Title Network Analysis and Community Detection

Description Features tools for the network data analysis and community detection.

Provides multiple methods for fitting, model selection and goodness-of-fit testing in degree-corrected stochastic blocks models.

Most of the computations are fast and scalable for sparse networks, esp. for Poisson versions of the models.

Implements the following:

Lei (2016) <doi:10.1214/15-AOS1370>

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

Suggests testthat, knitr, rmarkdown, igraph, ggplot2, dplyr, tidyr, tibble, mixtools, EnvStats, purrr, RSpectra

Depends R (>= 2.10)

Imports magrittr, Rcpp, Matrix, foreach, methods, stats, grDevices, graphics

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

URL https://github.com/aaamini/nett

BugReports https://github.com/aaamini/nett/issues

NeedsCompilation yes

Author Arash A. Amini [aut, cre] (<https://orcid.org/0000-0002-2808-8310>), Linfan Zhang [aut]
Maintainer Arash A. Amini <aaamini@ucla.edu>
Repository CRAN
Date/Publication 2022-11-09 10:50:05 UTC

R topics documented:

- adj_spec_test 3
- bethe_hessian_select 4
- compute_block_sums 5
- compute_confusion_matrix 5
- compute_mutual_info 6
- estim_dcsbm 6
- eval_dcsbm_bic 6
- eval_dcsbm_like 8
- eval_dcsbm_loglr 9
- extract_largest_cc 10
- extract_low_deg_comp 10
- fast_cpl 11
- fast_sbm 12
- gen_rand_conn 12
- get_dcsbm_exav_deg 13
- label_mat2vec 14
- label_vec2mat 14
- nac_test 15
- plot_deg_dist 16
- plot_net 16
- plot_roc 17
- plot_smooth_profile 18
- polblogs 18
- pp_conn 19
- printf 20
- rsymperm 20
- sample_deer 21
- sample_dclvm 21
- sample_dcpp 22
- sample_dcsbm 23
- sample_tdcsm 23
- simulate_roc 24
- sinkhorn_knopp 25
- snac_resample 26
- snac_select 26
- snac_test 27
- spec_elust 29
- spec_repr 30

Index 31
adj_spec_test

Description

The adjusted spectral goodness-of-fit test based on Poisson DCSBM.

The test is a natural extension on Lei’s work of testing goodness-of-fit for SBM. The residual matrix \hat{A} is computed from the DCSBM estimation expectation of A. To speed up computation, the residual matrix uses Poisson variance instead. Specifically,

$$
\hat{A}_{ij} = (A_{ij} - \hat{P}_{ij})/(n\hat{P}_{ij})^{1/2}, \quad \hat{P}_{ij} = \hat{\theta}_i\hat{\theta}_j\hat{B}_{\hat{z}_i,\hat{z}_j} \cdot 1\{i \neq j\}
$$

where $\hat{\theta}$ and \hat{B} are computed using `estim_dcsbm` if not provided.

Adjusted spectral test

Usage

```
adj_spec_test(
  A, 
  K, 
  z = NULL, 
  DC = TRUE, 
  theta = NULL, 
  B = NULL, 
  cluster_fct = spec_clust, 
  ... 
)
```

Arguments

- `A` : adjacency matrix.
- `K` : number of communities.
- `z` : label vector for rows of adjacency matrix. If not given, will be calculated by the spectral clustering.
- `DC` : whether or not include degree correction in the parameter estimation.
- `theta` : give the propensity parameter directly.
- `B` : give the connectivity matrix directly.
- `cluster_fct` : community detection function to get z, by default using `spec_clust`.
- `...` : additional arguments for `cluster_fct`.

Value

Adjusted spectral test statistics.
bethe_hessian_select

References

bethe_hessian_select Beth-Hessian model selection

Description

Estimate the number of communities under block models by using the spectral properties of network Beth-Hessian matrix with moment correction.

Usage

bethe_hessian_select(A, Kmax)

Arguments

A adjacency matrix.
Kmax the maximum number of communities to check.

