Package ‘netrankr’

December 21, 2021

Type Package
Title Analyzing Partial Rankings in Networks
Version 1.1.1
Description Implements methods for centrality related analyses of networks. While the package includes the possibility to build more than 20 indices, its main focus lies on index-free assessment of centrality via partial rankings obtained by neighborhood-inclusion or positional dominance. These partial rankings can be analyzed with different methods, including probabilistic methods like computing expected node ranks and relative rank probabilities (how likely is it that a node is more central than another?). The methodology is described in depth in the vignettes and in Schoch (2018) <doi:10.1016/j.socnet.2017.12.003>.

URL https://github.com/schochastics/netrankr/
BugReports https://github.com/schochastics/netrankr/issues
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 3.0.1)
Imports igraph (>= 1.0.1), Rcpp (>= 0.12.8), Matrix
LinkingTo Rcpp,RcppArmadillo
SystemRequirements C++11
RoxygenNote 7.1.2
Suggests knitr, rmarkdown, magrittr, testthat, shiny (>= 0.13), miniUI
 (>= 0.1.1), rstudioapi (>= 0.5)
VignetteBuilder knitr
NeedsCompilation yes
Author David Schoch [aut, cre] (<https://orcid.org/0000-0003-2952-4812>), Julian Müller [ctb]
Maintainer David Schoch <david@schochastics.net>
Repository CRAN
Date/Publication 2021-12-21 09:20:02 UTC
R topics documented:

aggregate_positions .. 2
approx_rank_expected .. 4
approx_rank_relative ... 5
as.matrix.netrankr_full .. 6
comparable_pairs .. 7
compare_ranks ... 8
dbces11 ... 9
dominance_graph .. 9
exact_rank_prob .. 10
florentine_m .. 12
get_rankings ... 12
hyperbolic_index ... 13
incomparable_pairs ... 14
index_builder .. 15
indirect_relations ... 15
is_preserved ... 18
majorization_gap ... 19
mcmc_rank_prob .. 20
neighborhood_inclusion ... 22
netrankr ... 23
plot.netrankr_full ... 24
plot.netrankr_interval ... 24
plot.netrankr_mcmc ... 25
plot_rank_intervals ... 26
positional_dominance .. 27
print.netrankr_full ... 28
print.netrankr_interval ... 29
print.netrankr_mcmc ... 29
rank_intervals ... 30
spectral_gap .. 31
summary.netrankr_full .. 32
threshold_graph .. 32
transform_relations ... 33
transitive_reduction .. 35

Index 36

aggregate_positions Quantification of (indirect) relations

Description

Function to aggregate positions defined via indirect relations to construct centrality scores.
aggregate_positions

Usage

aggregate_positions(tau_x, type = "sum")

Arguments

tau_x Numeric matrix containing indirect relations calculated with indirect_relations.
type String indicating the type of aggregation to be used. See Details for options.

Details

The predefined functions are mainly wrappers around base R functions. type='sum', for instance, is equivalent to rowSums(). A non-base functions is type='invsum' which calculates the inverse of type='sum'. type='self' is mostly useful for walk based relations, e.g. to count closed walks. Other self explanatory options are type='mean', type='min', type='max' and type='prod'.

Value

Scores for the index defined by the indirect relation tau_x and the used aggregation type.

Author(s)

David Schoch

See Also

indirect_relations, transform_relations

Examples

library(igraph)
library(magrittr)
data("dbces11")
degree
dbces11 %>%
 indirect_relations(type = "adjacency") %>%
 aggregate_positions(type = "sum")

closeness centrality
dbces11 %>%
 indirect_relations(type = "dist_sp") %>%
 aggregate_positions(type = "invsum")

betweenness centrality
dbces11 %>%
 indirect_relations(type = "depend_sp") %>%
 aggregate_positions(type = "sum")

eigenvector centrality
dbces11 %>%
 indirect_relations(type = "walks", FUN = walks_limit_prop) %>%
approx_rank_expected

aggregate_positions(type = "sum")

subgraph centrality
dbcsl1 %>%
 indirect_relations(type = "walks", FUN = walks_exp) %>%
 aggregate_positions(type = "self")

approx_rank_expected Approximation of expected ranks

Description

Implements a variety of functions to approximate expected ranks for partial rankings.

Usage

approx_rank_expected(P, method = "lpom")

Arguments

P A partial ranking as matrix object calculated with neighborhood_inclusion or positional_dominance.
method String indicating which method to be used. see Details.

Details

The method parameter can be set to

lpom local partial order model

glpom extension of the local partial order model.
loof1 based on a connection with relative rank probabilities.
loof2 extension of the previous method.

Which of the above methods performs best depends on the structure and size of the partial ranking. See vignette("benchmarks",package="netrankr") for more details.

Value

A vector containing approximated expected ranks.

Author(s)

David Schoch
References

See Also

approx_rank_relative, exact_rank_prob, mcmc_rank_prob

Examples

```r
P <- matrix(c(0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, rep(0, 10)), 5, 5, byrow = TRUE)
# Exact result
exact_rank_prob(P)$expected.rank
approx_rank_expected(P, method = "lpom")
approx_rank_expected(P, method = "glpom")
```

approx_rank_relative Approximation of relative rank probabilities

Description

Approximate relative rank probabilities \(P(rk(u) < rk(v))\). In a network context, \(P(rk(u) < rk(v))\) is the probability that \(u\) is less central than \(v\), given the partial ranking \(P\).

