Package ‘netmeta’

December 6, 2017

Title Network Meta-Analysis using Frequentist Methods
Version 0.9-7
Depends meta (>= 4.9-0)
Suggests colorspace, rgl, hasseDiagram (>= 0.1.3), grid
Imports magic, MASS
Date 2017-12-06

Description A comprehensive set of functions providing frequentist methods for network meta-analysis and supporting Schwarzer et al. (2015) <DOI:10.1007/978-3-319-21416-0>, Chapter 8 "Network Meta-Analysis":
- frequentist network meta-analysis following Rücker (2012) <DOI:10.1002/jrsm.1058>;
- net heat plot and design-based decomposition of Cochran’s Q according to Krahn et al. (2013) <DOI:10.1186/1471-2288-13-35>;
- measures characterizing the flow of evidence between two treatments by König et al. (2013) <DOI:10.1002/sim.6001>;
- ranking of treatments (frequentist analogue of SUCRA) according to Rücker & Schwarzer (2015) <DOI:10.1186/s12874-015-0060-8>;
- split direct and indirect evidence to check consistency (Dias et al., 2010) <DOI:10.1002/sim.3767>;
- league table with network meta-analysis results;
- additive network meta-analysis for combinations of treatments;

License GPL (>= 2)
Encoding UTF-8
NeedsCompilation no

Author Gerta Rücker [aut],
Guido Schwarzer [aut, cre],
Ulrike Krahn [aut],
Jochem König [aut]
R topics documented:

- netmeta-package .. 3
- as.data.frame.netmeta .. 4
- decomp.design .. 5
- dietaryfat ... 8
- forest.netmeta .. 9
- forest.netsplit .. 12
- hasse ... 16
- Linde2015 ... 18
- Linde2016 ... 20
- netcomb .. 21
- netconnection ... 24
- netdistance .. 26
- netgraph .. 27
- netheat .. 32
- netleague .. 34
- netmeasures ... 38
- netmeta ... 40
- netposet .. 47
- netrank .. 52
- netsplit ... 54
- pairwise ... 58
- parkinson .. 63
- plot.netposet ... 65
- print.decomp.design .. 69
- print.netcomb .. 70
- print.netmeta .. 72
- Senn2013 .. 76
- smokingcessation .. 77
- treats ... 79
- Woods2010 ... 80

Index 82
netmeta-package

netmeta-package

netmeta: Brief overview of methods and general hints

Description

R package netmeta provides frequentist methods for network meta-analysis and supports Schwarzer et al. (2015), Chapter 8 on network meta-analysis http://meta-analysis-with-r.org/.

Details

R package netmeta is an add-on package for meta providing the following meta-analysis methods:

- frequentist network meta-analysis (function netmeta) based on Rücker (2012);
- net heat plot (netheat) and design-based decomposition of Cochran’s Q (decomp.design) described in Krahn et al. (2013);
- measures characterizing the flow of evidence between two treatments (netmeasures) described in König et al. (2013);
- ranking of treatments (netrank) based on frequentist analogue of SUCRA (Rücker & Schwarzer, 2015);
- partial order of treatment rankings (netposet, plot.netposet) and Hasse diagram (hasse) according to Carlsen & Bruggemann (2014);
- split direct and indirect evidence (netsplit) to check for consistency (Dias et al., 2010);
- league table with network meta-analysis results (netleague);
- automated drawing of network graphs (netgraph) described in Rücker & Schwarzer (2016).

Furthermore, functions and datasets from netmeta are utilised in Schwarzer et al. (2015), Chapter 8 "Network Meta-Analysis", http://meta-analysis-with-r.org/.

Type help(package = "netmeta") for a listing of R functions available in netmeta.

Type citation("netmeta") on how to cite netmeta in publications.

To report problems and bugs

- type bug.report(package = "netmeta") if you do not use RStudio,
- send an email to Guido Schwarzer <sc@imbi.uni-freiburg.de> if you use RStudio.

The development version of netmeta is available on GitHub https://github.com/guido-s/netmeta.

Author(s)

Guido Schwarzer<sc@imbi.uni-freiburg.de>, Gerta Rücker<ruecker@imbi.uni-freiburg.de>
References

as.data.frame.netmeta Additional functions for objects of class netmeta

Description

The as.data.frame method returns a data frame containing information on individual studies, e.g., estimated treatment effect and its standard error.

Usage

```r
## S3 method for class 'netmeta'
as.data.frame(x, row.names=NULL, optional=FALSE, details=FALSE, ...)
```

Arguments

- `x` An object of class netmeta.
- `row.names` NULL or a character vector giving the row names for the data frame.
- `optional` A logical. If TRUE, setting row names and converting column names (to syntactic names) is optional.
- `details` A logical. If TRUE, additional variables of less interest are included in data frame.
- `...` Additional arguments.

Value

A data frame is returned by the function as.data.frame.
decomp.design

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

netmeta

Examples

data(Senn2013)

Fixed effect model (default)
#
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD")

as.data.frame(net1)

as.data.frame(net1, details=TRUE)

decomp.design

Design-based decomposition of Cochran’s Q in network meta-analysis

Description

This function performs a design-based decomposition of Cochran’s Q for assessing the homogeneity in the whole network, the homogeneity within designs, and the homogeneity/consistency between designs. It allows also an assessment of the consistency assumption after detaching the effect of single designs.

Usage

decomp.design(x, tau.preset=x$tau.preset, warn=TRUE)

Arguments

x An object of class netmeta.
tau.preset An optional value for the square-root of the between-study variance \(\tau^2 \) (see Details).
warn A logical indicating whether warnings should be printed.
Details

In the context of network meta-analysis and the assessment of the homogeneity and consistency assumption, a generalized Cochran’s Q statistic for multivariate meta-analysis can be used as shown in Krahn et al. (2013). This Q statistic can be decomposed in a sum of within-design Q statistics and one between-designs Q statistic that incorporates the concept of design inconsistency, see Higgins et al. (2012).

For assessing the inconsistency in a random effects model, the between-designs Q statistic can be calculated based on a full design-by-treatment interaction random effects model (see Higgins et al., 2012). This Q statistic will be automatically given in the output \((\tau^2)\) estimated by the method of moments (see Jackson et al., 2012). Alternatively, the square-root of the between-study variance can be prespecified by argument \(\text{tau.preset}\) to obtain a between-designs Q statistic (in \(Q.\text{inc.random}\), its design-specific contributions \(Q.\text{inc.design.random.preset}\)) as well as residuals after detaching of single designs (residuals.\text{inc.detach.random.preset}).

Since an inconsistent treatment effect of one design can simultaneously inflate several residuals, Krahn et al. (2013) suggest for locating the inconsistency in a network to fit a set of extended models allowing for example for a deviating effect of each study design in turn. The recalculated between-designs Q statistics are given in list component \(Q.\text{inc.detach}\). The change of the inconsistency contribution of single designs can be investigated in more detail by a net heat plot (see function netheat). Designs where only one treatment is involved in other designs of the network or where the removal of corresponding studies would lead to a splitting of the network do not contribute to the inconsistency assessment. These designs are not included in \(Q.\text{inc.detach}\).

Value

A list containing the following components:

- **Q.decomp** Data frame with Q statistics (variable \(Q\)) based on the fixed effects model to assess the homogeneity/consistency in the whole network, within designs, and between designs. Corresponding degrees of freedom (\(df\)) and p-values (\(p.\text{val}\)) are also given.
- **Q.het.design** Data frame with design-specific decomposition of the within-designs Q statistic (\(Q\)) of the fixed effects model, corresponding degrees of freedom (\(df\)) and p-values (\(p.\text{val}\)) are given.
- **Q.inc.detach** Data frame with between-designs Q statistics (\(Q\)) of the fixed effects model after detaching of single designs, corresponding degrees of freedom (\(df\)) and p-values (\(p.\text{val}\)) are given.
- **Q.inc.design** A named vector with contributions of single designs to the between design Q statistic given in \(Q.\text{decomp}\).
- **Q.inc.random** Data frame with between-designs Q statistic (\(Q\)) based on a random effects model with square-root of between-study variance \(\tau.\text{within}\) embedded in a full design-by-treatment interaction model, corresponding degrees of freedom (\(df\)) and p-value (\(p.\text{val}\)).
- **Q.inc.random.preset** Data frame with between-designs Q statistic (\(Q\)) based on a random effects model with prespecified square-root of between-study variance \(\tau.\text{preset}\) in the case if argument \(\text{tau.preset}\) is not NULL, corresponding degrees of freedom (\(df\)) and p-value (\(p.\text{val}\)).
decomp.design

Q.inc.design.random.preset
A named vector with contributions of single designs to the between design
Q statistic based on a random effects model with prespecified square-root of
between-study variance tau.preset in the case if argument tau.preset is
given.

residuals.inc.detach
Matrix with residuals, i.e. design-specific direct estimates minus the correspond-
ing network estimates after detaching the design of the column.

residuals.inc.detach.random.preset
Matrix with residuals analogous to residuals.inc.detach but based on a
random effects model with prespecified square-root of between-study variance
tau.preset in the case if argument tau.preset is not NULL.

call
Function call.

version
Version of R package netmeta used to create object.

Author(s)
Ulrike Krahn <ulrike.krahn@bayer.com>, Jochem König <koenigjo@uni-mainz.de>

References
Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE, White IR (2012), Consistency and inconsis-
Methods, 3*(2), 98–110.

Krahn U, Binder H, König J (2013), A graphical tool for locating inconsistency in network meta-
analyses. *BMC Medical Research Methodology, 13*, 35.

Jackson D, White IR and Riley RD (2012), Quantifying the impact of between-study heterogeneity
in multivariate meta-analyses. *Statistics in Medicine, 31*(29), 3805–3820.

See Also
netmeta, netheat

Examples

data(Senn2013)

Generation of an object of class 'netmeta' with
reference treatment 'plac', i.e. placebo
#
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
 data=Senn2013, sm="MD", reference="plac")

Decomposition of Cochran's Q
#
decomp.design(net1)
Network meta-analysis of dietary fat

Description

Network meta-analysis comparing the effects of two diets to control on mortality.

The data are rates, given as the number of deaths and person-years. These data are used as an example in the supplemental material of Dias S, Sutton AJ, Ades AE and Welton NJ (2013).

Usage

data(dietaryfat)

Format

A data frame with the following columns:

- `treat1` Treatment 1
- `treat2` Treatment 2
- `treat3` Treatment 3
- `years1` Person years arm 1
- `years2` Person years arm 2
- `years3` Person years arm 3
- `d1` events (deaths) arm 1
- `d2` events (deaths) arm 2
- `d3` events (deaths) arm 3
- `ID` Study ID

Source

See Also

pairwise, metainc, netmeta, netgraph
Examples

data(dietaryfat)

Transform data from arm-based format to contrast-based format
Using incidence rate ratios (sm="IRR") as effect measure.
Note, the argument 'sm' is not necessary as this is the default
in R function metaInc called internally
p1 <- pairwise(list(treat1, treat2, treat3),
 list(d1, d2, d3),
 time=list(years1, years2, years3),
 studlab=ID,
 data=dietaryfat, sm="IRR")

p1

Conduct network meta-analysis:
net1 <- netmeta(p1)
summary(net1)

Conduct network meta-analysis using incidence rate differences
(sm="IRD").
p2 <- pairwise(list(treat1, treat2, treat3),
 list(d1, d2, d3),
 time=list(years1, years2, years3),
 studlab=ID,
 data=dietaryfat, sm="IRD")

net2 <- netmeta(p2)
summary(net2)

Draw network graph
netgraph(net1, points=TRUE, cex.points=3, cex=1.25)
tname <- c("Control", "Diet", "Diet 2")
netgraph(net1, points=TRUE, cex.points=3, cex=1.25, labels=tname)

Description

Draws a forest plot in the active graphics window (using grid graphics system).

Usage

S3 method for class 'netmeta'
forest(x,

pooled=ifelse(x$comb.random, "random", "fixed"),
reference.group=x$reference.group,
baseline.reference=x$baseline.reference,
leftcols="studlab", leftlabs="Treatment",
rightcols=c("effect", "ci"), rightlabs=NULL,
digits=gs("digits.forest"), small.values="good", digits.Pscore=2,
smlab=NULL,
sortvar=x$seq, backtransf=x$backtransf,
lab.NA=".", add.data,
drop.reference.group = FALSE,
...)

Arguments

 x An object of class netmeta.
reference.group Reference group.
baseline.reference A logical indicating whether results should be expressed as comparisons of other
treatments versus the reference treatment (default) or vice versa.

pooled A character string indicating whether results for the fixed effect ("fixed") or
random effects model ("random") should be plotted. Can be abbreviated.
leftcols A character vector specifying (additional) columns to be plotted on the left side
of the forest plot or a logical value (see forest.meta help page for details).
leftlabs A character vector specifying labels for (additional) columns on left side of the
forest plot (see forest.meta help page for details).
rightcols A character vector specifying (additional) columns to be plotted on the right side
of the forest plot or a logical value (see forest.meta help page for details).
rightlabs A character vector specifying labels for (additional) columns on right side of the
forest plot (see forest.meta help page for details).
digits Minimal number of significant digits for treatment effects and confidence intervals, see print.default.
small.values A character string specifying whether small treatment effects indicate a beneficial ("good") or harmful ("bad") effect, can be abbreviated; see netrank.
digits.Pscore Minimal number of significant digits for P-score, see print.default and netrank.
smlab A label printed at top of figure. By default, text indicating either fixed effect or
random effects model is printed.
sortvar An optional vector used to sort the individual studies (must be of same length as
the total number of treatments).
backtransf A logical indicating whether results should be back transformed in forest plots.
If backtransf=TRUE, results for sm="OR" are presented as odds ratios rather
than log odds ratios, for example.
lab.NA A character string to label missing values.
add.data An optional data frame with additional columns to print in forest plot (see De-
tails).
drop.reference.group A logical indicating whether the reference group should be printed in the forest
plot.
...

Additional arguments for forest.meta function.
Details

A forest plot, also called confidence interval plot, is drawn in the active graphics window.

Argument `sortvar` can be either a numeric or character vector with length of number of treatments. If `sortvar` is numeric the `order` function is utilised internally to determine the order of values. If `sortvar` is character it must be a permutation of the treatment names. It is also possible to provide either `sortvar=Pscore`, `sortvar=`"Pscore"`, `sortvar=-Pscore` or `sortvar="-Pscore"` in order to sort treatments according to the ranking generated by `netrank` which is called internally. Similar expressions are possible to sort by treatment comparisons (`sortvar=TE`, etc.), standard error (`sortvar=seTE`), number of studies with direct treatment comparisons (`sortvar=k`), and direct evidence proportion (`sortvar=prop.direct`, see also `netmeasures`).

Argument `addNdata` can be used to add additional columns to the forest plot. This argument must be a data frame with the same row names as the treatment effects matrices in R object `x`, i.e., `x$TE.fixed` or `x$TE.random`.