Value

A list of result

K estimated the number of communities
rho eigenvalues of the Beth-Hessian matrix

References

compute_block_sums

Block sum of an adjacency matrix

Description

Compute the block sum of an adjacency matrix given a label vector.

Usage

```r
compute_block_sums(A, z)
```

Arguments

- `A`: adjacency matrix.
- `z`: label vector.

Value

A $K \times L$ matrix with (k,l)-th element as $\sum_{i,j} A_{i,j} 1_{z_i = k, z_j = l}$

compute_confusion_matrix

Compute confusion matrix

Description

Compute confusion matrix

Usage

```r
compute_confusion_matrix(z, y, K = NULL)
```

Arguments

- `z`: a label vector
- `y`: a label vector
- `K`: number of labels in both `z` and `y`

Value

A $K \times K$ confusion matrix between `z` and `y`
compute_mutual_info \(\text{Compute normalized mutual information (NMI)}\)

Description

Compute the NMI between two label vectors with the same cluster number

Usage

\[
\text{compute_mutual_info}(z, y)
\]

Arguments

- \(z\) a label vector
- \(y\) a label vector

Value

NMI between \(z\) and \(y\)

estim_dcsbm \(\text{Estimate model parameters of a DCSBM}\)

Description

Compute the block sum of an adjacency matrix given a label vector.

Usage

\[
\text{estim_dcsbm}(A, z)
\]

Arguments

- \(A\) adjacency matrix.
- \(z\) label vector.

Details

\[
\hat{B}_{k\ell} = \frac{N_{k\ell}(\hat{z})}{m_{k\ell}(\hat{z})}, \quad \hat{\theta}_i = \frac{n_{z_i}(\hat{z})d_i}{\sum_{j: z_j = \hat{z}_i} a_{ij}}
\]

where \(N_{k\ell}(\hat{z})\) is the sum of the elements of \(A\) in block \((k, \ell)\) specified by labels \(\hat{z}\), \(n_k(\hat{z})\) is the number of nodes in community \(k\) according to \(\hat{z}\) and \(m_{k\ell}(\hat{z}) = n_k(\hat{z})(n_{\ell}(\hat{z}) - 1\{k = \ell\})\)
eval_dcsbm_bic

Value

A list of result

B estimated connectivity matrix.

theta estimated node propensity parameter.

eval_dcsbm_bic Compute BIC score

Description

compute BIC score when fitting a DCSBM to network data

Usage

eval_dcsbm_bic(A, z, K, poi)

Arguments

A adjacency matrix

z label vector

K number of community in z

poi whether to use Poisson version of likelihood

Details

the BIC score is calculated by $-2 \times \log \text{likelihood} - K \times (K + 1) \times \log(n)$

Value

BIC score

References

See Also

eval_dcsbm_like, eval_dcsbm_loglr
eval_dcsbm_like

Log likelihood of a DCSBM (fast with poi = TRUE)

Description

Compute the log likelihood of a DCSBM, using estimated parameters B, theta based on the given label vector.

Usage

```r
eval_dcsbm_like(A, z, poi = TRUE, eps = 1e-06)
```

Arguments

- `A` adjacency matrix
- `z` label vector
- `poi` whether to use Poisson version of likelihood
- `eps` truncation threshold for the Bernoulli likelihood, used when parameter phat is close to 1 or 0.

Details

The log likelihood is calculated by

\[
\ell(\hat{B}, \hat{\theta}, \hat{\pi}, \hat{z} | A) = \sum_i \log \hat{\pi}_{z_i} + \sum_{i<j} \phi(A_{ij}; \hat{\theta}, \hat{\theta}, \hat{B}_{\hat{z}_i,\hat{z}_j})
\]

where \(\hat{B}, \hat{\theta}\) is calculated by `estim_dcsbm`, \(\hat{\pi}_k\) is the proportion of nodes in community \(k\).