Usage

approx_rank_relative(P, iterative = TRUE, num.iter = 10)

Arguments

- **P**: A partial ranking as matrix object calculated with neighborhood_inclusion or positional_dominance.
- **iterative**: Logical scalar if iterative approximation should be used.
- **num.iter**: Number of iterations to be used. defaults to 10 (see Details).

Details

The iterative approach generally gives better approximations than the non iterative, if only slightly. The default number of iterations is based on the observation, that the approximation does not improve significantly beyond this value. This observation, however, is based on very small networks such that increasing it for large network may yield better results. See vignette("benchmarks",package="netrankr") for more details.
Value

A matrix containing approximation of relative rank probabilities. `relative.rank[i,j]` is the probability that `i` is ranked lower than `j`.

Author(s)

David Schoch

References

See Also

`approx_rank_expected`, `exact_rank_prob`, `mcmc_rank_prob`

Examples

```r
P <- matrix(c(0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, rep(0, 10)), 5, 5, byrow = TRUE)
approx_rank_relative(P, iterative = FALSE)
approx_rank_relative(P, iterative = TRUE)
```

Description

`as.matrix.netrankr_full` extract probabilities as matrices from the result of an object obtained from `exact_rank_prob`.

Usage

```r
## S3 method for class 'netrankr_full'
as.matrix(x, type = "rank", ...)  # A netrankr_full object
```

Arguments

- `x`: A netrankr_full object
- `type`: which probabilities to return. "rank" for rank probabilities, "relative" for relative rank probabilities and "expected" for expected rank probabilities and their variants
- `...`: additional parameters for as.matrix

Author(s)

David Schoch
comparable_pairs

Comparable pairs in a partial order

Description

Calculates the fraction of comparable pairs in a partial order.

Usage

comparable_pairs(P)

Arguments

P A partial order as matrix object, e.g. calculated with neighborhood_inclusion or positional_dominance.

Value

Fraction of comparable pairs in P.

Author(s)

David Schoch

See Also

incomparable_pairs

Examples

library(igraph)
g <- sample_gnp(100, 0.1)
P <- neighborhood_inclusion(g)
comparable_pairs(P)
All pairs of vertices are comparable in a threshold graph
tg <- threshold_graph(100, 0.3)
P <- neighborhood_inclusion(g)
comparable_pairs(P)
compare_ranks
Count occurrences of pairs in rankings

Description
Counts the number of concordant, discordant and (left/right) ties between two rankings.

Usage

```
compare_ranks(x, y)
```

Arguments

- `x`
 A numeric vector.

- `y`
 A numeric vector with the same length as `x`.

Details
Explicitly calculating the number of occurring cases is more robust than using correlation indices as given in the `cor` function. Especially left and right ties can significantly alter correlations.

Value
A list containing

- **concordant**
 number of concordant pairs: \(x[i] > x[j] \) and \(y[i] > y[j]\)

- **discordant**
 number of discordant pairs: \(x[i] > x[j] \) and \(y[i] < y[j]\)

- **ties**
 number of tied pairs: \(x[i] == x[j] \) and \(y[i] == y[j]\)

- **left**
 number of left ties: \(x[i] == x[j] \) and \(y[i] != y[j]\)

- **right**
 number of right ties: \(x[i] != x[j] \) and \(y[i] == y[j]\)

Author(s)
David Schoch

Examples

```r
library(igraph)
tg <- threshold_graph(100, 0.2)
compare_ranks(degree(tg), closeness(tg)) # only concordant pairs
compare_ranks(degree(tg), betweenness(tg)) # no discordant pairs
# Rank Correlation
cor(degree(tg), closeness(tg), method = "kendall") # 1
cor(degree(tg), betweenness(tg), method = "kendall") # not 1, although no discordant pairs
```
Description

Smallest graph (11 nodes and 17 edges) where the centers according to (d)egree, (b)etweenness, (c)loseness, (e)igenvector centrality, and (s)ubgraph centrality are all different.

Usage

dbces11

Format

igraph object

dominance_graph

Partial ranking as directed graph

Description

Turns a partial ranking into a directed graph. An edge \((u,v)\) is present if \(P[u,v]=1\), meaning that \(u\) is dominated by \(v\).

Usage

dominance_graph(P)

Arguments

- \(P\) A partial ranking as matrix object calculated with \texttt{neighborhood_inclusion} or \texttt{positional_dominance}.

Value

Directed graph as an igraph object.

Author(s)

David Schoch
Examples

```r
library(igraph)
g <- threshold_graph(20, 0.1)
P <- neighborhood_inclusion(g)
d <- dominance_graph(P)
## Not run:
plot(d)

## End(Not run)

# to reduce overplotting use transitive reduction
P <- transitive_reduction(P)
d <- dominance_graph(P)
## Not run:
plot(d)

## End(Not run)
```

exact_rank_prob
Proportional centrality rankings

Description

Performs a complete and exact rank analysis of a given partial ranking. This includes rank probabilities, relative rank probabilities and expected ranks.