For more information see help page of `forest.meta` function.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

`forest.meta`

Examples

data(Senn2013)

Not run:
#
Fixed effect model (default)
#
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
 data=Senn2013, sm="MD")

forest(net1, ref="plac")

forest(net1, xlim=c(-1.5,1), ref="plac",
 xlab="HbA1c difference", rightcols=FALSE)

End(Not run)

#
Random effects effect model
#
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
 data=Senn2013, sm="MD", comb.random=TRUE)

forest(net2, xlim=c(-1.5,1), ref="plac",
 xlab="HbA1c difference")
Not run:

Add column with P-Scores on right side of forest plot

```r
forest(net2, xlim=c(-1.5,1), ref="plac", 
      xlab="HbA1c difference", 
      rightcols=c("effect", "ci", "Pscore"), 
      rightlabs="P-Score", 
      just.addcols="right")
```

Add column with P-Scores on left side of forest plot

```r
forest(net2, xlim=c(-1.5,1), ref="plac", 
      xlab="HbA1c difference", 
      leftcols=c("studlab", "Pscore"), 
      leftlabs=c("Treatment", "P-Score"), 
      just.addcols="right")
```

Sort forest plot by descending P-Score

```r
forest(net2, xlim=c(-1.5,1), ref="plac", 
      xlab="HbA1c difference", 
      rightcols=c("effect", "ci", "Pscore"), 
      rightlabs="P-Score", 
      sortvar=-Pscore)
```

Drop reference group and sort by and print number of studies with direct treatment comparisons

```r
forest(net2, xlim=c(-1.5,1), ref="plac", 
      xlab="HbA1c difference", 
      leftcols=c("studlab", "k"), 
      leftlabs=c("Contrast\nto Placebo", "Direct\nComparisons"), 
      sortvar=k, 
      drop=TRUE, 
      smlab="Random Effects Model")
```

End(Not run)

forest.netsplit

Forest plot for direct and indirect evidence

Description

Forest plot to show direct and indirect evidence in network meta-analysis. Furthermore, estimates from network meta-analysis as well as prediction intervals can be printed.
Usage

```r
## S3 method for class 'netsplit'
forest(x,
    pooled=ifelse(x$comb.random, "random", "fixed"),
    showall = FALSE,
    subgroup = "comparison",
    overall = TRUE, direct = TRUE, indirect = TRUE,
    prediction = x$prediction,
    text.overall = "Network estimate",
    text.direct = "Direct estimate",
    text.indirect = "Indirect estimate",
    text.predict = "Prediction interval",
    type.overall, type.direct, type.indirect,
    col.square = "gray", col.square.lines = col.square,
    col.inside = "white",
    col.diamond = "gray", col.diamond.lines = "black",
    col.predict = "red", col.predict.lines = "black",
    equal.size = FALSE,
    leftcols, leftlabs,
    rightcols = c("effect", "ci"), rightlabs = NULL,
    digits = gs("digits.forest"),
    digits.prop = max(gs("digits.pval") - 2, 2),
    backtransf = x$backtransf,
    lab.NA = "", smlab, ...)```

Arguments

- **x**: An object of class `netsplit`.
- **pooled**: A character string indicating whether results for the fixed effect ("fixed") or random effects model ("random") should be plotted. Can be abbreviated.
- **showall**: A logical indicating whether all comparisons (default) or only comparisons contributing both direct and indirect evidence should be shown in forest plot.
- **overall**: A logical indicating whether network meta-analysis estimates should be printed.
- **direct**: A logical indicating whether direct estimates should be printed.
- **indirect**: A logical indicating whether indirect estimates should be printed.
- **prediction**: A logical indicating whether prediction intervals should be printed.
- **subgroup**: A character string indicating which layout should be used in forest plot: subgroups by comparisons ("comparison") or subgroups by estimates ("estimate"). Can be abbreviated.
- **text.overall**: A character string used in the plot to label the network estimates.
- **text.direct**: A character string used in the plot to label the direct estimates.
- **text.indirect**: A character string used in the plot to label the indirect estimates.
- **text.predict**: A character string used in the plot to label the prediction interval.
- **type.overall**: A character string specifying how to plot treatment effects and confidence intervals for the overall network evidence.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type.direct</td>
<td>A character string specifying how to plot treatment effects and confidence intervals for the direct evidence.</td>
</tr>
<tr>
<td>type.indirect</td>
<td>A character string specifying how to plot treatment effects and confidence intervals for the indirect evidence.</td>
</tr>
<tr>
<td>col.square</td>
<td>The colour for squares.</td>
</tr>
<tr>
<td>col.square.lines</td>
<td>The colour for the outer lines of squares.</td>
</tr>
<tr>
<td>col.inside</td>
<td>The colour for results and confidence limits if confidence limits are completely within squares squares.</td>
</tr>
<tr>
<td>col.diamond</td>
<td>The colour of diamonds.</td>
</tr>
<tr>
<td>col.diamond.lines</td>
<td>The colour of the outer lines of diamonds.</td>
</tr>
<tr>
<td>col.predict</td>
<td>Background colour of prediction intervals.</td>
</tr>
<tr>
<td>col.predict.lines</td>
<td>Colour of outer lines of prediction intervals.</td>
</tr>
<tr>
<td>equal.size</td>
<td>A logical indicating whether all squares should be of equal size. Otherwise, the square size is proportional to the precision of estimates.</td>
</tr>
<tr>
<td>leftcols</td>
<td>A character vector specifying columns to be plotted on the left side of the forest plot (see Details).</td>
</tr>
<tr>
<td>leftlabs</td>
<td>A character vector specifying labels for columns on left side of the forest plot.</td>
</tr>
<tr>
<td>rightcols</td>
<td>A character vector specifying columns to be plotted on the right side of the forest plot (see Details).</td>
</tr>
<tr>
<td>rightlabs</td>
<td>A character vector specifying labels for columns on right side of the forest plot.</td>
</tr>
<tr>
<td>digits</td>
<td>Minimal number of significant digits for treatment effects and confidence intervals, see print.default.</td>
</tr>
<tr>
<td>digits.prop</td>
<td>Minimal number of significant digits for the direct evidence proportion.</td>
</tr>
<tr>
<td>backtransf</td>
<td>A logical indicating whether results should be back transformed in forest plots. If backtransf=TRUE, results for sm=&quot;OR&quot; are presented as odds ratios rather than log odds ratios, for example.</td>
</tr>
<tr>
<td>lab.NA</td>
<td>A character string to label missing values.</td>
</tr>
<tr>
<td>smlab</td>
<td>A label printed at top of figure. By default, text indicating either fixed effect or random effects model is printed.</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments for forest.meta function.</td>
</tr>
</tbody>
</table>

**Details**

A forest plot, also called confidence interval plot, is drawn in the active graphics window.

The arguments leftcols and rightcols can be used to specify columns which are plotted on the left and right side of the forest plot, respectively. If argument rightcols is FALSE, no columns will be plotted on the right side.

If direct estimates are included in the forest plot (direct=TRUE, default), the following columns will be printed on the left side of the forest plot: the comparisons (column "studlab" in forest.meta), number of pairwise comparisons ("k"), and direct evidence proportion ("k").
If direct estimates are not included in the forest plot (`direct=FALSE`), only the comparisons ("studlab") are printed on the left side of the forest plot.

For more information see help page of `forest.meta` function.

**Author(s)**

Guido Schwarzer <sc@imbi.uni-freiburg.de>

**See Also**

`forest.meta`

**Examples**

```r
data(Senn2013)

Not run:
#
Fixed effect model (default)
#
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD")

forest(net1, ref="plac")

forest(net1, xlim=c(-1.5,1), ref="plac",
 xlab="HbA1c difference", rightcols=FALSE)

End(Not run)

Random effects effect model
#
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD", comb.random=TRUE)

forest(net2, xlim=c(-1.5,1), ref="plac",
 xlab="HbA1c difference")

Add column with P-Scores on right side of forest plot
#
forest(net2, xlim=c(-1.5,1), ref="plac",
 xlab="HbA1c difference",
 rightcols=c("effect", "ci", "Pscore"),
 rightlabs="P-Score",
 just.addcols="right")

Not run:
#
Add column with P-Scores on left side of forest plot
#
```
description

This function generates a Hasse diagram for a partial order of treatment ranks in a network meta-

analysis.

Usage

hasse(x,
    pooled=ifelse(x$comb.random, "random", "fixed"),
    newpage = TRUE)

Arguments

x An object of class netposet (mandatory).
pooled A character string indicating whether Hasse diagram show be drawn for fixed
effect ("fixed") or random effects model ("random"). Can be abbreviated.
A logical value indicating whether a new figure should be printed in an existing graphics window. Otherwise, the Hasse diagram is added to the existing figure.

**Details**

Generate a Hasse diagram (Carlsen and Bruggemann, 2014) for a partial order of treatment ranks in a network meta-analysis (Rücker and Schwarzer, 2017).

This R function is a wrapper function for R function `hasse` in R package `hasseDiagram` (Krzysztof Ciomek, [https://github.com/kciomek/hasseDiagram](https://github.com/kciomek/hasseDiagram)), i.e., function `hasse` can only be used if R package `hasseDiagram` is installed.

**Author(s)**

Gerta Rücker <ruecker@imbi.uni-freiburg.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

**References**


**See Also**

`netmeta`, `netposet`

**Examples**

```r
Use depression dataset
#
data(Linde2015)
#
Define order of treatments
#
trts <- c("TCA", "SSRI", "SNRI", "NRI",
 "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum",
 "Placebo")
#
Outcome labels
#
outcomes <- c("Early response", "Early remission")
#
(1) Early response
#
p1 <- pairwise(treat = list(treatment1, treatment2, treatment3),
 event = list(resp1, resp2, resp3),
 n = list(n1, n2, n3),
 studlab = id, data = Linde2015, sm = "OR")
#
net1 <- netmeta(p1,
 comb.fixed = FALSE, comb.random = TRUE,
)```
```
seq = trts, ref = "Placebo")
#
# (2) Early remission
#
p2 <- pairwise(treat = list(treatment1, treatment2, treatment3),
    event = list(remi1, remi2, remi3),
    n = list(n1, n2, n3),
    studlab = id, data = Linde2015, sm = "OR")
#
net2 <- netmeta(p2,
    comb.fixed = FALSE, comb.random = TRUE,
    seq = trts, ref = "Placebo")
#
# Partial order of treatment rankings
#
po <- netposet(netrank(net1, small.values = "bad"),
    netrank(net2, small.values = "bad"),
    outcomes = outcomes)
#
# Hasse diagram
#
hasse(po)
```

Description

Network meta-analysis of nine classes of antidepressants including placebo for the primary care setting; partly shown in Linde et al. (2015), supplementary Table 2.

Usage

```r
data(Linde2015)
```

Format

A data frame with the following columns:

- **id** Study ID
- **author** First author
- **year** Publication year
- **treatment1** First treatment
- **treatment2** Second treatment
- **treatment3** Third treatment
- **n1** Number of patients receiving first treatment
- **resp1** Number of early responder (treatment 1)
remi1 Number of early remissions (treatment 1)
loss1 Number of patients loss to follow-up (treatment 1)
loss.ae1 Number of patients loss to follow-up due to adverse events (treatment 1)
ae1 Number of patients with adverse events (treatment 1)
n2 Number of patients receiving second treatment
resp2 Number of early responder (treatment 2)
remi2 Number of early remissions (treatment 2)
loss2 Number of patients loss to follow-up (treatment 2)
loss.ae2 Number of patients loss to follow-up due to adverse events (treatment 2)
ae2 Number of patients with adverse events (treatment 2)
n3 Number of patients receiving third treatment
resp3 Number of early responder (treatment 3)
remi3 Number of early remissions (treatment 3)
loss3 Number of patients loss to follow-up (treatment 3)
loss.ae3 Number of patients loss to follow-up due to adverse events (treatment 3)
ae3 Number of patients with adverse events (treatment 3)

Source

See Also
pairwise, metabin, netmeta, netposet

Examples

data(Linde2015)

Transform data from arm-based format to contrast-based format
Outcome: early response
p1 <- pairwise(list(treatment1, treatment2, treatment3),
 event = list(resp1, resp2, resp3),
 n = list(n1, n2, n3),
 studlab = id, data = Linde2015, sm = "OR")

Define order of treatments
trts <- c("TCA", "SSRI", "SNRI", "NRI",
 "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum",
 "Placebo")

Conduct network meta-analysis
net1 <- netmeta(p1, comb.fixed = FALSE, comb.random = TRUE,
 reference = "Placebo",
 seq = trts)
print(summary(net1), digits = 2)
Description

Network meta-analysis of 22 treatments (including placebo and usual care) for the primary care of depression.

Usage

data(Linde2016)

Format

A data frame with the following columns:

- **id**: Study ID
- **lnOR**: Response after treatment (log odds ratio)
- **selnOR**: Standard error of log odds ratio
- **treat1**: First treatment
- **treat2**: Second treatment

Source

See Also

`netmeta`, `netcomb`

Examples

```r
data(Linde2016)

# Standard Network meta-analysis
#
net1 <- netmeta(lnOR, selnOR, treat1, treat2, id,
                 data = Linde2016, reference.group = "placebo",
                 sm = "OR", comb.fixed = FALSE, comb.random = TRUE,
                 nchar = 6)

#
summary(net1)
```
Description

Some treatments in a network meta-analysis may be combinations of other treatments or have common components. The influence of individual components can be evaluated in an additive network meta-analysis model assuming that the effect of treatment combinations is the sum of the effects of its components. This function implements this additive model in a frequentist way.

Usage

```
netcomb(x, ...) # S3 method for class 'netmeta'
```

Arguments

- `x` An object of class netmeta.
- `reference.group` Reference group.
- `sep.components` A single character to define separator between treatment components.
- `C.matrix` C matrix (see Details).
- `...` Additional arguments.

Details

Treatments in network meta-analysis (NMA) can be complex interventions. Some treatments may be combinations of others or have common components. The standard analysis provided by `netmeta` is a NMA where all existing (single or combined) treatments are considered as different nodes in the network. Exploiting the fact that some treatments are combinations of common components, an additive NMA model can be used to evaluate the influence of individual components. This model assumes that the effect of a treatment combination is the sum of the effects of its components which implies that common components cancel out in comparisons.

The additive network meta-analysis model has been implemented using Bayesian methods (Mills et al., 2012; Welton et al., 2013). This function implements the additive model in a frequentist way (Rücker & Schwarzer, 2017).

The underlying multivariate model is given by

\[
\delta = B\theta, \theta = C\beta
\]

with...
\(\delta \) vector of true treatment effects (differences) from individual studies,

\(B \) is a design matrix describing the structure of the network,

\(\theta \) parameter vector that represents the existing combined treatments,

\(C \) matrix describing how the treatments are composed,

\(\beta \) is a parameter vector representing the treatment components.

All parameters are estimated using weighted least squares regression.

Argument `sep.components` can be used to specify the separator between individual components. By default, the matrix \(C \) is calculated internally from treatment names. However, it is possible to specify a different matrix using argument `C.matrix`.

Value

A list containing the following components:

- `x`, `reference.group`, `sep.components`, `C.matrix`
 As defined above.
- `k` Total number of studies.
- `m` Total number of pairwise comparisons.
- `n` Total number of treatments.
- `c` Total number of components.
- `comparisons.fixed`, `comparisons.random`
 Lists with components `studlab`, `treat1`, `treat2`, `TE`, `seTE`, `lower`, `upper`, `z`, `p level`, `df` (fixed and random effects model).
- `components.fixed`, `components.random`
 Lists with components `TE`, `seTE`, `lower`, `upper`, `z`, `p level`, `df` (fixed and random effects model).
- `combinations.fixed`, `combinations.random`
 Lists with components `TE`, `seTE`, `lower`, `upper`, `z`, `p level`, `df` (fixed and random effects model).
- `sm` Summary measure.
- `level` Level for confidence intervals.
- `comb.fixed` Fixed effect model
- `comb.random` Random effects model
- `Q` Overall heterogeneity / inconsistency statistic.
- `df.Q` Degrees of freedom for test of heterogeneity / inconsistency.
- `pval.Q` P-value for test of heterogeneity / inconsistency.
- `Q.comp.fixed`, `Q.comp.random`
 Test statistic for difference in goodness of fit between standard model and additive model (fixed and random effects model).
- `df.Q.comp.fixed`, `df.Q.comp.random`
 Degrees of freedom for difference in goodness of fit between standard model and additive model (fixed and random effects model).
pval.Q.comp.fixed, pval.Q.comp.random

P-value for difference in goodness of fit between standard model and additive model (fixed and random effects model).

backtransf

A logical indicating whether results should be back transformed in printouts and forest plots.

nchar.trts

A numeric defining the minimum number of characters used to create unique treatment and component names.

title

Title of meta-analysis / systematic review.

call

Function call.

version

Version of R package netmeta used to create object.