Value

log likelihood of a DCSBM

See Also

- `eval_dcsbm_loglr`, `eval_dcsbm_bic`
Description

Computes the log-likelihood ratio of one DCSBM relative to another, using estimated parameters B and theta based on the given label vectors.

Usage

```r
eval_dcsbm_loglr(A, labels, poi = TRUE, eps = 1e-06)
```

Arguments

- `A`: adjacency matrix
- `labels`: a matrix with two columns representing two different label vectors
- `poi`: whether to use Poisson version of likelihood (instead of Bernoulli)
- `eps`: truncation threshold for the Bernoulli likelihood, used when parameter phat is close to 1 or 0.

Details

The log-likelihood ratio is computed between two DCSBMs specified by the columns of `labels`. The function computes the log-likelihood ratio of the model with `labels[, 2]` w.r.t. the model with `labels[, 1]`. This is often used with two label vectors fitted using different number of communities (say K and K+1).

When `poi` is set to `TRUE`, the function uses fast sparse matrix computations and is scalable to large sparse networks.

Value

log-likelihood ratio

See Also

`eval_dcsbm_like`, `eval_dcsbm_bic`
extract_largest_cc Extract largest component

Description
Extract the largest connected component of a network

Usage
extract_largest_cc(gr, mode = "weak")

Arguments
 gr The network as an igraph object
 mode Type of connected component ("weak","strong")

Value
An igraph object

extract_low_deg_comp Extract low-degree component

Description
Extract a low-degree connected component of a network

Usage
extract_low_deg_comp(g, deg_prec = 0.75, verb = FALSE)

Arguments
 g The network as an igraph object
 deg_prec The cut-off degree percentile
 verb Whether to be verbose (TRUE|FALSE)

Value
An igraph object
Description

The Conditional Pseudo-Likelihood (CPL) algorithm for fitting degree-corrected block models

Usage

```r
fast_cpl(Amat, K, ilabels = NULL, niter = 10)
```

Arguments

- `Amat`: adjacency matrix of the network
- `K`: desired number of communities
- `ilabels`: initial label vector (if not provided, initial labels are estimated using `spec_clust`)
- `niter`: number of iterations

Details

The function implements the CPL algorithm as described in the paper below. It relies on the `mixtools` package for fitting a mixture of multinomials to a block compression of the adjacency matrix based on the estimated labels and then reiterates.

Technically, `fast_cpl` fits a stochastic block model (SBM) conditional on the observed node degrees, to account for the degree heterogeneity within communities that is not modeled well in SBM. CPL can also be used to effectively estimate the parameters of the degree-corrected block model (DCSBM).

The code is an adaptation of the original R code by Aiyou Chen with slight simplifications.

Value

Estimated community label vector.

References

Examples

```r
head(fast_cpl(igraph::as_adj(polblogs), 2), 50)
```
Description

Samples an adjacency matrix from a stochastic block model (SBM)

Usage

```
fast_sbm(z, B)
```

Arguments

- `z`: Node labels (n * 1)
- `B`: Connectivity matrix (K * K)

Details

The function implements a fast algorithm for sampling sparse SBMs, by only sampling the necessary nonzero entries. This function is adapted almost verbatim from the original code by Aiyou Chen.

Value

An adjacency matrix following SBM

Examples

```
B = pp_conn(n = 10^4, oir = 0.1, lambda = 7, pri = rep(1,3))$B
head(fast_sbm(sample(1:3, 10^4, replace = TRUE), B))
```

Description

Generate randomly permuted connectivity matrix with a given average expected degree

Usage

```
gen_rand_conn(n, K, lambda, gamma = 0.3, pri = rep(1, K)/K, theta = rep(1, n))
```
get_dcsbm_exav_deg

Arguments

- `n`: number of nodes
- `K`: number of communities
- `lambda`: expected average degree
- `gamma`: a measure of out-in-ratio (convex combination parameter)
- `pri`: the prior on community labels
- `theta`: node connection propensity parameter of DCSBM, by default E(theta) = 1

Details

The connectivity matrix is a convex combination of a random symmetric permutation matrix and the matrix of all ones, with weights gamma and 1-gamma.