Usage

```r
exact_rank_prob(P, only.results = T, verbose = F, force = F)
```

Arguments

- `P`: A partial ranking as matrix object calculated with `neighborhood_inclusion` or `positional_dominance`.
- `only.results`: Logical. return only results (default) or additionally the ideal tree and lattice if FALSE.
- `verbose`: Logical. should diagnostics be printed. Defaults to FALSE.
- `force`: Logical. If FALSE (default), stops the analysis if the partial ranking has more than 40 elements and less than 0.4 comparable pairs. Only change if you know what you are doing.

Details

The function derives rank probabilities from a given partial ranking (for instance returned by `neighborhood_inclusion` or `positional_dominance`). This includes the calculation of expected ranks, (relative) rank probabilities and the number of possible rankings. Note that the set of rankings grows exponentially in the number of elements and the exact calculation becomes infeasible quite quickly and approximations need to be used. See `vignette("benchmarks")` for guidelines and `approx_rank_relative`, `approx_rank_expected`, and `mcmc_rank_prob` for approximative methods.
Value

lin.ext Number of possible rankings that extend P.

mse Array giving the equivalence classes of P.

rank.prob Matrix containing rank probabilities: \(\text{rank.prob}[u, k] \) is the probability that \(u \) has rank \(k \).

relative.rank Matrix containing relative rank probabilities: \(\text{relative.rank}[u, v] \) is the probability that \(u \) is ranked lower than \(v \).

expected.rank Expected ranks of nodes in any centrality ranking.

rank.spread Standard deviation of the ranking probabilities.

topo.order Random ranking used to build the lattice of ideals (if \text{only.results} = FALSE).

tree Adjacency list (incoming) of the tree of ideals (if \text{only.results} = FALSE).

lattice Adjacency list (incoming) of the lattice of ideals (if \text{only.results} = FALSE).

ideals List of order ideals (if \text{only.results} = FALSE).

In all cases, higher numerical ranks imply a higher position in the ranking. That is, the lowest ranked node has rank 1.

Author(s)

David Schoch, Julian Müller

References

See Also

approx_rank_relative, approx_rank_expected, mcmc_rank_prob

Examples

P <- matrix(c(0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, rep(0, 10)), 5, 5, byrow = TRUE)
P
res <- exact_rank_prob(P)

a warning is displayed if only one ranking is possible
tg <- threshold_graph(20, 0.2)
P <- neighborhood_inclusion(tg)
res <- exact_rank_prob(P)
florentine_m
Florentine family marriage network

Description
Florentine family marriage network

Usage
florentine_m

Format
An igraph object containing marriage links of florentine families

References

get_rankings
Rankings that extend a partial ranking

Description
Returns all possible rankings that extend a partial ranking.

Usage
get_rankings(data, force = FALSE)

Arguments
- **data**: List as returned by `exact_rank_prob` when run with `only.results = FALSE`
- **force**: Logical scalar. Stops function if the number of rankings is too large. Only change to TRUE if you know what you are doing

Details
The \(i \)th row of the matrix contains the rank of node \(i \) in all possible rankings that are in accordance with the partial ranking \(P \). The lowest rank possible is associated with 1.

Value
A matrix containing ranks of nodes in all possible rankings.
Author(s)
David Schoch

Examples
```r
P <- matrix(c(0, 0, 1, 1, 0, 0, 1, 0, 0, 1, rep(0, 10)), 5, 5, byrow = TRUE)
res <- exact_rank_prob(P, only.results = FALSE)
get_rankings(res)
```

hyperbolic_index

Hyperbolic (centrality) index

Description

The hyperbolic index is an index that considers all closed walks of even or odd length on induced neighborhoods of a vertex.

Usage

```r
hyperbolic_index(g, type = "odd")
```

Arguments

- `g`
 igraph object.

- `type`
 string. 'even' if only even length walks should be considered. 'odd' (Default) if only odd length walks should be used.

Details

The hyperbolic index is an illustrative index that should not be used for any serious analysis. Its purpose is to show that with enough mathematical trickery, any desired result can be obtained when centrality indices are used.

Value

A vector containing centrality scores.

Author(s)
David Schoch

Examples

```r
library(igraph)
data("dbces11")
hyperbolic_index(dbces11, type = "odd")
hyperbolic_index(dbces11, type = "even")
```
incomparable_pairs
Incomparable pairs in a partial order

Description
Calculates the fraction of incomparable pairs in a partial order.

Usage

```r
incomparable_pairs(P)
```

Arguments

- `P`
 A partial order as matrix object, e.g. calculated with `neighborhood_inclusion` or `positional_dominance`.

Value
Fraction of incomparable pairs in `P`.

Author(s)
David Schoch

See Also
`comparable_pairs`

Examples

```r
library(igraph)
g <- sample_gnp(100, 0.1)
P <- neighborhood_inclusion(g)
comparable_pairs(P)
# All pairs of vertices are comparable in a threshold graph
tg <- threshold_graph(100, 0.3)
P <- neighborhood_inclusion(g)
comparable_pairs(P)
```
index_builder

Centrality Index Builder

Description

This shiny gadget can be used to build centrality indices based on specific indirect relations, transformations and aggregation functions.