Author(s)

Gerta Rücker <ruecker@imbi.uni-freiburg.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

netmeta, print.netcomb

Examples

data(Linde2016)

Specify, order of treatments
#
trts <- c("TCA", "SSRI", "SNRI", "NRI", "Low-dose SARI", "NaSSa",
"rHAO-A", "Ind drug", "Hypericum", "Face-to-face CBT",
"Face-to-face PST", "Face-to-face interpsy", "Face-to-face psychodyn",
"Other face-to-face", "Remote CBT", "Self-help CBT", "No contact CBT",
"Face-to-face CBT + SSRI", "Face-to-face interpsy + SSRI",
"Face-to-face PST + SSRI", "UC", "Placebo")

Note, three treatments are actually combinations of 'SSRI' with
other components:
#
"Face-to-face CBT + SSRI",
netconnection

Get information on network connectivity (number of subnetworks, distance matrix)

Description

To determine the network structure and to test whether a given network is fully connected. Network information is provided as a triple of vectors `treat1`, `treat2`, and `studlab` where each row corresponds to an existing pairwise treatment comparison (`treat1`, `treat2`) in a study (`studlab`). The function calculates the number of subnetworks (connectivity components; value of 1 corresponds to a fully connected network) and the distance matrix (in block-diagonal form in the case of subnetworks).

Usage

```r
netconnection(treat1, treat2, studlab, data = NULL, subset = NULL, 
   title = "", warn = FALSE)
```

S3 method for class 'netconnection'
print(x, digits = max(4, .Options$digits - 3), ...)

Arguments

treat1 Label/Number for first treatment.
treat2 Label/Number for second treatment.
studlab An optional - but important! - vector with study labels (see Details).
data An optional data frame containing the study information.
subset An optional vector specifying a subset of studies to be used.
title Title of meta-analysis / systematic review.
warn A logical indicating whether warnings should be printed.
x An object of class netconnection.
digits Minimal number of significant digits, see print.default.
... Additional arguments (ignored at the moment)

Value
An object of class netconnection with corresponding print function. The object is a list containing the following components:
treat1, treat2, studlab, title, warn
 As defined above.
k Total number of studies.
m Total number of pairwise comparisons.
n Total number of treatments.
n.subnets Number of subnetworks; equal to 1 for a fully connected network.
D.matrix Distance matrix.
A.matrix Adjacency matrix.
L.matrix Laplace matrix.
call Function call.
version Version of R package netmeta used to create object.

Author(s)
Gerta Rücker <ruecker@imbi.uni-freiburg.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also
netmeta, netdistance

Examples

data(Senn2013)

nc1 <- netconnection(treat1, treat2, studlab, data = Senn2013)
nc1

Extract number of (sub)networks
nc1$n.subnets

Extract distance matrix
nc1$D.matrix

Conduct network meta-analysis (results not shown)
net1 <- netmeta(TE, seTE, treat1, treat2, studlab, data = Senn2013)
Artificial example with two subnetworks
#
t1 <- c("G", "B", "B", "D", "A", "F")
t2 <- c("B", "C", "E", "E", "H", "A")
#
nc2 <- netconnection(t1, t2) nc2

Number of subnetworks
nc2$n.subnets

Extract distance matrix
nc2$D.matrix

Conduct network meta-analysis
(results in an error message due to unconnected network)
try(net2 <- netmeta(1:6, 1:6, t1, t2, 1:6))

Conduct network meta-analysis on first subnetwork
net2.1 <- netmeta(1:6, 1:6, t1, t2, 1:6,
 subset = (t1 %in% c("A", "F", "H") & t2 %in% c("A", "F", "H")))

Conduct network meta-analysis on first subnetwork
net2.2 <- netmeta(1:6, 1:6, t1, t2, 1:6,
 subset = !(t1 %in% c("A", "F", "H") & t2 %in% c("A", "F", "H")))

summary(net2.1)
summary(net2.2)

netdistance

Calculate distance matrix for an adjacency matrix

Description

Calculate distance matrix for an adjacency matrix based on distance algorithm by Müller et al. (1987).

Usage

```
netdistance(x)
```

Arguments

- **x**

 Either a netmeta object or an adjacency matrix.

Author(s)

Gerta Rücker <ruecker@imbi.uni-freiburg.de>
References

See Also

`netmeta, netconnection`

Examples

data(Senn2013)

net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
 data = Senn2013, sm = "MD")

netdistance(net1)
netdistance(net1$A.matrix)

netgraph

Network graph

Description

This function generates a graph of the evidence network.

Usage

```
netgraph(x, seq = x$seq,
         labels = rownames(x$TE.fixed),
         cex = 1, col = "slateblue", offset = 0.0175, scale = 1.10,
         plastic, thickness, lwd = 5, lwd.min = lwd/2.5, lwd.max = lwd*4,
         dim = "2d",
         highlight = NULL, col.highlight = "red2", lwd.highlight = lwd,
         multiarm = any(x$narms > 2), col.multiarm = NULL,
         alpha.transparency = 0.5,
         points = FALSE, col.points = "red", cex.points = 1, pch.points = 20,
         number.of.studies = FALSE,
         cex.number.of.studies = cex,
         col.number.of.studies = "white",
         bg.number.of.studies = "black",
         start.layout = ifelse(dim == "2d", "circle", "eigen"),
         eig1 = 2, eig2 = 3, eig3 = 4,
         iterate, tol = 0.0001, maxit = 500, allfigures = FALSE,
         A.matrix = x$A.matrix, N.matrix = sign(A.matrix),
         D.matrix = netdistance(N.matrix),
         xpos = NULL, ypos = NULL, zpos = NULL,
         ...)
```
Arguments

x An object of class netmeta (mandatory).
seq A character or numerical vector specifying the sequence of treatments arrangement (anticlockwise if start.layout = "circle").
labels An optional vector with treatment labels.
cex The magnification to be used for treatment labels.
col Color of lines connecting treatments if argument plastic = FALSE.
offset Distance between edges (i.e. treatments) in graph and treatment labels (value of 0.0175 corresponds to a difference of 1.75% of the range on x- and y-axis).
scale Additional space added outside of edges (i.e. treatments). Increase this value for larger treatment labels (value of 1.10 corresponds to an additional space of 10% around the network graph).
plastic A logical indicating whether the appearance of the comparisons should be in '3D look' (not to be confused with argument dim).
thickness Either a character variable to determine the method to plot line widths (see Details) or a matrix of the same dimension and row and column names as argument A.matrix with information on line width.
lwd A numeric for scaling the line width of comparisons.
lwd.max Maximum line width in network graph. The connection with the largest value according to argument thickness will be set to this value.
lwd.min Minimum line width in network graph. All connections with line widths below this values will be set to lwd.min.
dim A character string indicating whether a 2- or 3-dimensional plot should be produced, either "2d" or "3d".
highlight A character vector identifying comparisons that should be marked in the network graph, e.g. highlight = "treat1:treat2".
col.highlight Color for highlighting the comparisons given by highlight.
lwd.highlight A numeric for the line width for highlighting the comparisons given by highlight.
multiarm A logical indicating whether multi-arm studies should be marked in plot.
col.multiarm Either a function from R library colorspace or grDevice to define colors for multi-arm studies or a character vector with colors to highlight multi-arm studies.
alpha.transparency The alpha transparency of colors used to highlight multi-arm studies (0 means transparent and 1 means opaque).
points A logical indicating whether points should be printed at nodes (i.e. treatments) of the network graph.
col.points, cex.points, pch.points Corresponding color, size, type for points.
number.of.studies A logical indicating whether number of studies should be added to network graph.
cex.number.of.studies
 The magnification to be used for number of studies.

col.number.of.studies
 Color for number of studies.

bg.number.of.studies
 Color for shadow around number of studies.

start.layout
 A character string indicating which starting layout is used if iterate = TRUE.
 If "circle" (default), the iteration starts with a circular ordering of the vertices;
 if "eigen", eigenvectors of the Laplacian matrix are used, calculated via generic
 function eigen (spectral decomposition); if "prcomp", eigenvectors of the Lapla-
 cian matrix are calculated via generic function prcomp (principal component
 analysis); if "random", a random layout is used, drawn from a bivariate normal.

eig1
 A numeric indicating which eigenvector is used as x coordinate if start = "eigen"
 or "prcomp" and iterate = TRUE. Default is 2, the eigenvector to the second-
 smallest eigenvalue of the Laplacian matrix.

eig2
 A numeric indicating which eigenvector is used as y-coordinate if start = "eigen"
 or "prcomp" and iterate = TRUE. Default is 3, the eigenvector to the third-
 smallest eigenvalue of the Laplacian matrix.

eig3
 A numeric indicating which eigenvector is used as z-coordinate if start = "eigen"
 or "prcomp" and iterate = TRUE. Default is 4, the eigenvector to the fourth-
 smallest eigenvalue of the Laplacian matrix.

iterate
 A logical indicating whether the stress majorization algorithm is carried out for
 optimization of the layout.

tol
 A numeric for the tolerance for convergence if iterate = TRUE.

maxit
 An integer defining the maximum number of iteration steps if iterate = TRUE.

allfigures
 A logical indicating whether all iteration steps are shown if iterate = TRUE.
 May slow down calculations if set to TRUE (especially if plastic = TRUE).

A.matrix
 Adjacency matrix (nxn) characterizing the structure of the network graph. Row
 and column names must be the same set of values as provided by argument seq.

N.matrix
 Neighborhood matrix (nxn) replacing A.matrix if neighborhood is to be speci-
 fied differently from node adjacency in the network graph, for example content-
 based. Row and column names must be the same set of values as provided by
 argument seq.

D.matrix
 Distance matrix (nxn) replacing A.matrix and N.matrix if distances should be
 provided directly. Row and column names must be the same set of values as
 provided by argument seq.

xpos
 Vector (n) of x coordinates.

ypos
 Vector (n) of y coordinates.

zpos
 Vector (n) of z coordinates.

Additional graphical arguments.
Details

The network is laid out in the plane, where the nodes in the graph layout correspond to the treatments and edges display the observed treatment comparisons. For the default setting, nodes are placed on a circle. Other starting layouts are "eigen", "pcomp", and "random" (Rücker & Schwarzer 2015). If \texttt{iterate = TRUE}, the layout is further optimized using the stress majorization algorithm. This algorithm specifies an 'ideal' distance (e.g., the graph distance) between two nodes in the plane. In the optimal layout, these distances are best approximated in the sense of least squares. Starting from an initial layout, the optimum is approximated in an iterative process called stress majorization (Kamada and Kawai 1989, Michailidis and de Leeuw 2001, Hu 2012). The starting layout can be chosen as a circle or coming from eigenvectors of the Laplacian matrix (corresponding to Hall’s algorithm, Hall 1970), calculated in different ways, or random. Moreover, it can be chosen whether the iteration steps are shown (argument \texttt{allfigures = TRUE}).

Argument \texttt{thickness} providing the line width of the nodes (comparisons) can be a matrix of the same dimension as argument \texttt{A.matrix} or any of the following character variables:

- Same line width (argument \texttt{lwd}) for all comparisons (\texttt{thickness = "equal"})
- Proportional to number of studies comparing two treatments (\texttt{thickness = "number.of.studies"})
- Proportional to inverse standard error of fixed effect model comparing two treatments (\texttt{thickness = "se.fixed"})
- Proportional to inverse standard error of random effects model comparing two treatments (\texttt{thickness = "se.random"})
- Weight from fixed effect model comparing two treatments (\texttt{thickness = "w.fixed"})
- Weight from random effects model comparing two treatments (\texttt{thickness = "w.random"})

Only evidence from direct treatment comparisons is considered to determine the line width if argument \texttt{thickness} is equal to any but the first method. By default, \texttt{thickness = "se.fixed"} is used if \texttt{start.layout = "circle"}, \texttt{iterate = FALSE}, and \texttt{plastic = TRUE}. Otherwise, the same line width is used.

Further, a couple of graphical parameters can be specified, such as color and appearance of the edges (treatments) and the nodes (comparisons), whether special comparisons should be highlighted and whether multi-arm studies should be indicated as colored polygons. By default, if R package colorspace is available the \texttt{sequential_hcl} function is used to highlight multi-arm studies; otherwise the \texttt{rainbow} is used.

In order to generate 3-D plots (argument \texttt{dim = "3d"}), R package \texttt{rgl} is necessary. Note, under macOS the X.Org X Window System must be available (see \url{https://www.xquartz.org}).

Author(s)

Gerta Rücker <ruecker@imbi.uni-freiburg.de>, Ulrike Krahn <ulrike.krahn@bayer.com>, Jochem König <koenigjo@uni-mainz.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

netmeta

Examples

data(Senn2013)

Generation of an object of class 'netmeta' with reference treatment 'plac'
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data = Senn2013, sm = "MD", reference = "plac")

Network graph with default settings
netgraph(net1)

Network graph with specified order of the treatments and one
highlighted comparison
trts <- c("plac", "benf", "migl", "acar", "sulf",
"metf", "rosi", "piog", "sita", "vild")
netgraph(net1, highlight = "rosi:plac", seq = trts)

Same network graph using argument 'seq' in netmeta function
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data = Senn2013, sm = "MD", reference = "plac",
seq = trts)
netgraph(net2, highlight = "rosi:plac")

Network graph optimized, starting from a circle, with multi-arm
study colored
netgraph(net1, start = "circle", iterate = TRUE, col.multiarm = "purple")

Network graph optimized, starting from a circle, with multi-arm
study colored and all intermediate iteration steps visible
Not run: netgraph(net1, start = "circle", iterate = TRUE, col.multiarm = "purple",
allfigures = TRUE)
End(Not run)
netheat

Description

This function creates a net heat plot, a graphical tool for locating inconsistency in network meta-analyses.

Usage

netheat(x, random=FALSE, tau.preset=NULL, showall=FALSE, nchar.trts = x$nchar.trts, ...)
Arguments

- **x**: An object of class netmeta.
- **random**: A logical indicating whether the net heat plot should be based on a random effects model.
- **tau.preset**: An optional value for the square-root of the between-study variance τ^2 for a random effects model on which the net heat plot will be based.
- **showall**: A logical indicating whether results should be shown for all designs or only a sensible subset, see Details.
- **nchar.trts**: A numeric defining the minimum number of characters used to create unique treatment names.
- **...**: Additional arguments.

Details

The net heat plot is a matrix visualization proposed by Krahn et al. (2013) that highlights hot spots of inconsistency between specific direct evidence in the whole network and renders transparent possible drivers.

In this plot, the area of a gray square displays the contribution of the direct estimate of one design in the column to a network estimate in a row. In combination, the colors show the detailed change in inconsistency when relaxing the assumption of consistency for the effects of single designs. The colors on the diagonal represent the inconsistency contribution of the corresponding design. The colors on the off-diagonal are associated with the change in inconsistency between direct and indirect evidence in a network estimate in the row after relaxing the consistency assumption for the effect of one design in the column. Cool colors indicate an increase and warm colors a decrease: the stronger the intensity of the color, the greater the difference between the inconsistency before and after the detachment. So, a blue colored element indicates that the evidence of the design in the column supports the evidence in the row. A clustering procedure is applied to the heat matrix in order to find warm colored hot spots of inconsistency. In the case that the colors of a column corresponding to design d are identical to the colors on the diagonal, the detaching of the effect of design d dissolves the total inconsistency in the network.

The pairwise contrasts corresponding to designs of three- or multi-arm studies are marked by '_' following the treatments of the design.

By default (showall=FALSE), designs where only one treatment is involved in other designs of the network or where the removal of corresponding studies would lead to a splitting of the network do not contribute to the inconsistency assessment and are not incorporated into the net heat plot.