Value

connectivity matrix B of the desired DCSBM.

get_dcsbm_exav_deg
Calculate the expected average degree of a DCSBM

Description

Calculate the expected average degree of a DCSBM

Usage

```r
get_dcsbm_exav_deg(n, pri, B, ex_theta = 1)
```

Arguments

- `n`: number of nodes
- `pri`: distribution of node labels (K x 1)
- `B`: connectivity matrix (K x K)
- `ex_theta`: expected value of theta

Value

expected average degree of a DCSBM
label_mat2vec

Convert label matrix to vector

Description
Convert label matrix to vector

Usage
label_mat2vec(Z)

Arguments
Z a cluster assignment matrix

Value
A label vector that follows the assignment matrix

label_vec2mat

Convert label vector to matrix

Description
Convert label vector to matrix

Usage
label_vec2mat(z, K = NULL, sparse = FALSE)

Arguments
z a label vector
K number of labels in z
sparse whether the output should be sparse matrix

Value
A cluster assignment matrix that follows from the label vector z
nac_test

Description

The NAC test to measure the goodness-of-fit of the DCSBM to network data. The function computes the NAC+ or NAC statistics in the paper below. Label vectors, if not provided, are estimated using `spec_clust` by default but one can also use any other community detection algorithms through `cluster_fct`. Note that the function has to have \(A \) and \(K \) as its first two arguments, and additional arguments could be provided through `...`.

Usage

```r
nac_test(A, K, z = NULL, y = NULL, plus = TRUE, cluster_fct = spec_clust, ...)
```

Arguments

- \(A \) : adjacency matrix.
- \(K \) : number of communities.
- \(z \) : label vector for rows of \(A \). If not provided, will be estimated from `cluster_fct`.
- \(y \) : label vector for columns of \(A \). If not provided, will be estimated from `cluster_fct`.
- `plus` : whether or not use column label vector with \((K+1) \) communities, default is `TRUE`.
- `cluster_fct` : community detection function to get \(z \) and \(y \), by default using `spec_clust`. The first two arguments have to be \(A \) and \(K \).
- `...` : additional arguments for `cluster_fct`.

Value

A list of result

- `stat` : NAC or NAC+ test statistic.
- `z` : row label vector.
- `y` : column label vector.

References

See Also

- `snac_test`
Examples

A <- sample_dcpp(500, 10, 4, 0.1)$adj
nac_test(A, K = 4)$stat
nac_test(A, K = 4, cluster_fct = fast_cpl)$stat

plot_deg_dist

Plot degree distribution

Description

Plot the degree distribution of a network on log scale

Usage

plot_deg_dist(gr, logx = TRUE)

Arguments

- **gr**: the network as an igraph object
- **logx**: whether the degree is in log scale.

Value

Histogram of the degree of 'gr'.

plot_net

Plot a network

Description

Plot a network using degree-modulated node sizes, community colors and other enhancements

Usage

plot_net(
 gr,
 community = NULL,
 color_map = NULL,
 extract_lcc = TRUE,
 heavy_edge_deg_perc = 0.97,
 coord = NULL,
 vsize_func = function(deg) log(deg + 3) * 1,
 vertex_border = FALSE,
 niter = 1000,
 vertex_alpha = 0.4,
)
plot_roc

remove_loops = TRUE,
make_simple = FALSE,
...
)

Arguments

gr the network as an igraph object
community community assignment; vector of node labels
color_map color palette for clusters in 'gr'
extact_lcc Extract largest connected component or not
heavy_edge_deg_perc Degree percentile threshold for determining heavy edges
coord Optional starting positions for the vertices. If this argument is not NULL then it should be an appropriate matrix of starting coordinates.
vsize_func function to determine the size of node size
vertex_border whether to show the border of vertex or not
niter number of iteration for FR layout computation
vertex_alpha factor modifying the opacity alpha of vertex; typically in [0,1]
remove_loops whether to remove loops in the network
make_simple whether to simplify edge weight calculation
... other settings

Value

A network plot

plot_roc
Plot ROC curves

Description

Plot ROC curves given results from simulate_roc.