Usage

index_builder()

Value

code to calculate the specified index.

indirect_relations

Indirect relations in a network

Description

Derive indirect relations for a given network. Observed relations, like presents or absence of a relation, are commonly not the center of analysis, but are transformed in a new set of indirect relation like shortest path distances among nodes. These transformations are usually an implicit step when centrality indices are used. Making this step explicit gives more possibilities, for example calculating partial centrality rankings with positional_dominance.

Usage

indirect_relations(
g,
 type = "dist_sp",
 ltparam = NULL,
 dwparam = NULL,
 netflowmode = "",
 rspxparam = NULL,
 FUN = identity,
 ...
)

Arguments

- **g**: igraph object. The network for which relations should be derived.
- **type**: String giving the relation to be calculated. See Details for options.
- **lfparam**: Numeric parameter. Only used if type = "dist_lf".
- **dwparam**: Numeric parameter. Only used if type = "dist_walk".
- **netflowmode**: String, one of raw, frac, or norm. Only used if type = "depend_netflow".
- **rspxparam**: Numeric parameter. Only used if type = "depend_rsp" or type = "depend_rspn".
- **FUN**: A function that allows the transformation of relations. See Details.
- **...**: Additional arguments passed to FUN.

Details

The **type** parameter has the following options.

- **adjacency** returns the adjacency matrix of the network.
- **weights** returns the weighted adjacency matrix of the network if an edge attribute 'weight' is present.
- **dist_sp** returns shortest path distances between all pairs of nodes.
- **depend_sp** returns dyadic dependencies

\[\delta(u, s) = \sum_{t \in V} \frac{\sigma(s, t|u)}{\sigma(s, t)} \]

where \(\sigma(s, t|u) \) is the number of shortest paths from \(s \) to \(t \) that include \(u \) and \(\sigma(s, t) \) is the total number of shortest \((s,t)\)-paths. This relation is used for betweenness-like centrality indices.

- **walks** returns walk counts between pairs of nodes, usually they are weighted decreasingly in their lengths or other properties which can be done by adding a function in **FUN**. See transform_relations for options.
- **dist_resist** returns the resistance distance between all pairs of nodes.
- **dist_lf** returns a logarithmic forest distance \(d^\alpha_{\omega}(s,t) \). The logarithmic forest distances form a one-parametric family of distances, converging to shortest path distances as \(\alpha \rightarrow 0 \) and to the resistance distance as \(\alpha \rightarrow \infty \). See (Chebotarev, 2011) for more details. The parameter **lfparam** can be used to tune \(\alpha \).
- **dist_walk** returns the walk distance \(d^\alpha_{W}(s,t) \) between nodes. The walk distances form a one-parametric family of distances, converging to shortest path distances as \(\alpha \rightarrow 0 \) and to longest walk distances for \(\alpha \rightarrow \infty \). Walk distances contain the logarithmic forest distances as a special case. See (Chebotarev, 2012) for more details.
- **dist_rwalk** returns the expected length of a random walk between two nodes. For more details see (Noh and Rieger, 2004)
- **depend_netflow** returns dependencies based on network flow (See Freeman et al., 1991). If netflowmode="raw", the function returns

\[\delta(u, s) = \sum_{t \in V} f(s, t, G) - f(s, t, G - v) \]
where \(f(s,t,G) \) is the maximum flow from \(s \) to \(t \) in \(G \) and \(f(s,t,G-v) \) in \(G \) without the node \(v \). For \(\text{netflowmode} = "\text{frac}" \) it returns dependencies in the form, similar to shortest path dependencies:

\[
\delta(u,s) = \sum_{t \in V} \frac{f(s,t,G) - f(s,t,G-v)}{f(s,t,G)}
\]

‘depend_curflow’ returns pairwise dependencies based on current flow. The relation is based on the same idea as ‘depend_sp’ and ‘depend_netflow’. However, instead of considering shortest paths or network flow, the current flow (or equivalent: random walks) between nodes are of interest. See (Newman, 2005) for details.

‘depend_exp’ returns pairwise dependencies based on ‘communicability’:

\[
\delta(u,s) = \sum_{t \in V} \frac{\exp(A)_{st} - \exp(A + E(u))_{st}}{\exp(A)_{st}}
\]

where \(E(u) \) has nonzeros only in row and column \(u \), and in this row and column has \(-1\) if \(A \) has \(+1\). See (Estrada et al., 2009) for additional details.

‘depend_rsp’ . Simple randomized shortest path dependencies. The simple RSP dependency of a node \(u \) with respect to absorbing paths from \(s \) to \(t \), is defined as the expected number of visits through \(u \) over all \(s-t \)-walks. The parameter \(rsxp_param \) is the "inverse temperature parameter". If it converges to infinity, only shortest paths are considered and the expected number of visits to a node on a shortest path approaches the probability of following that particular path. When the parameter converges to zero, then the dependencies converge to the expected number of visits to a node over all absorbing walks with respect to the unbiased random walk probabilities. This means for undirected networks, that the relations converge to adjacency. See (Kivimäki et al., 2016) for details.

‘depend_rspn’ Net randomized shortest path dependencies. The parameter \(rsxp_param \) is the "inverse temperature parameter". The asymptotic for the infinity case are the same as for ‘depend_rsp’ . If the parameter approaches zero, then it converges to ‘depend_curflow’. The net randomized shortest path dependencies are closely related to the random walk interpretation of current flows. See (Kivimäki et al., 2016) for technical details.