In the case of random=TRUE, the net heat plot is based on a random effects model generalised for multivariate meta-analysis in which the between-study variance τ^2 is estimated by the method of moments (see Jackson et al., 2012) and embedded in a full design-by-treatment interaction model (see Higgins et al., 2012).

Author(s)

Ulrike Krahn <ulrike.krahn@bayer.com>
References

See Also

netmeta

Examples

```r
data(Senn2013)

# # Generation of an object of class 'netmeta' with # reference treatment 'plac', i.e. placebo # net1 <- netmeta(TE, seTE, treat1, treat2, studlab, data=Senn2013, sm="MD", reference="plac")

# # Generate a net heat plot based on a fixed effects model # netheat(net1)

# # Generate a net heat plot based on a random effects model # netheat(net1, random=TRUE)
```

netleague

Create and print league table for network meta-analysis results

Description

A league table is a square matrix showing all pairwise comparisons in a network meta-analysis. Typically, both treatment estimates and confidence intervals are shown.

Usage

```r
netleague(x, y,
           comb.fixed = x$comb.fixed, comb.random = x$comb.random,
           seq = x$seq, ci = TRUE, backtransf = TRUE,
           digits = gs("digits"),
           )
```
netleague

bracket = gs("CIbracket"),
separator = gs("CIseparator")

S3 method for class 'netleague'
print(x,
 comb.fixed=x$comb.fixed, comb.random=x$comb.random, ...)

Arguments

x An object of class netmeta or netleague (mandatory).
y An object of class netmeta (optional).
comb.fixed A logical indicating whether a league table for fixed effect meta-analyses should be printed.
comb.random A logical indicating whether a league table for random effects meta-analyses should be printed.
seq A character or numerical vector specifying the sequence of treatments in rows and columns of a league table.
ci A logical indicating whether confidence intervals should be shown.
backtransf A logical indicating whether printed results should be back transformed. If backtransf=TRUE, results for sm="OR" are printed as odds ratios rather than log odds ratios, for example.
digits Minimal number of significant digits, see print.default.
bracket A character with bracket symbol to print lower confidence interval: ";","","{","".
separator A character string with information on separator between lower and upper confidence interval.
... Additional arguments (ignored at the moment).

Details

If argument y is not provided, the league table contains the same information in the lower and upper triangle, i.e., treatment comparisons and confidence intervals for network meta-analysis object x.

If argument y is provided, the league table contains information on treatment meta-analyses from network meta-analysis object x in the lower triangle and from network meta-analysis object y in the upper triangle.

R function netrank can be used to change the order of rows and columns in the league table (see examples).

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>, Gerta Rücker <ruecker@imbi.uni-freiburg.de>

See Also

netmeta, netposet, netrank
Examples

```r
# Network meta-analysis of count mortality statistics
#
# data(Woods2010)

p0 <- pairwise(treatment, event = r, n = N,
          studlab = author, data = Woods2010, sm = "OR")
net0 <- netmeta(p0)

oldopts <- options(width = 100)

# League table for fixed effect model
#
# netleague(net0, digits = 2, bracket = "(", separator = " - ")

# League table for fixed effect and random effects model
#
# netleague(net0, comb.random = TRUE, digits = 2)

# Change order of treatments according to treatment ranking
#
# netleague(net0, comb.random = TRUE, digits = 2,
#          seq = netrank(net0))

# print(netrank(net0), comb.random = TRUE)

## Not run:
# Create a CSV file with league table for random effects model
#
# league0 <- netleague(net0, digits = 2, bracket = "(" , separator = " to ")
# write.table(league0$random, file = "league0-random.csv",
#          row.names = FALSE, col.names = FALSE,
#          sep = ",")

# Create Excel files with league tables (using R package WriteXLS)
#
# library(WriteXLS)

# # League table from random effects model
#
# WriteXLS(league0$random, ExcelFileName = "league0-random.xls",
#          SheetNames = "leaguetable (random)", col.names = FALSE)

# # League tables from fixed and random effects models
#
# WriteXLS(list(league0$fixed, league0$random),
#          ExcelFileName = "league0-both.xls",
#          SheetNames = c("leaguetable (fixed)", "leaguetable (random)")
#          col.names = FALSE)

## End(Not run)
```
Use depression dataset
data(Linde2015)
Define order of treatments
#
trts <- c("TCA", "SSRI", "SNRI", "NRI",
"Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum",
"Placebo")
Outcome labels
#
outcomes <- c("Early response", "Early remission")
#
(1) Early response
#
p1 <- pairwise(treat = list(treatment1, treatment2, treatment3),
 event = list(resp1, resp2, resp3),
 n = list(n1, n2, n3),
 studlab = id, data = Linde2015, sm = "OR")
#
net1 <- netmeta(p1,
 comb.fixed = FALSE, comb.random = TRUE,
 seq = trts, ref = "Placebo")
#
(2) Early remission
#
p2 <- pairwise(treat = list(treatment1, treatment2, treatment3),
 event = list(remi1, remi2, remi3),
 n = list(n1, n2, n3),
 studlab = id, data = Linde2015, sm = "OR")
#
net2 <- netmeta(p2,
 comb.fixed = FALSE, comb.random = TRUE,
 seq = trts, ref = "Placebo")

options(width = 200)
netleague(net1, digits = 2)

netleague(net1, digits = 2, ci = FALSE)
netleague(net2, digits = 2, ci = FALSE)
netleague(net1, net2, digits = 2, ci = FALSE)

netleague(net1, net2, seq = netrank(net1, small = "bad"), ci = FALSE)
netleague(net1, net2, seq = netrank(net2, small = "bad"), ci = FALSE)

print(netrank(net1, small = "bad"), comb.random = TRUE)
print(netrank(net2, small = "bad"), comb.random = TRUE)

options(olddopts)
netmeasures

Description

This function provides measures for quantifying the direct evidence proportion, the mean path length and the minimal parallelism (the latter on aggregated and study level) of mixed treatment comparisons (network estimates) as well as the evidence flow per design, see König et al. (2013). These measures support the critical evaluation of the network meta-analysis results by rendering transparent the process of data pooling.

Usage

```r
netmeasures(x, 
    random = x$comb.random | !missing(tau.preset),
    tau.preset = x$tau.preset, warn = TRUE)
```

Arguments

- **x**: An object of class `netmeta`.
- **random**: A logical indicating whether random effects model should be used to calculate network measures.
- **tau.preset**: An optional value for the square-root of the between-study variance τ^2.
- **warn**: A logical indicating whether warnings should be printed.

Details

The direct evidence proportion gives the absolute contribution of direct effect estimates combined for two-arm and multi-arm studies to one network estimate.

Concerning indirectness, comparisons with a mean path length beyond two should be interpreted with particular caution, as more than two direct comparisons have to be combined serially on average.

Large indices of parallelism, either on study-level or on aggregated level, can be considered as supporting the validity of a network meta-analysis if there is only a small amount of heterogeneity.

The network estimates for two treatments are linear combinations of direct effect estimates comparing these or other treatments. The linear coefficients can be seen as the generalization of weights known from classical meta-analysis. These coefficients are given in the projection matrix H of the

```r
## Not run: 
# Generate a partial order of treatment rankings 
# 
np <- netposet(net1, net2, outcomes = outcomes, small.values = rep("bad", 2)) 
hasse(np) 
plot(np) 
## End(Not run)
```
underlying model. For multi-arm studies, the coefficients depend on the choice of the study-specific baseline treatment, but the absolute flow of evidence can be made explicit for each design as shown in König et al. (2013) and is given in H_{tilde}.

All measures are calculated based on the fixed effects meta-analysis by default. In the case that in function netmeta the argument `comb.random=TRUE`, all measures are calculated for a random effects model. The value of the square-root of the between-study variance τ^2 can also be pre-specified by argument `tau.preset` in function netmeta.

Value

A list containing the following components:

- **random**, *tau.preset*

 As defined above.

- **proportion**

 A named vector of the direct evidence proportion of each network estimate.

- **meanpath**

 A named vector of the mean path length of each network estimate.

- **minpar**

 A named vector of the minimal parallelism on aggregated level of each network estimate.

- **minpar.study**

 A named vector of the minimal parallelism on study level of each network estimate.

- **H_{\text{tilde}}**

 Design-based hat matrix with information on absolute evidence flow per design. The number of rows is equal to the number of possible pairwise treatment comparisons and the number of columns is equal to the number of designs.

Author(s)

Ulrike Krahn <ulrike.krahn@bayer.com>, Jochem König <koenigjo@uni-mainz.de>

References

See Also

netmeta

Examples

data(Senn2013)

#
Generation of an object of class 'netmeta' with
reference treatment 'plac', i.e. placebo based
on a fixed effects model
#
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
 data=Senn2013, sm="MD", reference="plac")
Calculate measures based on a fixed effects model
#
#m1 <- netmeasures(net1)

Plot of minimal parallelism versus mean path length
#
#plot(m1$meanpath, m1$minpar, pch="", xlab="Mean path length", ylab="Minimal parallelism")
#text(m1$meanpath, m1$minpar, names(m1$meanpath), cex=0.8)

Generation of an object of class 'netmeta' with
reference treatment 'plac' based on a random
effects model
#
#net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD", reference="plac", comb.random=TRUE)

Calculate measures based on a random effects model
#
#m2 <- netmeasures(net2)

netmeta
Network meta-analysis using graph-theoretical method

Description

Network meta-analysis is a generalisation of pairwise meta-analysis that compares all pairs of treatments within a number of treatments for the same condition. The graph-theoretical method for analysis of network meta-analyses uses graph-theoretical methods that were originally developed in electrical network theory. It has been found to be equivalent to the frequentist approach to network meta-analysis (Rücker, 2012).