Usage

plot_roc(roc_results, method_names = NULL, font_size = 16)

Arguments

roc_results data frame roc from the output list of simulate_roc
method_names a list of method names
font_size font size of the plot

Value

Roc plot based on results from simulate_roc
plot_smooth_profile
Plot community profiles

Description

Plot the smooth community profiles based on a resampled statistic.

Usage

```r
plot_smooth_profile(
  tstat,
  net_name = "",
  trunc_type = "none",
  spar = 0.3,
  plot_null_spar = TRUE,
  alpha = 0.3,
  base_font_size = 12
)
```

Arguments

- **tstat**: dataframe that has a column `value` as statistic in the plot and a column `K` as its corresponding community number.
- **net_name**: name of network.
- **trunc_type**: method to round the dip/elbow point as the estimated community number.
- **spar**: the sparsity level of fitting spline to the value of `tstat`.
- **plot_null_spar**: whether to plot the spline with zero sparsity.
- **alpha**: transparency of the points in the plot.
- **base_font_size**: font size of the plot.

Value

smooth profile plot of a network.

polblogs
Political blogs network

Description

This is a directed network of hyperlinks between political blogs about politics in the United States of America.
pp_conn

Usage

```r
data(polblogs)
```

Format

An igraph data with 1490 nodes and 19090 edges

References

pp_conn Generate planted partition (PP) connectivity matrix

Description

Create a degree-corrected planted partition connectivity matrix with a given average expected degree.

Usage

```r
pp_conn(
  n,
  oir,
  lambda,
  pri,
  theta = rep(1, n),
  normalize_theta = FALSE,
  d = rep(1, length(pri))
)
```

Arguments

- `n` the number of nodes
- `oir` out-in-ratio
- `lambda` the expected average degree
- `pri` the prior on community labels
- `theta` node connection propensity parameter of DCSBM
- `normalize_theta` whether to normalize theta so that max(theta) == 1
- `d` diagonal of the connectivity matrix. An all-one vector by default.

Value

The connectivity matrix B of the desired DCSBM.
printf
The usual "printf" function

Description

The usual "printf" function

Usage

`printf(...)`

Arguments

...
printing object

Value

the value of the printing object

rsymperm
Generate random symmetric permutation matrix

Description

Generate a random symmetric permutation matrix (recursively)

Usage

`rsymperm(K)`

Arguments

K
size of the matrix

Value

A random K x K symmetric permutation matrix
sample_dcer

Sample from a DCER

Description

Sample an adjacency matrix from a degree-corrected Erdős–Rényi model (DCER).

Usage

```r
sample_dcer(theta)
```

Arguments

- `theta`: Node connectivity propensity vector (n * 1)

Value

An adjacency matrix following DCSBM

sample_dclvm

Sample from a DCLVM

Description

A DCLVM with K clusters has edges generated as

$$E[A_{ij} | x, \theta] \propto \theta_i \theta_j e^{-\|x_i - x_j\|^2}$$

where $x_i = 2e_{z_i} + w_i$, e_k is the kth basis vector of \mathbb{R}^d, $w_i \sim N(0, I_d)$, and $\{z_i\} \subset [K]^n$. The proportionality constant is chosen such that the overall network has expected average degree λ.

To calculate the scaling constant, we approximate $E[e^{-\|x_i - x_j\|^2}]$ for $i \neq j$ by generating random npairs $\{z_i, z_j\}$ and average over them.