The function \(\text{FUN} \) is used to transform the indirect relation. See \(\text{transform_relations} \) for predefined functions and additional help.

Value

A matrix containing indirect relations in a network.

Author(s)

David Schoch

References

See Also

`aggregate_positions` to build centrality indices, `positional_dominance` to derive dominance relations

Examples

```r
library(igraph)
data("dbces11")

# shortest path distances
D <- indirect_relations(dbces11, type = "dist_sp")

# inverted shortest path distances
D <- indirect_relations(dbces11, type = "dist_sp", FUN = dist_inv)

# shortest path dependencies (used for betweenness)
D <- indirect_relations(dbces11, type = "depend_sp")

# walks attenuated exponentially by their length
W <- indirect_relations(dbces11, type = "walks", FUN = walks_exp)
```

is_preserved
Check preservation

Description

Checks if a partial ranking is preserved in the ranking induced by scores.

Usage

`is_preserved(P, scores)`

Arguments

- `P` A partial ranking as matrix object calculated with `neighborhood_inclusion` or `positional_dominance`.
- `scores` Numeric vector containing the scores of a centrality index.
Details

In order for a score vector to preserve a partial ranking, the following condition must be fulfilled: \(P[u, v] = 1 \) & scores[i] \(\leq \) scores[j].

Value

Logical scaler whether scores preserves the relations in \(P \).

Author(s)

David Schoch

Examples

```r
library(igraph)
# standard measures of centrality preserve the neighborhood inclusion preorder
data("dbces11")
P <- neighborhood_inclusion(dbces11)

is_preserved(P, degree(dbces11))
is_preserved(P, betweenness(dbces11))
is_preserved(P, closeness(dbces11))
```

Description

Calculates the (normalized) majorization gap of an undirected graph. The majorization gap indicates how far the degree sequence of a graph is from a degree sequence of a threshold_graph.

Usage

```
majorization_gap(g, norm = TRUE)
```

Arguments

g

An igraph object

norm

True (Default) if the normalized majorization gap should be returned.
Details

The distance is measured by the number of reverse unit transformations necessary to turn the degree sequence into a threshold sequence. First, the corrected conjugated degree sequence \(d' \) is calculated from the degree sequence \(d \) as follows:

\[
d'_{k} = |\{i : i < k \land d_i \geq k - 1\}| + |\{i : i > k \land d_i \geq k\}|.
\]

the majorization gap is then defined as

\[
1/2 \sum_{k=1}^{n} \max\{d'_k - d_k, 0\}
\]

The higher the value, the further away is a graph to be a threshold graph.

Value

Majorization gap of an undirected graph.

Author(s)

David Schoch

References

Examples

library(igraph)
\[g <- \text{graph}_\text{star}(5, \text{"undirected"}) \]
\[\text{majorization}_\text{gap}(g) \# \text{0 since star graphs are threshold graphs} \]
\[g <- \text{sample}_\text{gnp}(100, 0.15) \]
\[\text{majorization}_\text{gap}(g, \text{norm} = \text{TRUE}) \# \text{fraction of reverse unit transformation} \]
\[\text{majorization}_\text{gap}(g, \text{norm} = \text{FALSE}) \# \text{number of reverse unit transformation} \]

mcmc_rank_prob

Estimate rank probabilities with Markov Chains

Description

Performs a probabilistic rank analysis based on an almost uniform sample of possible rankings that preserve a partial ranking.
Usage

mcmc_rank_prob(P, rp = nrow(P)^3)

Arguments

P
P A partial ranking as matrix object calculated with neighborhood_inclusion or positional_dominance.

rp
Integer indicating the number of samples to be drawn.

Details

This function can be used instead of exact_rank_prob if the number of elements in P is too large for an exact computation. As a rule of thumb, the number of samples should be at least cubic in the number of elements in P. See vignette("benchmarks",package="netrankr") for guidelines and benchmark results.

Value

expected.rank
Estimated expected ranks of nodes

relative.rank
Matrix containing estimated relative rank probabilities: relative.rank[u,v] is the probability that u is ranked lower than v.

Author(s)

David Schoch

References

See Also

exact_rank_prob, approx_rank_relative, approx_rank_expected

Examples

```r
## Not run:
data("florentine_m")
P <- neighborhood_inclusion(florentine_m)
res <- exact_rank_prob(P)
mcmc <- mcmc_rank_prob(P, rp = vcount(g)^3)

# mean absolute error (expected ranks)
mean(abs(res$expected.rank - mcmc$expected.rank))

## End(Not run)
```
neighborhood_inclusion

Description

Calculates the neighborhood-inclusion preorder of an undirected graph.

Usage

neighborhood_inclusion(g, sparse = FALSE)

Arguments

g An igraph object
sparse Logical scalar, whether to create a sparse matrix

Details

Neighborhood-inclusion is defined as

\[N(u) \subseteq N[v] \]

where \(N(u) \) is the neighborhood of \(u \) and \(N[v] = N(v) \cup \{v\} \) is the closed neighborhood of \(v \). \(N(u) \subseteq N[v] \) implies that \(c(u) \leq c(v) \), where \(c \) is a centrality index based on a specific path algebra. Indices falling into this category are closeness (and variants), betweenness (and variants) as well as many walk-based indices (eigenvector and subgraph centrality, total communicability,...).