Usage

```
netmeta(TE, seTE, treat1, treat2, studlab, data=NULL, subset=NULL,  
sm, level=0.95, level.comb=0.95,  
comb.fixed=TRUE, comb.random=!is.null(tau.preset),  
prediction=FALSE, level.predict=0.95,  
reference.group="", baseline.reference=TRUE,  
all.treatments=NULL, seq=NULL, tau.preset=NULL,  
tol.multiarm = 0.0005, details.chkmultiarm = FALSE,  
sep.trts=".", nchar.trts=666,  
backtransf=gs("backtransf"), title="", warn=TRUE)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE</td>
<td>Estimate of treatment effect, i.e. difference between first and second treatment (e.g. log odds ratio, mean difference, or log hazard ratio).</td>
</tr>
<tr>
<td>seTE</td>
<td>Standard error of treatment estimate.</td>
</tr>
<tr>
<td>treat1</td>
<td>Label/Number for first treatment.</td>
</tr>
<tr>
<td>treat2</td>
<td>Label/Number for second treatment.</td>
</tr>
<tr>
<td>studlab</td>
<td>An optional - but important! - vector with study labels (see Details).</td>
</tr>
<tr>
<td>data</td>
<td>An optional data frame containing the study information.</td>
</tr>
<tr>
<td>subset</td>
<td>An optional vector specifying a subset of studies to be used.</td>
</tr>
<tr>
<td>sm</td>
<td>A character string indicating underlying summary measure, e.g., "RD", "RR", "OR", "ASD", "HR", "MD", "SMD", or "ROM".</td>
</tr>
<tr>
<td>level</td>
<td>The level used to calculate confidence intervals for individual comparisons.</td>
</tr>
<tr>
<td>level.comb</td>
<td>The level used to calculate confidence intervals for pooled estimates.</td>
</tr>
<tr>
<td>comb.fixed</td>
<td>A logical indicating whether a fixed effect meta-analysis should be conducted.</td>
</tr>
<tr>
<td>comb.random</td>
<td>A logical indicating whether a random effects meta-analysis should be conducted.</td>
</tr>
<tr>
<td>prediction</td>
<td>A logical indicating whether prediction intervals should be printed.</td>
</tr>
<tr>
<td>level.predict</td>
<td>The level used to calculate prediction intervals for a new study.</td>
</tr>
<tr>
<td>reference.group</td>
<td>Reference group.</td>
</tr>
<tr>
<td>baseline.reference</td>
<td>A logical indicating whether results should be expressed as comparisons of other treatments versus the reference treatment (default) or vice versa. This argument is only considered if reference.group has been specified.</td>
</tr>
<tr>
<td>all.treatments</td>
<td>A logical or value "NULL". If TRUE, matrices with all treatment effects, and confidence limits will be printed.</td>
</tr>
<tr>
<td>seq</td>
<td>A character or numerical vector specifying the sequence of treatments in printouts.</td>
</tr>
<tr>
<td>tau.preset</td>
<td>An optional value for the square-root of the between-study variance τ^2.</td>
</tr>
<tr>
<td>tol.multiarm</td>
<td>A numeric for the tolerance for consistency of treatment estimates and corresponding variances in multi-arm studies which are consistent by design.</td>
</tr>
<tr>
<td>details.chkmultiarm</td>
<td>A logical indicating whether treatment estimates and / or variances of multi-arm studies with inconsistent results or negative multi-arm variances should be printed.</td>
</tr>
<tr>
<td>sep.trts</td>
<td>A character used in comparison names as separator between treatment labels.</td>
</tr>
<tr>
<td>backtransf</td>
<td>A logical indicating whether results should be back transformed in printouts and forest plots. If backtransf=TRUE, results for sm="OR" are presented as odds ratios rather than log odds ratios, for example.</td>
</tr>
<tr>
<td>nchar.trts</td>
<td>A numeric defining the minimum number of characters used to create unique treatment names (see Details).</td>
</tr>
<tr>
<td>title</td>
<td>Title of meta-analysis / systematic review.</td>
</tr>
<tr>
<td>warn</td>
<td>A logical indicating whether warnings should be printed (e.g., if studies are excluded from meta-analysis due to zero standard errors).</td>
</tr>
</tbody>
</table>
Details

Network meta-analysis using R package netmeta is described in detail in Schwarzer et al. (2015), Chapter 8.

Let \(n \) be the number of different treatments (nodes, vertices) in a network and let \(m \) be the number of existing comparisons (edges) between the treatments. If there are only two-arm studies, \(m \) is the number of studies. Let \(\text{TE} \) and \(\text{seTE} \) be the vectors of observed effects and their standard errors. Let \(W \) be the \(mxm \) diagonal matrix that contains the inverse variance \(1/\text{seTE}^2 \).

The given comparisons define the network structure. Therefrom an \(mnxn \) design matrix \(B \) (edge-vertex incidence matrix) is formed; for more precise information, see Rücker (2012). Moreover, the \(nnxn \) Laplacian matrix \(L \) and its Moore-Penrose pseudoinverse \(L^+ \) are calculated (both matrices play an important role in graph theory and electrical network theory). Using these matrices, the variances based on both direct and indirect comparisons can be estimated. Moreover, the hat matrix \(H \) can be estimated by \(H = BL + B^tW = B(B^tW B)^+B^tW \) and finally consistent treatment effects can be estimated by applying the hat matrix to the observed (potentially inconsistent) effects. \(H \) is a projection matrix which maps the observed effects onto the consistent (n-1)-dimensional subspace. This is the Aitken estimator (Senn et al., 2013). As in pairwise meta-analysis, the \(Q \) statistic measures the deviation from consistency. \(Q \) can be separated into parts for each pairwise meta-analysis and a part for remaining inconsistency between comparisons.

Often multi-arm studies are included in a network meta-analysis. In multi-arm studies, the treatment effects on different comparisons are not independent, but correlated. This is accounted for by reweighting all comparisons of each multi-arm study. The method is described in Rücker (2012) and Rücker and Schwarzer (2014).

Comparisons belonging to multi-arm studies are identified by identical study labels (argument \text{studlab}). It is therefore important to use identical study labels for all comparisons belonging to the same multi-arm study, e.g., study label "Willms1999" for the three-arm study in the data example (Senn et al., 2013). The function netmeta then automatically accounts for within-study correlation by reweighting all comparisons of each multi-arm study.

Data entry for this function is in contrast-based format, that is, data are given as contrasts (differences) between two treatments (argument \text{TE}) with standard error (argument \text{seTE}). In principle, meta-analysis functions from R package meta, e.g. \text{metabin} for binary outcomes or \text{metacont} for continuous outcomes, can be used to calculate treatment effects separately for each treatment comparison which is a rather tedious enterprise. If data are provided in arm-based format, that is, data are given for each treatment arm separately (e.g. number of events and participants for binary outcomes), a much more convenient way to transform data into contrast-based form is available. Function pairwise can automatically transform data with binary outcomes (using the \text{metabin} function from R package meta), continuous outcomes (\text{metacont} function), incidence rates (\text{metainc} function), and generic outcomes (\text{metagen} function). Additional arguments of these functions can be provided, e.g., to calculate Hedges’ \(g \) or Cohen’s \(d \) for continuous outcomes (see help page of function pairwise).

Note, all pairwise comparisons must be provided for a multi-arm study. Consider a multi-arm study of \(p \) treatments with known variances. For this study, treatment effects and standard errors must be provided for each of \(p(p - 1)/2 \) possible comparisons. For instance, a three-arm study contributes three pairwise comparisons, a four-arm study even six pairwise comparisons. Function pairwise automatically calculates all pairwise comparisons for multi-arm studies.

A simple random effects model assuming that a constant heterogeneity variance is added to each comparison of the network can be defined via a generalised methods of moments estimate of the
between-studies variance \(\tau^2 \) (Jackson et al., 2012). This is added to the observed sampling variance \(\text{seTE}^2 \) of each comparison in the network (before appropriate adjustment for multi-arm studies). Then, as in standard pairwise meta-analysis, the procedure is repeated with the resulting enlarged standard errors.

By default, treatment names are not abbreviated in printouts. However, in order to get more concise printouts, argument \text{nchar.trts} can be used to define the minimum number of characters for abbreviated treatment names. R function \text{treats} is utilised internally to create abbreviated treatment names.

Names of treatment comparisons are created by concatenating treatment labels of pairwise comparisons using \text{sep.trts} as separator (see \text{paste}). These comparison names are used in the covariance matrices \text{Cov.fixed} and \text{Cov.random} and in some R functions, e.g., \text{decomp.design}. By default, a colon is used as the separator. If any treatment label contains a colon the following characters are used as separator (in consecutive order): ":", ":", ":", ":", ":", ":". If all of these characters are used in treatment labels, a corresponding error message is printed asking the user to specify a different separator.

Value

An object of class \text{netmeta} with corresponding \text{print}, \text{summary}, \text{forest}, and \text{netrank} function. The object is a list containing the following components:

- \text{TE}, \text{seTE}, \text{studlab}, \text{treat1}, \text{treat2}, \text{sm}, \text{level}, \text{level.comb}

 As defined above.

- \text{comb.fixed}, \text{comb.random}, \text{prediction}, \text{level.predict}

 As defined above.

- \text{reference.group}, \text{baseline.reference}, \text{all.treatments}

 As defined above.

- \text{seq}, \text{tau.preset}, \text{tol.multiarm}, \text{details.chkmultiarm}

 As defined above.

- \text{reference.group}, \text{baseline.reference}, \text{all.treatments}, \text{sep.trts}

 As defined above.

- \text{backtransf}, \text{nchar.trts}, \text{title}, \text{warn}

 As defined above.

- \text{seTE.adj}

 Standard error of treatment estimate, adjusted for multi-arm studies.

- \text{reference.group}

 The name of the reference group, if specified, otherwise \text{c(""}).

- \text{all.treatments}

 A logical or value "NULL". If TRUE, matrices with all treatment effects, and confidence limits will be printed.

- \text{studies}

 Study labels coerced into a factor with its levels sorted alphabetically.

- \text{narms}

 Number of arms for each study.

- \text{TE.nma.fixed}, \text{TE.nma.random}

 A vector of length \(m \) of consistent treatment effects estimated by network meta-analysis (nma) (fixed effect / random effects model).

- \text{seTE.nma.fixed}, \text{seTE.nma.random}

 A vector of length \(m \) of effective standard errors estimated by network meta-analysis (fixed effect / random effects model).
lower.nma.fixed, lower.nma.random
A vector of length m of lower confidence interval limits for consistent treatment effects estimated by network meta-analysis (fixed effect / random effects model).

upper.nma.fixed, upper.nma.random
A vector of length m of upper confidence interval limits for the consistent treatment effects estimated by network meta-analysis (fixed effect /random effects model).

leverage.fixed A vector of length m of leverages, interpretable as factors by which variances are reduced using information from the whole network.

w.fixed, w.random
A vector of length m of weights of individual studies (fixed effect / random effects model).

TE.fixed, TE.random
$n \times n$ matrix with estimated overall treatment effects (fixed effect / random effects model).

seTE.fixed, seTE.random
$n \times n$ matrix with standard errors (fixed effect / random effects model).

lower.fixed, upper.fixed, lower.random, upper.random
$n \times n$ matrices with lower and upper confidence interval limits (fixed effect /random effects model).

zval.fixed, pval.fixed, zval.random, pval.random
$n \times n$ matrices with z-value and p-value for test of overall treatment effect (fixed effect / random effects model).

TE.direct.fixed, TE.direct.random
$n \times n$ matrix with estimated treatment effects from direct evidence (fixed effect / random effects model).

seTE.direct.fixed, seTE.direct.random
$n \times n$ matrix with estimated standard errors from direct evidence (fixed effect / random effects model).

lower.direct.fixed, upper.direct.fixed, lower.direct.random, upper.direct.random
$n \times n$ matrices with lower and upper confidence interval limits from direct evidence (fixed effect /random effects model).

zval.direct.fixed, pval.direct.fixed, zval.direct.random, pval.direct.random
$n \times n$ matrices with z-value and p-value for test of overall treatment effect from direct evidence (fixed effect / random effects model).

TE.indirect.fixed, TE.indirect.random
$n \times n$ matrix with estimated treatment effects from indirect evidence (fixed effect / random effects model).

seTE.indirect.fixed, seTE.indirect.random
$n \times n$ matrix with estimated standard errors from indirect evidence (fixed effect / random effects model).

lower.indirect.fixed, upper.indirect.fixed, lower.indirect.random, upper.indirect.random
$n \times n$ matrices with lower and upper confidence interval limits from indirect evidence (fixed effect /random effects model).

zval.indirect.fixed, pval.indirect.fixed, zval.indirect.random, pval.indirect.random
$n \times n$ matrices with z-value and p-value for test of overall treatment effect from indirect evidence (fixed effect / random effects model).
prop.direct.fixed, prop.direct.random
A named vector of the direct evidence proportion of each network estimate.
(fixed effect / random effects model).

Q.fixed
A vector of length \(m \) of contributions to total heterogeneity / inconsistency statistic.

\(k \)
Total number of studies.

\(m \)
Total number of pairwise comparisons.

\(n \)
Total number of treatments.

\(d \)
Total number of designs.

\(Q \)
Overall heterogeneity / inconsistency statistic.

\(df.Q \)
Degrees of freedom for test of heterogeneity / inconsistency.

\(pval.Q \)
P-value for test of heterogeneity / inconsistency.

\(I^2 \)
I-squared.

\(\tau \)
Square-root of between-study variance.

\(Q.heterogeneity \)
Overall heterogeneity statistic.

\(df.Q.heterogeneity \)
Degrees of freedom for test of overall heterogeneity.

\(pval.Q.heterogeneity \)
P-value for test of overall heterogeneity.

\(Q.inconsistency \)
Overall inconsistency statistic.

\(df.Q.inconsistency \)
Degrees of freedom for test of overall inconsistency.

\(pval.Q.inconsistency \)
P-value for test of overall inconsistency.

\(A.matrix \)
Adjacency matrix \((nxn)\).

\(B.matrix \)
Edge-vertex incidence matrix \((mxn)\).

\(L.matrix \)
Laplacian matrix \((nxn)\).

\(Lplus.matrix \)
Moore-Penrose pseudoinverse of the Laplacian matrix \((nxn)\).

\(Q.matrix \)
Matrix of heterogeneity statistics for pairwise meta-analyses, where direct comparisons exist \((nxn)\).

\(G.matrix \)
Matrix with variances and covariances of comparisons \((mxm)\). \(G \) is defined as \(BL+B^t \).

\(H.matrix \)
Hat matrix \((mxm)\), defined as \(H = GW = BL+B^t W \).

\(Cov.fixed \)
Variance-covariance matrix (fixed effect model)

\(Cov.random \)
Variance-covariance matrix (random effects model)

\(Q.decomp \)
Data frame with columns 'treat1', 'treat2', 'Q', 'df' and 'pval.Q', providing heterogeneity statistics for each pairwise meta-analysis of direct comparisons.

\(P.fixed, P.random \)
nxn matrix with direct evidence proportions (fixed effect / random effects model).

\(call \)
Function call.

\(version \)
Version of R package netmeta used to create object.
Author(s)
Gerta Rücker <ruecker@imbi.uni-freiburg.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also
pairwise, forest.netmeta, netrank, metagen

Examples

data(Senn2013)

Fixed effect model (default)
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD")
net1
net1$Q.decomp

Comparison with reference group
print(net1, reference="plac")

Random effects model
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD", comb.random=TRUE)
net2

Change printing order of treatments with placebo last and
use long treatment names
trts <- c(“acar”, “benf”, “metf”, “migl”, “piog”,
”rosi”, “sita”, “sulf”, “vild”, “plac”)
Partial order of treatments in network meta-analysis

Description

Partial order of treatments in network meta-analysis. The set of treatments in a network is called a partially ordered set (in short, a poset), if different outcomes provide different treatment ranking lists.

Usage

netposet(..., outcomes, treatments, small.values, comb.fixed, comb.random)

S3 method for class 'netposet'
print(x,
pooled=ifelse(x$comb.random, "random", "fixed"), ...

Arguments

... See details.
outcomes A character vector with outcome names.
treatments A character vector with treatment names.
small.values See details.
comb.fixed A logical indicating whether to show results for fixed effect model.
comb.random A logical indicating whether to show results for random effects model.
x An object of class netposet.
pooled A character string indicating whether Hasse diagram should be drawn for fixed effect ("fixed") or random effects model ("random"). Can be abbreviated.

Details

In network meta-analysis, frequently different outcomes are considered which may each provide a different ordering of treatments. The concept of a partially ordered set (in short, a poset, Carlsen & Bruggemann, 2014) of treatments can be used to gain further insights in situations with apparently conflicting orderings. This implementation for rankings in network meta-analysis is described in Rücker & Schwarzer (2017).

In function netposet, argument ... can be any of the following:

- arbitrary number of netrank objects providing P-scores;
• arbitrary number of netmeta objects;
• single ranking matrix with each column providing P-scores (Rücker and Schwarzer 2015) or SUCRA values (Salanti et al. 2011) for an outcome and rows corresponding to treatments.

Note, albeit in general a ranking matrix is not constrained to have values between 0 and 1, netposet stops with an error in this case as this function expects a matrix with P-scores or SUCRA values.

Argument outcomes can be used to label outcomes. If argument outcomes is missing,
- column names of the ranking matrix are used as outcome labels (if first argument is a ranking matrix and column names are available);
- capital letters 'A', 'B', ... are used as outcome labels and a corresponding warning is printed.

Argument treatments can be used to provide treatment labels if the first argument is a ranking matrix. If argument treatment is missing,
- row names of the ranking matrix are used as treatment labels (if available);
- letters 'a', 'b', ... are used as treatment labels and a corresponding warning is printed.

If argument ... consists of netmeta objects, netrank is called internally to calculate P-scores. In this case, argument small.values can be used to specify for each outcome whether small values are good or bad; see netrank. This argument is ignored for a ranking matrix and netrank objects.

Arguments comb.fixed and comb.random can be used to define whether results should be printed and plotted for fixed effect and / or random effects model. If netmeta and netrank objects are provided in argument ..., values for comb.fixed and comb.random within these objects are considered; if these values are not unique, argument comb.fixed and / or comb.random are set to TRUE.

In function print.netposet, argument ... is passed on to the printing function.

Value

An object of class netposet with corresponding print, plot, and hasse function. The object is a list containing the following components:

P.fixed Ranking matrix with rows corresponding to treatments and columns corresponding to outcomes (fixed effect model).
M0.fixed Hasse matrix skipping unnecessary paths (fixed effect model).
M.fixed "Full" Hasse matrix (fixed effect model).
O.fixed Matrix with information about partial ordering (fixed effect model).
P.random Ranking matrix with rows corresponding to treatments and columns corresponding to outcomes (random effects model).
M0.random Hasse matrix skipping unnecessary paths (random effects model).
M.random "Full" Hasse matrix (random effects model).
O.random Matrix with information about partial ordering (random effects model).
small.values, comb.fixed, comb.random As defined above.
call Function call.
version Version of R package netmeta used to create object.
Author(s)
Gerta Rücker <ruecker@imbi.uni-freiburg.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

References

See Also

`netmeta`, `netrank`, `hasse`, `plot.netposet`

Examples

```r
# Use depression dataset
#
data(Linde2015)
#
# Define order of treatments
#
trts <- c("TCA", "SSRI", "SNRI", "NRI",
            "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum",
            "Placebo")

# Outcome labels
#
outcomes <- c("Early response", "Early remission")
#
# (1) Early response
#
p1 <- pairwise(treat = list(treatment1, treatment2, treatment3),
               event = list(resp1, resp2, resp3),
               n = list(n1, n2, n3),
               studlab = id, data = Linde2015, sm = "OR")

# net1 <- netmeta(p1,
#               comb.fixed = FALSE, comb.random = TRUE,
#               seq = trts, ref = "Placebo")

# (2) Early remission
#
p2 <- pairwise(treat = list(treatment1, treatment2, treatment3),
```
event = list(remi1, remi2, remi3),
 n = list(n1, n2, n3),
 studlab = id, data = Linde2015, sm = "OR")
#
net2 <- netmeta(p2,
 comb.fixed = FALSE, comb.random = TRUE,
 seq = trts, ref = "Placebo")
#
Partial order of treatment rankings (all five outcomes)
#
po <- netposet(netrank(net1, small.values = "bad"),
 netrank(net2, small.values = "bad"),
 outcomes = outcomes)
#
Hasse diagram
#
hasse(po)

Not run:
##
Outcome labels
##
outcomes <- c("Early response", "Early remission",
 "Lost to follow-up", "Lost to follow-up due to AEs",
 "Adverse events (AEs)")
##
(3) Loss to follow-up
##
p3 <- pairwise(treat = list(treatment1, treatment2, treatment3),
 event = list(loss1, loss2, loss3),
 n = list(n1, n2, n3),
 studlab = id, data = Linde2015, sm = "OR")
#
net3 <- netmeta(p3,
 comb.fixed = FALSE, comb.random = TRUE,
 seq = trts, ref = "Placebo")
#
(4) Loss to follow-up due to adverse events
#
p4 <- pairwise(treat = list(treatment1, treatment2, treatment3),
 event = list(loss.ae1, loss.ae2, loss.ae3),
 n = list(n1, n2, n3),
 studlab = id, data = subset(Linde2015, id != 55),
 sm = "OR")
#
net4 <- netmeta(p4,
 comb.fixed = FALSE, comb.random = TRUE,
 seq = trts, ref = "Placebo")
#
(5) Adverse events
#
p5 <- pairwise(treat = list(treatment1, treatment2, treatment3),
netposet