Usage

```r
sample_dclvm(z, lambda, theta, npairs = NULL)
```

Arguments

- `z`: a vector of cluster labels
- `lambda`: desired average degree of the network
- `theta`: degree parameter
- `npairs`: number of pairs of $\{z_i, z_j\}$
sample_dcpp

Details
Sample form a degree-corrected latent variable model with Gaussian kernel

Value
Adjacency matrix of DCLVM

Description
Sample from a degree-corrected planted partition model

Usage
sample_dcpp(
 n, lambda, K, oir,
 theta = NULL, pri = rep(1, K)/K,
 normalize_theta = FALSE
)

Arguments
n number of nodes
lambda average degree
K number of communities
oir out-in ratio
theta propensity parameter, if not given will be samples from a Pareto distribution with scale parameter 2/3 and shape parameter 3
pri prior distribution of node labels
normalize_theta whether to normalize theta so that max(theta) == 1

Value
an adjacency matrix following a degree-corrected planted partition model

See Also
sample_dcsbm, sample_tdcsvm
sample_dcsbm
Sample from a DCSBM

Description
Sample an adjacency matrix from a degree-corrected block model (DCSBM)

Usage
```r
sample_dcsbm(z, B, theta = 1)
```

Arguments
- `z`: Node labels ($n \times 1$)
- `B`: Connectivity matrix ($K \times K$)
- `theta`: Node connectivity propensity vector ($n \times 1$)

Value
An adjacency matrix following DCSBM

See Also
- `sample_dcpp`, `fast_sbm`, `sample_tdcsbm`

Examples
```r
B = pp_conn(n = 10^3, oir = 0.1, lambda = 7, pri = rep(1,3))$B
def(sample_dcsbm(sample(1:3, 10^3, replace = TRUE), B, theta = rexp(10^3)))
```

sample_tdcsbm
Sample truncated DCSBM (fast)

Description
Sample an adjacency matrix from a truncated degree-corrected block model (DCSBM) using a fast algorithm.

Usage
```r
sample_tdcsbm(z, B, theta = 1)
```

Arguments
- `z`: Node labels ($n \times 1$)
- `B`: Connectivity matrix ($K \times K$)
- `theta`: Node connectivity propensity vector ($n \times 1$)
Details

The function samples an adjacency matrix from a truncated DCSBM, with entries having Bernoulli distributions with mean

\[E[A_{ij}|z] = B_{z_i, z_j} \min(1, \theta_i \theta_j). \]

The approach uses the masking idea of Aiyou Chen, leading to fast sampling for sparse networks. The masking, however, truncates \(\theta_i \theta_j \) to at most 1, hence we refer to it as the truncated DCSBM.

Value

An adjacency matrix following DCSBM

Examples

```r
B = pp_conn(n = 10^4, oir = 0.1, lambda = 7, pri = rep(1,3))$B
head(sample_tdcsbm(sample(1:3, 10^4, replace = TRUE), B, theta = rexp(10^4)))
```

simulate_roc
Simulate data to estimate ROC curves

Description

Simulate data from the null and alternative distributions to estimate ROC curves for a collection of methods.

Usage

```r
simulate_roc(
  apply_methods,
  gen_null_data,
  gen_alt_data,
  nruns = 100,
  core_count = parallel::detectCores() - 1,
  seed = NULL
)
```

Arguments

- `apply_methods`: a function that returns a data.frame with columns "method", "tstat" and "twosided"
- `gen_null_data`: a function that generate data under the null model
- `gen_alt_data`: a function that generate data under the alternative model
- `nruns`: number of simulated data from the null/alternative model
- `core_count`: number of cores used in parallel computing
- `seed`: seed for random simulation
sinkhorn_knopp

Description

Implements the Sinkhorn–Knopp algorithm for transforming a square matrix with positive entries to a stochastic matrix with given common row and column sums (e.g., a doubly stochastic matrix).

Usage

```r
sinkhorn_knopp(
  A,
  sums = rep(1, nrow(A)),
  niter = 100,
  tol = 1e-08,
  sym = FALSE,
  verb = FALSE
)
```

Arguments

- `A`: input matrix
- `sums`: desired row/column sums
- `niter`: number of iterations
- `tol`: convergence tolerance
- `sym`: whether to compute symmetric scaling \(D A D \)
- `verb`: whether to print the current change

Details

Computes diagonal matrices \(D_1 \) and \(D_2 \) to make \(D_1 A D_2 \) into a matrix with given row/column sums. For a symmetric matrix \(A \), one can set `sym = TRUE` to compute a symmetric scaling \(D A D \).