Value

The neighborhood-inclusion preorder of \(g \) as matrix object. \(P[u,v]=1 \) if \(N(u) \subseteq N[v] \)

Author(s)

David Schoch

References

See Also

positional_dominance, exact_rank_prob
Examples

```r
library(igraph)
# the neighborhood inclusion preorder of a star graph is complete
g <- graph.star(5, "undirected")
P <- neighborhood_inclusion(g)
comparable_pairs(P)

# the same holds for threshold graphs
tg <- threshold_graph(50, 0.1)
P <- neighborhood_inclusion(tg)
comparable_pairs(P)

# standard centrality indices preserve neighborhood-inclusion
data("dbces11")
P <- neighborhood_inclusion(dbces11)

is_preserved(P, degree(dbces11))
is_preserved(P, closeness(dbces11))
is_preserved(P, betweenness(dbces11))
```

Description

`netrankr` provides several functions to analyze partial rankings for network centrality. The main focus lies on methods that do not necessarily rely on indices like degree, betweenness or closeness. However, the package also provides more than 20 indices, which can be constructed via a Rstudio addin.

The package follows the philosophy, that centrality can be decomposed in a series of micro steps. Starting from a network, `indirect_relations` can be derived which can either be aggregated into an index with `aggregate_positions`, or alternatively turned into a partial ranking with `positional_dominance`. The partial ranking can then be further analyzed with `exact_rank_prob`, to obtain probabilistic centrality rankings.

Details

Some features of the package are:

- Working with the neighborhood inclusion preorder. This forms the bases for any centrality analysis on undirected and unweighted graphs. More details can be found in the dedicated vignette: vignette("neighborhood_inclusion", package = "netrankr")

- Constructing graphs with a unique centrality ranking. This class of graphs, known as threshold graphs, can be used to benchmark centrality indices, since they only allow for one ranking of the nodes. For more details consult the vignette: vignette("threshold_graph", package = "netrankr")
• Probabilistic centrality. Why apply a handful of indices and choosing the one that fits best, when it is possible to analyze all centrality rankings at once? The package includes several function to calculate rank probabilities of nodes in a network. These include expected ranks and relative rank probabilities (how likely is it that a node is more central than another?) Consult vignette("probabilistic_cent",package = "netrankr") for more info.

The package provides several additional vignettes that explain the functionality of netrankr and its conceptual ideas. See browseVignettes(package = 'netrankr')

plot.netrankr_full
Plot netrankr_full object

Description

Plots the result of an object obtained from `exact_rank_prob`

Usage

```r
## S3 method for class 'netrankr_full'
plot(x, icols = NULL, bcol = "grey66", ecol = "black", ...)
```

Arguments

- `x` A `netrankr_full` object
- `icols` a list of colors (an internal palette is used if missing)
- `bcol` color used for the barcharts
- `ecol` color used for errorbars
- `...` additional plot parameters

Author(s)

David Schoch

plot.netrankr_interval
plot netrankr_interval objects

Description

Plots results from `rank_intervals`

Usage

```r
## S3 method for class 'netrankr_interval'
plot(x, cent_scores = NULL, cent_cols = NULL, ties.method = "min", ...)
```
plot.netrankr_mcmc

Arguments

- **x**: A netrank object
- **cent_scores**: A data frame containing centrality scores of indices (optional)
- **cent_cols**: colors for centrality indices. If NULL a default palette is used. Length must be equal to columns in cent_scores.
- **ties.method**: how to treat ties in the rankings. see rank for details
- **...**: additional arguments to plot

Author(s)

David Schoch

Description

Plots the result of an object obtained from mcmc_rank_prob

Usage

```r
## S3 method for class 'netrankr_mcmc'
plot(x, icols = NULL, bcol = "grey66", ...)
```

Arguments

- **x**: A netrankr_mcmc object
- **icols**: a list of colors (an internal)
- **bcol**: color used for the barcharts
- **...**: additional plot parameters

Author(s)

David Schoch
plot_rank_intervals Plot rank intervals

Description
This function is deprecated. Use plot(rank_intervals(P)) instead

Usage
plot_rank_intervals(P, cent.df = NULL, ties.method = "min")

Arguments
P A partial ranking as matrix object calculated with neighborhood_inclusion or positional_dominance.
cent.df A data frame containing centrality scores of indices (optional). See Details.
ties.method String specifying how ties are treated in the base rank function.

Author(s)
David Schoch

See Also
rank_intervals

Examples
library(igraph)
data("dbces11")
P <- neighborhood_inclusion(dbces11)
Not run:
plot_rank_intervals(P)
End(Not run)

adding index based rankings
cent_scores <- data.frame(
 degree = degree(dbces11),
 betweenness = round(betweenness(dbces11), 4),
 closeness = round(closeness(dbces11), 4),
 eigenvector = round(eigen_centrality(dbces11)$vector, 4)
)
Not run:
plot_rank_intervals(P, cent.df = cent_scores)
End(Not run)
positional_dominance Generalized Dominance Relations

Description

generalized dominance relations that can be computed on one and two mode networks.