```r
net = list(ae1, ae2, ae3),
      n = list(n1, n2, n3),
      studlab = id, data = Linde2015, sm = "OR")
# net5 <- netmeta(p5,
#     comb.fixed = FALSE, comb.random = TRUE,
#     seq = trts, ref = "Placebo")
#
# Partial order of treatment rankings (all five outcomes)
#
po.ranks <- netposet(netrank(net1, small.values = "bad"),
           netrank(net2, small.values = "bad"),
           netrank(net3, small.values = "good"),
           netrank(net4, small.values = "good"),
           netrank(net5, small.values = "good"),
           outcomes = outcomes)
#
# Same result
#
po.nets <- netposet(net1, net2, net3, net4, net5,
           small.values = c("bad", "bad", "good", "good", "good"),
           outcomes = outcomes)
#
all.equal(po.ranks, po.nets)
#
# Print matrix with P-scores (random effects model)
#
po.nets$p.random
#
# Hasse diagram for all outcomes (random effects model)
#
hasse(po.ranks)
#
# Hasse diagram for outcomes early response and early remission
#
po12 <- netposet(netrank(net1, small.values = "bad"),
           netrank(net2, small.values = "bad"),
           outcomes = outcomes[1:2])
hasse(po12)
#
# Scatter plot
#
oldpar <- par(pty = "s")
plot(po12)
par(oldpar)
```

End(Not run)

Example using ranking matrix with P-scores
#
Ribassin-Majed L, Marguet S, Lee A.W., et al. (2017),
What is the best treatment of locally advanced nasopharyngeal
carcinoma? An individual patient data network meta-analysis.
Journal of Clinical Oncology.
35, 498-505, DOI:10.1200/JCO.2016.67.4119
#
outcomes <- c("OS", "PFS", "LC", "DC")
treatments <- c("RT", "IC-RT", "IC-CRT", "CRT",
 "CRT-AC", "RT-AC", "IC-RT-AC")
#
P-scores (from Table 1)
#
pscore.os <- c(15, 33, 63, 70, 96, 28, 45) / 100
pscore.pfs <- c(4, 46, 79, 52, 94, 36, 39) / 100
pscore.lc <- c(9, 27, 47, 37, 82, 58, 90) / 100
pscore.dc <- c(16, 76, 95, 48, 72, 32, 10) / 100
#
pscore.matrix <- data.frame(pscore.os, pscore.pfs, pscore.lc, pscore.dc)
rownames(pscore.matrix) <- treatments
colnames(pscore.matrix) <- outcomes
pscore.matrix
#
po <- netposet(pscore.matrix)
po12 <- netposet(pscore.matrix[, 1:2])
po
po12
#
hasse(po)
hasse(po12)
#
oldpar <- par(pty = "s")
plot(po12)
par(oldpar)

netrank

Frequentist method to rank treatments in network

Description

Ranking treatments in frequentist network meta-analysis without resampling methods.

Usage

netrank(x, small.values="good")

S3 method for class 'netrank'
print(x,
 comb.fixed = xxcomb.fixed, comb.random = xxcomb.random,
 sort=TRUE, digits=max(4L, .Options$digits - 3L), ...)

Arguments

x
comb.fixed
comb.random
small.values
sort
digits
...

Details

Treatments are ranked based on a network meta-analysis. Ranking is performed by P-scores. P-scores are based solely on the point estimates and standard errors of the network estimates. They measure the extent of certainty that a treatment is better than another treatment, averaged over all competing treatments (Rücker and Schwarzer 2015).

The P-score of treatment i is defined as the mean of all $1 - P[j]$ where $P[j]$ denotes the one-sided P-value of accepting the alternative hypothesis that treatment i is better than one of the competing treatments j. Thus, if treatment i is better than many other treatments, many of these P-values will be small and the P-score will be large. Vice versa, if treatment i is worse than most other treatments, the P-score is small.

The P-score of treatment i can be interpreted as the mean extent of certainty that treatment i is better than another treatment. This interpretation is comparable to that of the Surface Under the Cumulative RAnking curve (SUCRA) which is the rank of treatment i within the range of treatments, measured on a scale from 0 (worst) to 1 (best) (Salanti et al. 2011).

Value

An object of class netrank with corresponding print function. The object is a list containing the following components:

- `pscore.fixed` A named numeric vector with P-scores for fixed effect model.
- `pmatrix.fixed` Numeric matrix based on pairwise one-sided p-values for fixed effect model.
- `pscore.random` A named numeric vector with P-scores for random effects model.
- `pmatrix.random` Numeric matrix based on pairwise one-sided p-values of random effects model.
- `small.values` As defined above.
- `version` Version of R package netmeta used to create object.

Author(s)

Gerta Rücker <ruecker@imbi.uni-freiburg.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>
References

See Also

netmeta

Examples

data(Senn2013)

net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD")
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD",
comb.fixed=FALSE, comb.random=TRUE)
net3 <- netmeta(TE, seTE, treat1, treat2, studlab,
data=Senn2013, sm="MD",
comb.random=TRUE)

nr1 <- netrank(net1)
nr1
print(nr1, sort=FALSE)
	nr2 <- netrank(net2)
nr2
print(nr2, sort=FALSE)
	nr3 <- netrank(net3)
nr3
print(nr3, sort="fixed")
print(nr3, sort=FALSE)

netsplit

Split direct and indirect evidence in network meta-analysis

Description

Back-calculation method to split contribution of direct and indirect evidence in network meta-analysis.
netsplit

Usage

```r
netsplit(x, upper=TRUE,
        reference.group=x$reference.group,
        baseline.reference=x$baseline.reference,
        sep.trts=x$sep.trts, quote.trts="",
        tol.direct=0.0005)
```

```r
## S3 method for class 'netsplit'
print(x,
      comb.fixed=x$comb.fixed,
      comb.random=x$comb.random,
      showall=TRUE,
      overall=TRUE,
      ci=FALSE,
      test=TRUE,
      digits=gs("digits"),
      digits.zval=gs("digits.zval"),
      digits.pval=gs("digits.pval"),
      digits.prop=max(gs("digits.pval")-2, 2),
      text.NA="", backtransf=x$backtransf,
      scientific.pval=gs("scientific.pval"),
      big.mark=gs("big.mark"),
      ...
)
```

Arguments

- **x**
 - An object of class netmeta or netsplit.
- **upper**
 - A logical indicating whether treatment comparisons should be selected from the lower or upper triangle of the treatment effect matrices (see list elements `TE.fixed` and `TE.random` in the netmeta object).
- **reference.group**
 - Reference group.
- **baseline.reference**
 - A logical indicating whether results should be expressed as comparisons of other treatments versus the reference treatment or vice versa. This argument is only considered if `reference.group` is not equal to "".
- **sep.trts**
 - A character string used in comparison names as separator between treatment labels, e.g., " vs ".
- **quote.trts**
 - A character used to print around treatment labels.
- **tol.direct**
 - A numeric defining the maximum deviation of the direct evidence proportion from 0 or 1 to classify a comparison as providing only indirect or direct evidence, respectively.
- **comb.fixed**
 - A logical indicating whether results for fixed effect model should be printed.
- **comb.random**
 - A logical indicating whether results for random effects model should be printed.
- **showall**
 - A logical indicating whether all comparisons (default) or only comparisons contributing both direct and indirect evidence should be printed.
netsplit

overall A logical indicating whether estimates from network meta-analysis should be printed in addition to direct and indirect estimates.

ci A logical indicating whether confidence intervals should be printed in addition to treatment estimates.

test A logical indicating whether results of a test comparing direct and indirect estimates should be printed.

digits Minimal number of significant digits, see print.default.

digits.zval Minimal number of significant digits for z-value of test of agreement between direct and indirect evidence, see print.default.

digits.pval Minimal number of significant digits for p-value of test of agreement between direct and indirect evidence, see print.default.

digits.prop Minimal number of significant digits for direct evidence proportions, see print.default.

text.NA A character string specifying text printed for missing values.

backtransf A logical indicating whether printed results should be back transformed. For example, if backtransf=TRUE, results for sm="OR" are printed as odds ratios rather than log odds ratios.

scientific.pval A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.

big.mark A character used as thousands separator.

Additional arguments (ignored at the moment)

Details

Direct and indirect treatment estimates are calculated in netmeta. This function combines and prints these estimates in a user-friendly way.

A comparison of direct and indirect treatment estimates can serve as check for consistency of network meta-analysis (Dias et al., 2010). This function provides a back-calculation method to derive indirect estimates from direct pairwise comparisons and network estimates. The direct evidence proportion as described in König et al. (2013) is used to calculate the indirect evidence.

Value

An object of class netsplit with corresponding print function. The object is a list containing the following components:

comb.fixed, comb.random As defined above.

comparison A vector with treatment comparisons.

prop.fixed, prop.random A vector with direct evidence proportions (fixed effect / random effects model).

fixed, random Results of network meta-analysis (fixed effect / random effects model), i.e., data frame with columns comparison, TE, seTE, lower, upper, z, and p.
direct.fixed, direct.random
Network meta-analysis results based on direct evidence (fixed effect / random effects model), i.e., data frame with columns comparison, TE, seTE, lower, upper, z, and p.

indirect.fixed, indirect.random
Network meta-analysis results based on indirect evidence (fixed effect / random effects model), i.e., data frame with columns comparison, TE, seTE, lower, upper, z, and p.

compare.fixed, compare.random
Comparison of direct and indirect evidence in network meta-analysis (fixed effect / random effects model), i.e., data frame with columns comparison, TE, seTE, lower, upper, z, and p.

sm
A character string indicating underlying summary measure

level.comb
The level used to calculate confidence intervals for pooled estimates.

version
Version of R package netmeta used to create object.

Author(s)
Guido Schwarzer<sc@imbi.uni-freiburg.de>, Gerta Rücker<ruecker@imbi.uni-freiburg.de>

References

See Also
netmeta, netmeasures

Examples

data(Woods2010)

pl <- pairwise(treatment, event=r, n=N,
studlab=author, data=Woods2010, sm=”OR”)

net1 <- netmeta(pl)

print(netsplit(net1), digits=2)
print(netsplit(net1), digits=2,
backtransf=FALSE, comb.random=TRUE)

data(Senn2013)

#
Transform meta-analysis data from arm-based format into contrast-based format

Description

This function transforms data that are given in an arm-based format (e.g., input format for WinBUGS) to a contrast-based format that is needed as input to R function `netmeta`. The function can transform data with binary, continuous, or generic outcomes as well as incidence rates from arm-based to contrast-based format.

Usage

```r
pairwise(treat, event, n, mean, sd, TE, seTE, time,
         data=NULL, studlab,
         incr=0.5, allincr=FALSE, addincr=FALSE, allstudies=FALSE,
         ...)```

**Arguments**

- `treat`: A list or vector with treatment information for individual treatment arms (see Details).
- `event`: A list or vector with information on number of events for individual treatment arms (see Details).
- `n`: A list or vector with information on number of observations for individual treatment arms (see Details).
- `mean`: A list or vector with estimated means for individual treatment arms (see Details).
- `sd`: A list or vector with information on the standard deviation for individual treatment arms (see Details).
- `TE`: A list or vector with estimated treatment effects for individual treatment arms (see Details).
- `seTE`: A list or vector with standard errors of estimated treatment effect for individual treatment arms (see Details).
- `time`: A list or vector with information on person time at risk for individual treatment arms (see Details).
- `data`: An optional data frame containing the study information.
- `studlab`: A vector with study labels (optional).
**incr**
A numerical value which is added to each cell frequency for studies with a zero cell count.

**allincr**
A logical indicating if incr is added to each cell frequency of all studies if at least one study has a zero cell count. If FALSE (default), incr is added only to each cell frequency of studies with a zero cell count.

**addincr**
A logical indicating if incr is added to each cell frequency of all studies irrespective of zero cell counts.

**allstudies**
A logical indicating if studies with zero or all events in two treatment arms are to be included in the meta-analysis (applies only if sm is equal to "RR" or "OR").

... Additional arguments passed-through to the functions to calculate effects.

**Details**

R function netmeta expects data in a contrast-based format, where each row corresponds to a comparison of two treatments and contains a measure of the treatment effect comparing two treatments with standard error, labels for the two treatments and an optional study label. In contrast-based format, a three-arm study contributes three rows with treatment comparison and corresponding standard error for pairwise comparison A vs B, A vs C, and B vs C whereas a four-arm study contributes six rows / pairwise comparisons: A vs B, A vs C, ..., C vs D.

Other programs for network meta-analysis in WinBUGS and Stata require data in an arm-based format, i.e. treatment estimate for each treatment arm instead of a difference of two treatments. This format consists of one data row per study, containing treatment and other necessary information for all study arms. For example, a four-arm study contributes one row with four treatment estimates and corresponding standard errors for treatments A, B, C, and D. Another possible arm-based format is a long format where each row corresponds to a single study arm. Accordingly, in the long format a study contributes as many rows as treatments considered in the study.

The pairwise function transforms data given in arm-based format into the contrast-based format which consists of pairwise comparisons and is needed as input to the netmeta function.

The pairwise function can transform data with binary outcomes (using the metabin function from R package meta), continuous outcomes (metacont function), incidence rates (metainc function), and generic outcomes (metagen function). Depending on the outcome, the following arguments are mandatory:

- treat, event, n (see metabin)
- treat, n, mean, sd (see metacont)
- treat, event, time (see metainc)
- treat, TE, seTE (see metagen)

Argument treat is mandatory to identify the individual treatments. The other arguments contain outcome specific data. These arguments must be either lists (one-row-per-study) or vectors (long format, i.e. multiple-rows-per-study) of the same length.

For the one-row-per-study format, each list consists of as many vectors of the same length as the multi-arm study with the largest number of treatments. If a single multi-arm study has five arms, five vectors have to be provided for each lists. Two-arm studies have entries with NA for the third and subsequent vectors. Each list entry is a vector with information for each individual study; i.e. the
length of this vector corresponds to the total number of studies incorporated in the network meta-
analysis. Typically, list elements are part of a data frame (argument data, optional); see Examples. An optional vector with study labels can be provided which can be part of the data frame.

In the long format, argument studlab is mandatory to identify rows contributing to individual studies.

Additional arguments for these functions can be provided using argument ‘...’. The following is a list of some important arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>R function</th>
</tr>
</thead>
<tbody>
<tr>
<td>sm</td>
<td>Summary measure</td>
<td><code>metabin, metacont, metainc, metagen</code></td>
</tr>
<tr>
<td>method</td>
<td>Meta-analysis method</td>
<td><code>metabin, metainc</code></td>
</tr>
<tr>
<td>method.tau</td>
<td>Estimation of between-study variance</td>
<td><code>metabin, metacont, metainc, metagen</code></td>
</tr>
<tr>
<td>method.smd</td>
<td>Standardised mean difference</td>
<td><code>metacont</code></td>
</tr>
</tbody>
</table>

More information on these as well as other arguments is given in the help pages of R functions `metabin, metacont, metainc, and metagen`, respectively.

The value of pairwise is a data frame with as many rows as there are pairwise comparisons. For each study with \( p \) treatments, \( p*(p-1)/2 \) contrasts are generated. Each row contains the treatment effect (TE), its standard error (seTE), the treatments compared ((treat1), (treat2)) and the study label ((studlab)). Further columns are added according to type of data.

**Value**

A data frame with the following columns

- **TE** Treatment estimate comparing treatment 'treat1' and 'treat2'.
- **seTE** Standard error of treatment estimate.
- **studlab** Study labels.
- **treat1** First treatment in comparison.
- **treat2** Second treatment in comparison.
- **event1** Number of events for first treatment arm (for metabin and metainc).
- **event2** Number of events for second treatment arm (for metabin and metainc).
- **n1** Number of observations for first treatment arm (for metabin and metacont).
- **n2** Number of observations for second treatment arm (for metabin and metacont).
- **mean1** Estimated mean for first treatment arm (for metacont).
- **mean2** Estimated mean for second treatment arm (for metacont).
- **sd1** Standard deviation for first treatment arm (for metacont).
- **sd2** Standard deviation for second treatment arm (for metacont).
- **TE1** Estimated treatment effect for first treatment arm (for metagen).
- **TE2** Estimated treatment effect for second treatment arm (for metagen).
- **seTE1** Standard error of estimated treatment effect for first treatment arm (for meta-
pairwise

seTE2       Standard error of estimated treatment effect for second treatment arm (for metagen).
time1       Person time at risk for first treatment arm (for metainc).
time2       Person time at risk for second treatment arm (for metainc).

