000000000000000081A024100000000AC5C1841"), class = "WKB")
map=sf::st_sf(id=c("a1", "b2", "c3", "d4"), sf::st_as_sfc(wkb, EWKB=TRUE))
lkptbl=data.frame(id=c("a1", "b2", "c3", "d4"), name=c("a", "b", "c", "d"))
netmap::netmap_plot(net, map, lkptbl, "id", "name")
network.layout.extract_coordinates

Layout of a network based on a sf object

Description

Custom layout for `plot.network`, extracting coordinates of vertices from a sf object. Its result can be used by `plot.igraph` as well.

Usage

```r
network.layout.extract_coordinates(n, layout.par)
```

Arguments

- **n**: A network or igraph object. Not used, only for compatibility with `plot.network`.
- **layout.par**: A list of layout parameters (the only one implemented is `layout.par$sf`, an sf object whose rows match the order of vertices in `n`).

Value

A matrix whose rows contain the x,y coordinates of the vertices of `n`.

Examples

```r
net = network::network(matrix(c(0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0), nrow=4, byrow=TRUE))
network::set.vertex.attribute(net, "name", value=c("a", "b", "c", "d"))
wkb = structure(list("01010000204071000000000000000001A06410000000000AC5C1641", "01010000204071000000000000000001A08410000000000AC5C1441", "01010000204071000000000000000001A04410000000000AC5C1241", "01010000204071000000000000000001A0410000000000AC5C1841"), class = "WKB")
map = sf::st_sf(id=c("a1", "b2", "c3", "d4"), sf::st_as_sfc(wkb, EWKB=TRUE))
ltkpltb = data.frame(id=c("a1", "b2", "c3", "d4"), name=c("a", "b", "c", "d"))
netmap::network.layout.extract_coordinates(net, list(sf=map))
```

reduce_to_map

Reduces network to vertices present on the map

Description

Removes vertices from a network or igraph object which are not present in the link vector produced by `link_network_map` or `link_network_map2`.

Usage

```r
reduce_to_map(n, link, n_name)
```
reduce_to_map

Arguments

- **n**: A network or igraph object.
- **link**: A vector with the identifiers of the vertices to keep.
- **n_name**: Name of the vertex attribute to filter on.

Value

A network or igraph object with only the vertices listed in `link`.
Index

* datasets
 fvgmap, 3
betweenness, 4
check_network_sf, 2
closeness, 4
degree, 4
fortify, 6
fvgmap, 3
geom_edges, 6
geom_nodes, 6
ggcentrality, 3
ggconn_area, 5
ggnetmap, 6, 9
is_lookup_table, 7
is_network, 7
is_sf, 8
link_network_map, 8, 11
link_network_map2, 9, 11
netmap, 9
netmap_plot, 9, 10
network.layout.extract_coordinates, 9, 11
plot.igraph, 9–11
plot.network, 9–11
reduce_to_map, 11