Value

Diagonal matrices \(D_1 \) and \(D_2 \) to make \(D_1 A D_2 \) into a matrix with given row/column sums.

Value

- `roc`: A data frame used to plot ROC curves with columns: method, whether a two sided test, false positive rate (FPR), and true positive rate (TPR)
- `raw`: A data frame containing raw output from null and alternative models with columns: method, statistics value, whether a two sided test, and the type of hypothesis
- `elapsed_time`: system elapsed time for generating ROC data
snac_resample
Resampled SNAC

Description
Compute SNAC+ with resampling

Usage
```
snac_resample(
  A,
  nrep = 20,
  Kmin = 1,
  Kmax = 13,
  ncores = parallel::detectCores() - 1,
  seed = 1234
)
```

Arguments
- **A**
 adjacency matrix
- **nrep**
 number of times SNAC+ is computed
- **Kmin**
 minimum community number to use in SNAC+
- **Kmax**
 maximum community number to use in SNAC+
- **ncores**
 number of cores to use in the parallel computing
- **seed**
 seed for random sampling

Value
A data frame with columns specifying repetition cycles, number of community numbers and the value of SNAC+ statistics

snac_select
Estimate community number with SNAC

Description
Applying SNAC+ test sequentially to estimate community number of a network fit to DCSBM
Usage

```r
snac_select(
  A,
  Kmin = 1,
  Kmax,
  alpha = 1e-05,
  labels = NULL,
  cluster_fct = spec_clust,
  ...
)
```

Arguments

- **A**: adjacency matrix.
- **Kmin**: minimum candidate community number.
- **Kmax**: maximum candidate community number.
- **alpha**: significance level for rejecting the null hypothesis.
- **labels**: a matrix with each column being a row label vector for a candidate community number. If not provided, will be computed by `cluster_fct`.
- **cluster_fct**: community detection function to get label vectors to compute SNAC+ statistics (in `snac_test`), by default using `spec_clust`.
- **...**: additional arguments for `cluster_fct`.

Value

estimated community number.

See Also

- `snac_test`

Examples

```r
A <- sample_dcpp(500, 10, 3, 0.1)$adj
snac_select(A, Kmax = 6)
```

Description

The SNAC test to measure the goodness-of-fit of the DCSBM to network data. The function computes the SNAC+ or SNAC statistics in the paper below. The row label vector of the adjacency matrix could be given through `z` otherwise will be estimated by `cluster_fct`. One can specify the ratio of nodes used to estimate column label vector. If `plus = TRUE`, the column labels will be estimated by `spec_clust` with `(K+1)` clusters, i.e. performing SNAC+ test, otherwise with `K` clusters SNAC test. One can also get multiple test statistics with repeated random subsampling on nodes.
Usage

`snac_test`

```r
snac_test(
    A,
    K,
    z = NULL,
    ratio = 0.5,
    fromEachCommunity = TRUE,
    plus = TRUE,
    cluster_fct = spec_clust,
    nrep = 1,
    ...
)
```

Arguments

- `A` : adjacency matrix.
- `K` : desired number of communities.
- `z` : label vector for rows of adjacency matrix. If not provided, will be estimated by `cluster_fct`.
- `ratio` : ratio of subsampled nodes from the network.
- `fromEachCommunity` : whether subsample from each estimated community or the full network, default is TRUE.
- `plus` : whether or not use column label vector with (K+1) communities to compute the statistics, default is TRUE.
- `cluster_fct` : community detection function to estimate label vectors, by default using `spec_clust`. The first two arguments have to be A and K.
- `nrep` : number of times the statistics are computed.
- `...` : additional arguments for `cluster_fct`.