Author(s)

Gerta Rücker<ruecker@imbi.uni-freiburg.de>, Guido Schwarzer<sc@imbi.uni-freiburg.de>

See Also

netmeta, metacont, metagen, metabin, metainc, netgraph

Examples

# Example using continuous outcomes (internal call of function metacont)
data(parkinson)
# Transform data from arm-based format to contrast-based format
pl <- pairwise(list(Treatment1, Treatment2, Treatment3),
    n=list(n1, n2, n3),
    mean=list(y1, y2, y3),
    sd=list(sd1, sd2, sd3),
    data=parkinson, studlab=Study)
pl

# Conduct network meta-analysis
net1 <- netmeta(pl)
net1

# Draw network graphs
netgraph(net1, points=TRUE, cex.points=3, cex=1.5,
    thickness="se.fixed")
netgraph(net1, points=TRUE, cex.points=3, cex = 1.5,
    plastic=TRUE, thickness="se.fixed",
    iterate=TRUE)
netgraph(net1, points=TRUE, cex.points=3, cex = 1.5,
    plastic=TRUE, thickness="se.fixed",
    iterate=TRUE, start="eigen")

# Example using generic outcomes (internal call of function metagen)
# Calculate standard error for means y1, y2, y3
parkinson$se1 <- with(parkinson, sqrt(sd1^2/n1))
parkinson$se2 <- with(parkinson, sqrt(sd2^2/n2))
parkinson$se3 <- with(parkinson, sqrt(sd3^2/n3))
# Transform data from arm-based format to contrast-based format using
# means and standard errors (note, argument 'sm' has to be used to
# specify that argument 'TE' is a mean difference)
p2 <- pairwise(list(Treatment1, Treatment2, Treatment3),
    TE=list(y1, y2, y3),
    seTE=list(se1, se2, se3),
    data=parkinson, studlab=Study,
    sm="MD")

p2

# Compare pairwise objects p1 (based on continuous outcomes) and p2 # (based on generic outcomes)
all.equal(p1[, c("TE", "seTE", "studlab", "treat1", "treat2")],
    p2[, c("TE", "seTE", "studlab", "treat1", "treat2")])

# Same result as network meta-analysis based on continuous outcomes # (object net1)
## Not run: net2 <- netmeta(p2)
net2
## End(Not run)

#
# Example with binary data
#
data(smokingcessation)
# Transform data from arm-based format to contrast-based format # (internal call of metabin function). Argument 'sm' has to be used for # odds ratio as risk ratio (sm="RR") is default of metabin function.
p3 <- pairwise(list(treat1, treat2, treat3),
    list(event1, event2, event3),
    list(n1, n2, n3),
    data=smokingcessation,
    sm="OR")
p3

# Conduct network meta-analysis
net3 <- netmeta(p3)
net3

#
# Example with incidence rates
#
data(dietaryfat)
# Transform data from arm-based format to contrast-based format
p4 <- pairwise(list(treat1, treat2, treat3),
    list(d1, d2, d3),
    time=list(years1, years2, years3),
    studlab=ID,
    data=dietaryfat)
p4

# Conduct network meta-analysis using incidence rate ratios (sm="IRR"). # Note, the argument 'sm' is not necessary as this is the default in R # function metainc called internally
Network meta-analysis of treatments for Parkinson’s disease

Description

Network meta-analysis comparing the effects of a number of treatments for Parkinson’s disease. The data are the mean lost work-time reduction in patients given dopamine agonists as adjunct therapy in Parkinson’s disease. The data are given as sample size, mean and standard deviation in each trial arm. Treatments are placebo, coded 1, and four active drugs coded 2 to 5. These data are used as an example in the supplemental material of Dias et al. (2013).

Usage

data(parkinson)

Format

A data frame with the following columns:

<table>
<thead>
<tr>
<th>Study</th>
<th>Study label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment1</td>
<td>Treatment 1</td>
</tr>
<tr>
<td>y1</td>
<td>Treatment effect arm 1</td>
</tr>
<tr>
<td>sd1</td>
<td>Standard deviation arm 1</td>
</tr>
<tr>
<td>n1</td>
<td>Sample size arm 1</td>
</tr>
<tr>
<td>Treatment2</td>
<td>Treatment 2</td>
</tr>
<tr>
<td>y2</td>
<td>Treatment effect arm 2</td>
</tr>
</tbody>
</table>
**sd2** Standard deviation arm 2

**n2** Sample size arm 2

**Treatment3** Treatment 3

**y3** Treatment effect arm 3

**sd3** Standard deviation arm 3

**n3** Sample size arm 3

**Source**


**See Also**

`pairwise, metacont, netmeta, netgraph`

**Examples**

```r
data(parkinson)

Transform data from arm-based format to contrast-based format
p1 <- pairwise(list(Treatment1, Treatment2, Treatment3),
 n=list(n1, n2, n3),
 mean=list(y1, y2, y3),
 sd=list(sd1, sd2, sd3),
 data=parkinson, studlab=Study)

p1

Conduct network meta-analysis
net1 <- netmeta(p1)
net1

Draw network graphs
netgraph(net1, points=TRUE, cex.points=3, cex=1.5,
 thickness="se.fixed")
netgraph(net1, points=TRUE, cex.points=3, cex = 1.5,
 plastic=TRUE, thickness="se.fixed",
 iterate=TRUE)
netgraph(net1, points=TRUE, cex.points=3, cex = 1.5,
 plastic=TRUE, thickness="se.fixed",
 iterate=TRUE, start="eigen")
```
Description

This function generates a scatter plot or biplot of P-scores with an overlay describing partial order of treatment ranks.

Usage

```r
S3 method for class 'netposet'
plot(x,
 plottype = "scatter",
 pooled=ifelse(x$comb.random, "random", "fixed"),
 dim = "2d",
 sel.x = 1, sel.y = 2, sel.z = 3,
 cex = 1, col = "black",
 cex.text = cex, col.text = col,
 adj.x = 0, adj.y = 1,
 offset.x = 0.005, offset.y = -0.005,
 pch = NULL, cex.points = cex, col.points = col,
 col.lines = "black", lty.lines = 1, lwd.lines = 1,
 arrows = FALSE,
 length = 0.05,
 grid = TRUE,
 col.grid = "gray", lty.grid = 2, lwd.grid = 1,
 ...)
```

Arguments

- `x`: An object of class `netmeta` (mandatory).
- `plottype`: A character string indicating whether a scatter plot or biplot should be produced, either "scatter" or "biplot". Can be abbreviated.
- `pooled`: A character string indicating whether scatter plot should be drawn for fixed effect ("fixed") or random effects model ("random"). Can be abbreviated.
- `dim`: A character string indicating whether a 2- or 3-dimensional plot should be produced, either "2d" or "3d". Can be abbreviated.
- `sel.x`: A numeric specifying number of outcome to use for the x-axis in a scatterplot (argument is not considered for a biplot).
- `sel.y`: A numeric specifying number of outcome to use for the y-axis in a scatterplot (argument is not considered for a biplot).
- `sel.z`: A numeric specifying number of outcome to use for the z-axis in a scatterplot (argument is not considered for a biplot).
- `cex`: The magnification to be used for treatment labels and points.
- `col`: Colour(s) of treatment labels and points.
cex.text  The magnification to be used for treatment labels.
col.text  Colour(s) of treatment labels.
adj.x     Value(s) in [0, 1] to specify adjustment of treatment labels on x-axis (only considered in 2-D plots); see text.
adj.y     Value(s) in [0, 1] to specify adjustment of treatment labels on y-axis (only considered in 2-D plots); see text.
offset.x  Offset(s) of treatment labels on x-axis (only considered in 2-D plots).
offset.y  Offset(s) of treatment labels on y-axis (only considered in 2-D plots).
pch       Plot symbol(s) for points; no points printed if equal to NULL.
cex.points Magnification(s) to be used for points.
col.points Colour(s) of points.
col.lines  Line colour.
lty.lines  Line type.
lwd.lines  Line width.
arrows     A logical indicating whether arrows should be printed (only considered in 2-D plots).
length     Length of arrows; see arrows.
grid       A logical indicating whether grid lines should be added to plot.
col.grid   Colour of grid lines.
lty.grid   Line type of grid lines.
lwd.grid   Line width of grid lines.
...        Additional graphical arguments.

Details

By default (arguments plottype="scatter" and dim="2d"), a scatter plot is created showing P-scores (see netrank) for the first two outcomes considered in the generation of a partially ordered set of treatment ranks (using netposet). In addition to the P-scores, the partially order of treatment ranks is shown as lines connecting treatments which is analogous to a Hasse diagram. If argument dim="3d"), a 3-D scatter plot is generated showing P-scores for the first three outcomes.

To overcome the restriction of two or three dimension, a biplot (Gabriel, 1971) can be generated using argument plottype="biplot". This is essentially a scatter plot using the first two (dim="2d") or three (dim="3d") components in a principal components analysis (using prcomp). Note, if only two / three outcomes are considered in a netposet object, a 2-D / 3-D scatter plot is generated instead of a biplot as a principal component analysis is superfluous in such a situation.

Arguments sel.x and sel.y can be used to select different outcomes to show on x- and y-axis in a 2-D scatter plot; argument sel.z can be used accordingly in a 3-D scatter plot. These arguments are ignored for a biplot.

Note, in order to generate 3-D plots (argument dim="3d"), R package rgl is necessary. Note, under macOS the X.Org X Window System must be available (see https://www.xquartz.org).
Author(s)

Gerta Rücker <ruecker@imbi.uni-freiburg.de>, Guido Schwarzer <sc@imbi.uni-freiburg.de>

References


See Also

netmeta, netrank, netposet, hasse

Examples

```r
Use depression dataset
#
data(Linde2015)
#
Define order of treatments
#
trts <- c("TCA", "SSRI", "SNRI", "NRI",
 "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum",
 "Placebo")

Outcome labels
#
outcomes <- c("Early response", "Early remission")
#
(1) Early response
#
p1 <- pairwise(treat = list(treatment1, treatment2, treatment3),
 event = list(resp1, resp2, resp3),
 n = list(n1, n2, n3),
 studlab = id, data = Linde2015, sm = "OR")

net1 <- netmeta(p1,
 comb.fixed = FALSE, comb.random = TRUE,
 seq = trts, ref = "Placebo")

(2) Early remission
#
p2 <- pairwise(treat = list(treatment1, treatment2, treatment3),
 event = list(rem1, remi2, remi3),
 n = list(n1, n2, n3),
 studlab = id, data = Linde2015, sm = "OR")

net2 <- netmeta(p2,
 comb.fixed = FALSE, comb.random = TRUE,
 seq = trts, ref = "Placebo")
```
# Partial order of treatment rankings
#
po2 <- netposet(netrank(net1, small.values = "bad"),
                netrank(net2, small.values = "bad"),
                outcomes = outcomes)

# Scatter plot
#
plot(po2)

# Same scatter plot as only two outcomes considered in netposet()
#
plot(po2, "biplot")

# Consider three outcomes
#
# Outcome labels
#
outcomes <- c("Early response", "Early remission", "Lost to follow-up")

# (3) Loss to follow-up
#
p3 <- pairwise(treat = list(treatment1, treatment2, treatment3),
                event = list(loss1, loss2, loss3),
                n = list(n1, n2, n3),
                studlab = id, data = Linde2015, sm = "OR")

# net3 <- netmeta(p3,
#                  comb.fixed = FALSE, comb.random = TRUE,
#                  seq = trts, ref = "Placebo")

# Partial order of treatment rankings (with three outcomes)
#
po3 <- netposet(netrank(net1, small.values = "bad"),
                netrank(net2, small.values = "bad"),
                netrank(net3, small.values = "good"),
                outcomes = outcomes)

# Hasse diagram
#
hasse(po3)

# Scatter plot
#
plot(po3)

# Biplot (reverse limits of y-axis as biplot is upside down)
#
plot(po3, "bi", xlim = c(-1, 1.7), ylim = c(2.5, -2.5))
Description

Print and summary method for objects of class decomp.design.

Usage

```r
S3 method for class 'decomp.design'
print(x, digits.Q=gs("digits.Q"),
 showall=FALSE,
 digits.pval.Q=gs("digits.pval.Q"),
 digits.tau2=gs("digits.tau2"),
 scientific.pval=gs("scientific.pval"),
 big.mark=gs("big.mark"), ...)
```

Arguments

- `x`  
  An object of class decomp.design.

- `digits.Q`  
  Minimal number of significant digits for Q statistics, see `print.default`.

- `showall`  
  A logical indicating whether results should be shown for all designs or only designs contributing to chi-squared statistics (default).

- `digits.pval.Q`  
  Minimal number of significant digits for p-value of heterogeneity tests, see `print.default`.

- `digits.tau2`  
  Minimal number of significant digits for between-study variance, see `print.default`.

- `scientific.pval`  
  A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.

- `big.mark`  
  A character used as thousands separator.

- `...`  
  Additional arguments (ignored at the moment).

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>, Ulrike Krahn <ulrike.krahn@bayer.com>

See Also

decomp.design

Examples

```r
data(Senn2013)

net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
 data=Senn2013, sm="MD")
print(decomp.design(net1))
```
Description

Print and summary method for objects of class netcomb.

Usage

## S3 method for class 'netcomb'
print(x,
      comb.fixed = x$comb.fixed,
      comb.random = x$comb.random,
      backtransf = x$backtransf,
      nchar.trts = x$nchar.trts,
      digits = gs("digits"),
      digits.zval = gs("digits.zval"),
      digits.pval = gs("digits.pval"),
      digits.pval.Q = max(gs("digits.pval.Q"), 2),
      digits.Q = gs("digits.Q"),
      scientific.pval = gs("scientific.pval"),
      big.mark = gs("big.mark"),
      ...
)

## S3 method for class 'netcomb'
summary(object, ...)

## S3 method for class 'summary.netcomb'
print(x,
      comb.fixed = x$comb.fixed,
      comb.random = x$comb.random,
      backtransf = x$backtransf,
      nchar.trts = x$nchar.trts,
      digits = gs("digits"),
      digits.zval = gs("digits.zval"),
      digits.pval = gs("digits.pval"),
      digits.pval.Q = max(gs("digits.pval.Q"), 2),
      digits.Q = gs("digits.Q"),
      scientific.pval = gs("scientific.pval"),
      big.mark = gs("big.mark"),
      ...
)

Arguments

x An object of class netcomb or summary.netcomb.

object An object of class netcomb.
comb.fixed  A logical indicating whether a fixed effect meta-analysis should be conducted.
comb.random A logical indicating whether a random effects meta-analysis should be conducted.
backtransf   A logical indicating whether results should be back transformed in printouts and forest plots. If backtransf=TRUE, results for sm="OR" are presented as odds ratios rather than log odds ratios, for example.
nchar.trts  A numeric defining the minimum number of characters used to create unique treatment names (see Details).
digits      Minimal number of significant digits, see print.default.
digits.zval Minimal number of significant digits for z- or t-value, see print.default.
digits.pval Minimal number of significant digits for p-value of overall treatment effect, see print.default.
digits.pval.Q Minimal number of significant digits for p-value of heterogeneity tests, see print.default.
digits.Q    Minimal number of significant digits for heterogeneity statistics, see print.default.
scientific.pval A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.
bignmark     A character used as thousands separator.
...          Additional arguments.