Usage

positional_dominance(A, type = "one-mode", map = FALSE, benefit = TRUE)

Arguments

A Matrix containing attributes or relations, for instance calculated by indirect_relations.
type A string which is either 'one-mode' (Default) if A is a regular one-mode network or 'two-mode' if A is a general data matrix.
map Logical scalar, whether rows can be sorted or not (Default). See Details.
benefit Logical scalar, whether the attributes or relations are benefit or cost variables.

Details

Positional dominance is a generalization of neighborhood-inclusion for arbitrary network data. In the default case, it checks for all pairs u, v if $A_{ut} \geq A_{vt}$ holds for all t if benefit = TRUE or $A_{ut} \leq A_{vt}$ holds for all t if benefit = FALSE. This form of dominance is referred to as dominance under total heterogeneity. If map=TRUE, the rows of A are sorted decreasingly (benefit = TRUE) or increasingly (benefit = FALSE) and then the dominance condition is checked. This second form of dominance is referred to as dominance under total homogeneity, while the first is called dominance under total heterogeneity.

Value

Dominance relations as matrix object. An entry [u,v] is 1 if u is dominated by v.

Author(s)

David Schoch

References

See Also

neighborhood_inclusion, indirect_relations, exact_rank_prob
Examples

```r
library(igraph)

data("dbces11")

P <- neighborhood_inclusion(dbces11)
comparable_pairs(P)

# positional dominance under total heterogeneity
dist <- indirect_relations(dbces11, type = "dist_sp")
D <- positional_dominance(dist, map = FALSE, benefit = FALSE)
comparable_pairs(D)

# positional dominance under total homogeneity
D_map <- positional_dominance(dist, map = TRUE, benefit = FALSE)
comparable_pairs(D_map)
```

Description

Prints the result of an object obtained from `exact_rank_prob` to terminal

Usage

```r
## S3 method for class 'netrankr_full'
print(x, ...)
```

Arguments

- `x`: A netrankr_full object
- `...`: additional arguments to print

Author(s)

David Schoch
print.netrankr_interval

Print netrankr_interval object to terminal

Description

Prints the result of an object obtained from rank_intervals to terminal

Usage

```r
## S3 method for class 'netrankr_interval'
print(x, ...)
```

Arguments

- `x` A netrankr_interval object
- `...` additional arguments to print

Author(s)

David Schoch

print.netrankr_mcmc

Print netrankr_mcmc object to terminal

Description

Prints the result of an object obtained from mcmc_rank_prob to terminal

Usage

```r
## S3 method for class 'netrankr_mcmc'
print(x, ...)
```

Arguments

- `x` A netrank object
- `...` additional arguments to print

Author(s)

David Schoch
rank_intervals

Rank interval of nodes

Description

Calculate the maximal and minimal rank possible for each node in any ranking that is in accordance with the partial ranking P.

Usage

`rank_intervals(P)`

Arguments

- `P`: A partial ranking as matrix object calculated with `neighborhood_inclusion` or `positional_dominance`.

Details

Note that the returned `mid_point` is not the same as the expected rank, for instance computed with `exact_rank_prob`. It is simply the average of `min_rank` and `max_rank`. For exact rank probabilities use `exact_rank_prob`.

Value

An object of type netrankr_interval

Author(s)

David Schoch

See Also

`exact_rank_prob`

Examples

```r
P <- matrix(c(0, 0, 1, 1, 0, 0, 0, 0, 1, rep(0, 10)), 5, 5, byrow = TRUE)
rank_intervals(P)
```
spectral_gap

Description

The spectral (or eigen) gap of a graph is the absolute difference between the biggest and second biggest eigenvalue of the adjacency matrix. To compare spectral gaps across networks, the fraction can be used.

Usage

spectral_gap(g, method = "frac")

Arguments

g igraph object

method A string, either "frac" or "abs"

Details

The spectral gap is bounded between 0 and 1 if method="frac". The closer the value to one, the bigger the gap.

Value

Numeric value

Author(s)

David Schoch

Examples

The fractional spectral gap of a threshold graph is usually close to 1
g <- threshold_graph(50, 0.3)
spectral_gap(g, method = "frac")
summary.netrankr_full
Summary of a netrankr_full object

Description

Summarizes the result of an object obtained from `exact_rank_prob` to terminal.

Usage

```r
## S3 method for class 'netrankr_full'
summary(object, ...)
```

Arguments

- `object` A netrankr_full object
- `...` additional arguments to summary

Author(s)

David Schoch

threshold_graph
Random threshold graphs

Description

Constructs a random threshold graph. A threshold graph is a graph where the neighborhood inclusion preorder is complete.