Value

A list of result

- `stat` : SNAC or SNAC+ test statistic.
- `z` : row label vector.

References

See Also

`nac_test`
spec_clust

Examples

A <- sample_dcpp(500, 10, 4, 0.1)$adj
snac_test(A, K = 4, niter = 3)$stat

spec_clust

Spectral clustering (fast)

Description

Perform spectral clustering (with regularization) to estimate communities

Usage

```r
spec_clust(
  A,
  K,
  type = "lap",
  tau = 0.25,
  nstart = 20,
  niter = 10,
  ignore_first_col = FALSE
)
```

Arguments

- **A**: Adjacency matrix (n x n)
- **K**: Number of communities
- **type**: ("lap" | "adj" | "adj2") Whether to use Laplacian or adjacency-based spectral clustering
- **tau**: Regularization parameter for the Laplacian
- **nstart**: argument from function 'kmeans'
- **niter**: argument from function 'kmeans'
- **ignore_first_col**: whether to ignore the first eigen vector when doing spectral clustering

Value

A label vector of size n x 1 with elements in 1,2,...,K
Spectral Representation

Description

Provides a spectral representation of the network (with regularization) based on the adjacency or Laplacian matrices

Usage

```
spec_repr(A, K, type = "lap", tau = 0.25, ignore_first_col = FALSE)
```

Arguments

- **A**: Adjacency matrix (n x n)
- **K**: Number of communities
- **type**: ("lap" | "adj" | "adj2") Whether to use Laplacian or adjacency-based spectral clustering
- **tau**: Regularization parameter for the Laplacian
- **ignore_first_col**: whether to ignore the first eigen vector

Value

The n x K matrix resulting from a spectral embedding of the network into R^K
Index

* comm_detect
 fast_cpl, 11
 spec_clust, 29
* datasets
 polblogs, 18
* estimation
 compute_block_sums, 5
 estim_dcsbm, 6
 eval_dcsbm_like, 8
* evaluation
 compute_confusion_matrix, 5
 compute_mutual_info, 6
 simulateroc, 24
* mod_sel
 bethe_hessian_select, 4
 eval_dcsbm_bic, 7
 eval_dcsbm_loglr, 9
 snac_select, 26
* models
 fast_sbm, 12
 gen_rand_conn, 12
 get_dcsbm_exav_deg, 13
 pp_conn, 19
* net_repr
 spec_repr, 30
* plotting
 plot_roc, 17
* utils
 extract_largest_cc, 10
 extract_low_deg_comp, 10
 label_mat2vec, 14
 label_vec2mat, 14
 printf, 20
 rsymperr, 20
 sinkhorn_knopp, 25
 adj_spec_test, 3
 bethe_hessian_select, 4
 compute_block_sums, 5
 compute_confusion_matrix, 5
 compute_mutual_info, 6
 estim_dcsbm, 3, 6, 8
 eval_dcsbm_bic, 7, 8, 9
 eval_dcsbm_like, 7, 8, 9
 eval_dcsbm_loglr, 7, 8, 9
 extract_largest_cc, 10
 extract_low_deg_comp, 10
 fast_cpl, 11
 fast_sbm, 12, 23
 gen_rand_conn, 12
 get_dcsbm_exavg_deg, 13
 label_mat2vec, 14
 label_vec2mat, 14
 nac_test, 15, 28
 plot_deg_dist, 16
 plot_net, 16
 plot_roc, 17
 plot_smooth_profile, 18
 polblogs, 18
 pp_conn, 19
 printf, 20
 rsymperr, 20
 sample_dcer, 21
 sample_dclvm, 21
 sample_dcpp, 22, 23
 sample_dcsbm, 22, 23
 sample_tdcsbm, 22, 23, 23
 simulate_roc, 17, 24
 sinkhorn_knopp, 25
 snac_resample, 26
 snac_select, 26
snac_test, 15, 27, 27
spec_clust, 3, 11, 15, 27, 28, 29
spec_repr, 30