Value

A list is returned by the function summary.netcomb with the same elements as a netcomb object.

Author(s)

Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also

netcomb

Examples

data(Linde2016)

# Standard Network meta-analysis
#
net1 <- netmeta(lnOR, selnOR, treat1, treat2, id,
    data = Linde2016, reference.group = "placebo",
    sm = "OR", comb.fixed = FALSE, comb.random = TRUE)

# Additive model for treatment components
#
nc1 <- netcomb(net1)
summary(nc1)
print(summary(nc1), digits = 2, digits.zval = 3)

---

**print.netmeta**

*Print and summary method for objects of class netmeta*

### Description

Print and summary method for objects of class netmeta.

### Usage

```
S3 method for class 'netmeta'
print(x, sortvar,
 comb.fixed=x$comb.fixed, comb.random=x$comb.random,
 prediction=x$prediction,
 reference.group=x$reference.group,
 baseline.reference=x$baseline.reference,
 all.treatments=x$all.treatments,
 details=TRUE, ma=TRUE,
 backtransf=x$backtransf, nchar.trts=x$nchar.trts,
 digits=gs("digits"), digits.se=gs("digits.se"),
 digits.pval.Q=max(gs("digits.pval.Q"), 2),
 digits.Q=gs("digits.Q"), digits.tau2=gs("digits.tau2"),
 digits.I2=gs("digits.I2"),
 scientific.pval=gs("scientific.pval"),
 big.mark=gs("big.mark"), ...)

S3 method for class 'netmeta'
summary(object,
 comb.fixed=object$comb.fixed, comb.random=object$comb.random,
 prediction=object$prediction,
 reference.group=object$reference.group,
 baseline.reference=object$baseline.reference,
 all.treatments=object$all.treatments,
 warn=object$warn, ...)

S3 method for class 'summary.netmeta'
print(x, comb.fixed=x$comb.fixed, comb.random=x$comb.random,
 prediction=x$prediction,
 reference.group=x$reference.group,
 baseline.reference=x$baseline.reference,
 all.treatments=x$all.treatments,
 backtransf=x$backtransf, nchar.trts=x$nchar.trts,
 header=TRUE,
 digits=gs("digits"),
```
digits.pval.Q=max(gs("digits.pval.Q"), 2),
digits.Q=gs("digits.Q"),
digits.tau2=gs("digits.tau2"),
digits.I2=gs("digits.I2"),
scientific.pval=gs("scientific.pval"),
big.mark=gs("big.mark"), ...)

Arguments

x An object of class netmeta or summary.netmeta.
object An object of class netmeta.
sortvar An optional vector used to sort individual studies (must be of same length as x$TE).
comb.fixed A logical indicating whether a fixed effect meta-analysis should be conducted.
comb.random A logical indicating whether a random effects meta-analysis should be conducted.
prediction A logical indicating whether prediction intervals should be printed.
reference.group Reference group.
baseline.reference A logical indicating whether results should be expressed as comparisons of other treatments versus the reference treatment (default) or vice versa. This argument is only considered if reference.group has been specified.
all.treatments A logical or value "NULL". If TRUE, matrices with all treatment effects, and confidence limits will be printed.
details A logical indicating whether further details for individual studies should be printed.
ma A logical indicating whether summary results of meta-analysis should be printed.
backtransf A logical indicating whether results should be back transformed in printouts and forest plots. If backtransf=TRUE, results for sm="OR" are presented as odd ratios rather than log odds ratios, for example.
nchar.trts A numeric defining the minium number of characters used to create unique treatment names.
header A logical indicating whether information on title of meta-analysis, comparison and outcome should be printed at the beginning of the printout.
digits Minimal number of significant digits, see print.default.
digits.se Minimal number of significant digits for standard deviations and standard errors, see print.default.
digits.pval.Q Minimal number of significant digits for p-value of heterogeneity tests, see print.default.
digits.Q Minimal number of significant digits for heterogeneity statistics, see print.default.
digits.tau2 Minimal number of significant digits for between-study variance, see print.default.
digits.I2 Minimal number of significant digits for I-squared statistic, see print.default.
print.netmeta

scientific.pval
A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.

big.mark A character used as thousands separator.

warn A logical indicating whether the use of summary.meta in connection with metacum or metainf should result in a warning.

... Additional arguments.

Value
A list is returned by the function summary.meta with the following elements:

comparison Results for pairwise comparisons (a list with elements TE, seTE, lower, upper, z, p, level, df, studlab, treat1, treat2).

comparison.mma.fixed Results for pairwise comparisons based on fixed effect model (a list with elements TE, seTE, lower, upper, z, p, level, df, studlab, treat1, treat2, leverage).

comparison.mma.random Results for pairwise comparisons based on random effects model (a list with elements TE, seTE, lower, upper, z, p, level, df).

fixed Results for fixed effect model (a list with elements TE, seTE, lower, upper, z, p, level, df).

random Results for random effects model (a list with elements TE, seTE, lower, upper, z, p, level, df).

studies Study labels coerced into a factor with its levels sorted alphabetically.

narms Number of arms for each study.

k Total number of studies.

m Total number of pairwise comparisons.

n Total number of treatments.

Q Overall heterogeneity / inconsistency statistic.

df.Q Degrees of freedom for test of heterogeneity / inconsistency.

pval.Q P-value for test of heterogeneity / inconsistency.

I2 I-squared.

tau Square-root of between-study variance.

Q.heterogeneity Overall heterogeneity statistic.

df.Q.heterogeneity Degrees of freedom for test of overall heterogeneity.

pval.Q.heterogeneity P-value for test of overall heterogeneity.

Q.inconsistency Overall inconsistency statistic.

df.Q.inconsistency Degrees of freedom for test of overall inconsistency.
print.netmeta

pval.Q.inconsistency
   P-value for test of overall inconsistency.
sm           A character string indicating underlying summary measure.
ci.lab       Label for confidence interval.
comb.fixed   A logical indicating whether result for fixed effect meta-analysis should be printed.
comb.random  A logical indicating whether result for random effects meta-analysis should be printed.
prediction   A logical indicating whether prediction intervals should be printed.
seq          A character specifying the sequence of treatments.
all.treatments A logical or value "NULL". If TRUE, matrices with all treatment effects, and confidence limits will be printed.
reference.group Reference group.
all.treatments A logical or value "NULL". If TRUE, matrices with all treatment effects, and confidence limits will be printed.
title        Title of meta-analysis / systematic review.
call         Function call.
version      Version of R package netmeta used to create object.

Author(s)
Guido Schwarzer <sc@imbi.uni-freiburg.de>

See Also
netmeta

Examples

data(Senn2013)

# # Fixed effect model (default)
#
net1 <- netmeta(TE, seTE, treat1, treat2, studlab, 
   data=Senn2013, sm="MD")
print(net1, ref="plac", digits=3)
summary(net1)

# # Random effects model
#
net2 <- netmeta(TE, seTE, treat1, treat2, studlab, 
   data=Senn2013, sm="MD", comb.random=TRUE)
print(net2, ref="plac", digits=3)
summary(net2)
Description

Network meta-analysis in diabetes comparing effects of a number of drugs on the HbA1c value. These data are used as an example in Senn et al. (2013) and have been preprocessed for use in R package netmeta.

Usage

data(Senn2013)

Format

A data frame with the following columns:

- **TE**: Treatment effect
- **seTE**: Standard error of treatment effect
- **treat1**: Treatment 1
- **treat2**: Treatment 2
- **treat1.long**: Treatment 1 (full treatment names)
- **treat2.long**: Treatment 2 (full treatment names)
- **studlab**: Study label

Details

Treatment labels provided by columns `treat1` and `treat2` have been abbreviated:

- `acar` = Acarbose
- `benf` = Benfluorex
- `metf` = Metformin
- `migl` = Miglitol
- `piog` = Pioglitazone
- `plac` = Placebo
- `rosi` = Rosiglitazone
- `sita` = Sitagliptin
- `sulf` = Sulfonylurea
- `vild` = Vildagliptin

Full treatment names are available in columns `treat1.long` and `treat2.long`. 
Source


See Also

netmeta

Examples

data(Senn2013)

  #
  # Fixed effect model (default)
  #
  # net1 <- netmeta(TE, seTE, treat1, treat2,
  #   studlab, data=Senn2013)
  net1
  net1$Q.decomp

  #
  # Forest plot
  #
  forest(net1, ref="plac")

  ## Not run:
  #
  # Comparison with reference group
  #
  netmeta(TE, seTE, treat1.long, treat2.long,
    studlab, data=Senn2013,
    reference="plac")

  #
  # Random effects model
  #
  net2 <- netmeta(TE, seTE, treat1, treat2, studlab, data=Senn2013,
    comb.random = TRUE)
  net2
  forest(net2, ref="plac")

  ## End(Not run)

---

**smokingcessation**  
*Network meta-analysis of interventions for smoking cessation*

Description

Network meta-analysis comparing the effects of a number of interventions for smoking cessation. These data are used as an example in Dias et al. (2013), page 651.
smokingcessation

Usage

data(smokingcessation)

Format

A data frame with the following columns:

- **event1**  Number of individuals with successful smoking cessation in arm 1
- **n1**  Number of individuals in arm 1
- **event2**  Number of individuals with successful smoking cessation in arm 2
- **n2**  Number of individuals in arm 2
- **event3**  Number of individuals with successful smoking cessation in arm 3
- **n3**  Number of individuals in arm 3
- **treat1**  Treatment 1
- **treat2**  Treatment 2
- **treat3**  Treatment 3

Source


See Also

pairwise, metabin, netmeta, netgraph

Examples

data(smokingcessation)

# Transform data from arm-based format to contrast-based format
# Argument 'sm' has to be used for odds ratio as summary measure; by default the risk ratio is used in the metabin function called
# internally.
pl <- pairwise(list(treat1, treat2, treat3),
  event=list(event1, event2, event3),
  n=list(n1, n2, n3),
  data=smokingcessation,
  sm="OR")

pl

# Conduct network meta-analysis
net1 <- netmeta(pl)
net1

# Draw network graph
netgraph(net1, points=TRUE, cex.points=3, cex=1.25)
tname <- c("No intervention","Self-help","Individual counselling","Group counselling")
netgraph(net1, points=TRUE, cex.points=3, cex=1.25, labels=tname)

<table>
<thead>
<tr>
<th>treats</th>
<th>Abbreviate treatment names</th>
</tr>
</thead>
</table>

**Description**

Auxiliary function to create uniquely abbreviated treatment names.

**Usage**

treats(x, nchar.trts = 8, row = TRUE)

**Arguments**

- **x**
  - A vector with treatment names or a matrix with treatment names as row and / or column names.
- **nchar.trts**
  - A numeric defining the minimum number of characters used to create unique treatment names.
- **row**
  - A logical indicating whether row or column names should be used (only considered if argument x is a matrix).

**Details**

This auxiliary function can be used to create uniquely abbreviated treatment names (and is used internally in several R functions for this purpose).

Initially, to construct uniquely abbreviated treatment names, `substring` is used to extract the first `nchar.trts` characters. If these abbreviated treatment names are not unique, `abbreviate` with argument `minlength=nchar.trts` is used.

**Author(s)**

Guido Schwarzer <sc@imbi.uni-freiburg.de>

**See Also**

`netmeta`, `print.netmeta`, `print.summary.netmeta`
Examples

```r
data(Senn2013)
#
net1 <- netmeta(TE, seTE, treat1, treat2,
 studlab, data=Senn2013)

Use matrix with fixed effect treatment estimates to create unique
treatment names
#
Four characters
#
treats(net1$TE.fixed, nchar.trts = 4)

Two characters
#
treats(net1$TE.fixed, nchar.trts = 2)

One character
#
treats(net1$TE.fixed, nchar.trts = 1)
```

---

**Woods2010**

**Count statistics of survival data**

Description

Count mortality statistics in randomised controlled trials of treatments for chronic obstructive pulmonary disease (Woods et al. (2010), Table 1).

Usage

data(Woods2010)

Format

A data frame with the following columns:

- **author**  First author / study name
- **treatment**  Treatment
- **r**  Number of deaths in treatment arm
- **N**  Number of patients in treatment arm

Source

See Also

pairwise, metabin, netmeta

Examples

```r
data(Woods2010)

Transform data from long arm-based format to contrast-based format
Argument 'sm' has to be used for odds ratio as summary measure; by
default the risk ratio is used in the metabin function called
internally.
p1 <- pairwise(treatment, event = r, n = N,
 studlab = author, data = Woods2010, sm = "OR")
p1

Conduct network meta-analysis
net1 <- netmeta(p1)
net1

Not run:
Show forest plot
forest(net1, ref = "Placebo", drop = TRUE,
 leftlabs = "Contrast to Placebo")

End(Not run)
```
Index

+ Topic Additive network meta-analysis
  netcomb, 21
+ Topic Biplot of partially ordered rankings
  plot.netposet, 65
+ Topic Cochran’s Q
decomp.design, 5
+ Topic Hasse diagram
  hasse, 16
+ Topic Inconsistency
decomp.design, 5
  netheat, 32
+ Topic Network graph
  netgraph, 27
+ Topic Network meta-analysis
decomp.design, 5
  netcomb, 21
  netgraph, 27
  netheat, 32
  netmeasures, 38
+ Topic Partial order of rankings
  netposet, 47
+ Topic Scatter plot of partially ordered rankings
  plot.netposet, 65
+ Topic datasets
dietaryfat, 8
  Linde2015, 18
  Linde2016, 20
  parkinson, 63
  Senn2013, 76
  smokingcessation, 77
  Woods2010, 80
+ Topic hplot
  forest.netmeta, 9
  forest.netsplit, 12
  hasse, 16
  netgraph, 27
  plot.netposet, 65
+ Topic poset
  netposet, 47
  plot.netposet, 65
+ Topic print
  as.data.frame.netmeta, 4
  netrank, 52
  print.decomp.design, 69
  print.netcomb, 70
  print.netmeta, 72
abbreviate, 79
arrows, 66
as.data.frame.netmeta, 4
decomp.design, 3, 5, 43, 69
dietaryfat, 8
eigen, 29
forest.meta, 10, 11, 14, 15
forest.netmeta, 9, 46
forest.netsplit, 12
hasse, 3, 16, 17, 49, 67
Linde2015, 18
Linde2016, 20
metabin, 19, 42, 59–61, 78, 81
metacont, 42, 59–61, 64
metagen, 42, 46, 59–61
metainc, 8, 42, 59–61
netcomb, 20, 21, 71
netconnection, 24, 27
netdistance, 25, 26
netgraph, 3, 8, 27, 61, 64, 78
netheat, 3, 6, 7, 32
netleague, 3, 34
netmeasures, 3, 11, 38, 57
netmeta-package, 3
netposet, 3, 17, 19, 35, 47, 66, 67
netrank, 3, 10, 11, 35, 46, 48, 49, 52, 66, 67
netsplit, 3, 54

order, 11

pairwise, 8, 19, 42, 46, 58, 64, 78, 81
parkinson, 63
paste, 43
plot.netposet, 3, 49, 65
prcomp, 29, 66
print.data.frame, 53
print.decomp.design, 69
print.default, 10, 25, 53
print.netcomb, 23, 70
print.netconnection (netconnection), 24
print.netleague (netleague), 34
print.netmeta, 72, 79
print.netposet (netposet), 47
print.netrank (netrank), 52
print.netsplit (netsplit), 54
print.summary.netcomb (print.netcomb), 70
print.summary.netmeta, 79
print.summary.netmeta (print.netmeta), 72

rainbow, 30

Senn2013, 76
sequential_hcl, 30
smokingcessation, 77
substring, 79
summary.netcomb (print.netcomb), 70
summary.netmeta (print.netmeta), 72

text, 66
treats, 43, 79

Woods2010, 80