Usage

```
threshold_graph(n, p, bseq)
```

Arguments

- `n` The number of vertices in the graph.
- `p` The probability of inserting dominating vertices. Equates approximately to the density of the graph. See Details.
- `bseq` (0,1)-vector a binary sequence that produces a threshold graph. See details

Details

Either `n` and `p`, or `bseq` must be specified. Threshold graphs can be constructed with a binary sequence. For each 0, an isolated vertex is inserted and for each 1, a vertex is inserted that connects to all previously inserted vertices. The probability of inserting a dominating vertices is controlled with parameter `p`. If `bseq` is given instead, a threshold graph is constructed from that sequence. An important property of threshold graphs is, that all centrality indices induce the same ranking.
transform_relations

Value

A threshold graph as igraph object

Author(s)

David Schoch

References

See Also

neighborhood_inclusion, positional_dominance

Examples

library(igraph)
g <- threshold_graph(10, 0.3)
Not run:
plot(g)

star graphs and complete graphs are threshold graphs
complete <- threshold_graph(10, 1) # complete graph
plot(complete)

star <- threshold_graph(10, 0) # star graph
plot(star)

End(Not run)

centrality scores are perfectly rank correlated
cor(degree(g), closeness(g), method = "kendall")

transform_relations

Transform indirect relations

Description

Mostly wrapper functions that can be used in conjunction with indirect_relations to fine tune indirect relations.
Usage

- `dist_2pow(x)`
- `dist_inv(x)`
- `dist_dpow(x, alpha = 1)`
- `dist_powd(x, alpha = 0.5)`
- `walks_limit_prop(x)`
- `walks_exp(x, alpha = 1)`
- `walks_exp_even(x, alpha = 1)`
- `walks_exp_odd(x, alpha = 1)`
- `walks_attenuated(x, alpha = 1/max(x) * 0.99)`
- `walks_uptok(x, alpha = 1, k = 3)`

Arguments

- `x` Matrix of relations.
- `alpha` Potential weighting factor.
- `k` For walk counts up to a certain length.

Details

The predefined functions follow the naming scheme `relation_transformation`. Predefined functions `walks_*` are thus best used with `type="walks"` in `indirect_relations`. Theoretically, however, any transformation can be used with any relation. The results might, however, not be interpretable.

The following functions are implemented so far:

- `dist_2pow` returns 2^{-x}
- `dist_inv` returns $1/x$
- `dist_dpow` returns $x^{-\alpha}$ where α should be chosen greater than 0.
- `dist_powd` returns αx where α should be chosen between 0 and 1.
- `walks_limit_prop` returns the limit proportion of walks between pairs of nodes. Calculating row-Sums of this relation will result in the principle eigenvector of the network.
- `walks_exp` returns $\sum_{k=0}^{\infty} \frac{A^k}{k!}$
- `walks_exp_even` returns $\sum_{k=0}^{\infty} \frac{A^{2k}}{(2k)!}$
- `walks_exp_odd` returns $\sum_{k=0}^{\infty} \frac{A^{2k+1}}{(2k+1)!}$
- `walks_attenuated` returns $\sum_{k=0}^{\infty} \alpha^k A^k$
walks_uptok returns $\sum_{j=0}^{k} \alpha^j A^j$

Walk based transformation are defined on the eigen decomposition of the adjacency matrix using the fact that

$$f(A) = X f(A) X^T.$$

Care has to be taken when using user defined functions.

Value

Transformed relations as matrix

Author(s)

David Schoch

transitive_reduction Transitive Reduction

Description

Calculates the transitive reduction of a partial ranking.

Usage

transitive_reduction(P)

Arguments

P

A partial ranking as matrix object calculated with `neighborhood_inclusion` or `positional_dominance`.

Value

transitive reduction of P

Author(s)

David Schoch

Examples

library(igraph)

g <- threshold_graph(100, 0.1)
P <- neighborhood_inclusion(g)
sum(P)

R <- transitive_reduction(P)
sum(R)
Index

* datasets
 dbces11, 9
 florentine_m, 12
aggregate_positions, 2, 18, 23
approx_rank_expected, 4, 6, 10, 11, 21
approx_rank_relative, 5, 5, 10, 11, 21
as.matrix.netrankr_full, 6
comparable_pairs, 7, 14
compare_ranks, 8
dbces11, 9
dist_2pow(transform_relations), 33
dist_dpow(transform_relations), 33
dist_inv(transform_relations), 33
dist_powd(transform_relations), 33
dominance_graph, 9
exact_rank_prob, 5, 6, 10, 12, 21–24, 27, 28, 30, 32
florentine_m, 12
get_rankings, 12
hyperbolic_index, 13
incomparable_pairs, 7, 14
index_builder, 15
indirect_relations, 3, 15, 23, 27, 33, 34
is_preserved, 18
majorization_gap, 19
mcmc_rank_prob, 5, 6, 10, 11, 20, 25, 29
neighborhood_inclusion, 4, 5, 7, 9, 10, 14, 18, 21, 22, 26, 27, 30, 33, 35
netrankr, 23
plot.netrankr_full, 24
plot.netrankr_interval, 24
plot.netrankr_mcmc, 25
plot_rank_intervals, 25
positional_dominance, 4, 5, 7, 9, 10, 14, 15, 18, 21–23, 26, 27, 30, 33, 35
print.netrankr_full, 28
print.netrankr_interval, 29
print.netrankr_mcmc, 29
rank, 25, 26
rank_intervals, 24, 26, 29, 30
spectral_gap, 31
summary.netrankr_full, 32
threshold_graph, 19, 32
transform_relations, 3, 16, 17, 33
transitive_reduction, 35
walks_attenuated(transform_relations), 33
walks_exp(transform_relations), 33
walks_exp_even(transform_relations), 33
walks_exp_odd(transform_relations), 33
walks_limit_prop(transform_relations), 33
walks_uptok(transform_relations), 33