
nieve: Yet Another Extreme Value package?

Yves Deville deville.yves@alpestat.com

March 16, 2023

Contents

1 Probability functions of Extreme-Value distributions 1

2 Deriving the formulas 4

3 Testing the derivatives 4

4 Parameterizations for Peaks Over Threshold models 5

5 EV distributions from other R packages 7

1 Probability functions of Extreme-Value distributions

The probability functions for the Generalized Pareto (GP) and Generalized Extreme Value (GEV)
distributions (Coles, 2001) are of ubiquitous use in Extreme Value (EV) analysis. These functions
depend smoothly on the parameters: they are infinitely differentiable functions of the parameters.
However, these functions are not analytic functions of the parameters and a singularity exists for all
of them when the shape parameter, say ξ, is zero. In practice, the functions are given with different
formulas depending on whether the shape parameter ξ is zero or not; the formulas for ξ = 0 relate
to the exponential and Gumbel distributions and correspond to the limit for ξ → 0 of the functions
given by the formulas for ξ ̸= 0. As an example, consider the quantile function of the Generalized
Pareto distribution with shape ξ and unit scale

q(p) =

{

[(1− p)−ξ − 1]/ξ ξ ̸= 0

− log(1− p) ξ = 0,
0 < p < 1. (1)

It can be shown that for ξ ≈ 0 whatever be p

q ≈ − log(1− p),
∂q

∂ξ
≈

1

2
log2(1− p),

∂2q

∂ξ2
≈ −

1

3
log3(1− p).

It is quite easy to obtain expressions for the derivatives w.r.t. ξ using the definition (1). We can
even rely on the symbolic differentiation method D available in R which, as opposed to me and many
other humans, never makes any mistake when differentiating.
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qEx <- function(p, xi) ((1 - p)^(-xi) - 1) / xi

dqEx <- D(expression(((1 - p)^(-xi) - 1) / xi), name = "xi")

d2qEx <- D(dqEx, name = "xi")

p <- 0.99; pBar <- 1 - p

xis <- c(1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9)

for (xi in xis) {

r <- rbind("ord 0" = c("lim" = -log(pBar), "der" = qEx(p = p, xi = xi)),

"ord 1" = c("lim" = log(pBar)^2 / 2, "der" = eval(dqEx, list(p = p, xi = xi))),

"ord 2" = c("lim" = -log(pBar)^3 / 3, "der" = eval(d2qEx, list(x = p, xi = xi))))

cat("xi = ", xi, "\n")

print(r)

}

## xi = 1e-04

## lim der

## ord 0 4.60517 4.606231

## ord 1 10.60380 10.607052

## ord 2 32.55486 32.566137

## xi = 1e-05

## lim der

## ord 0 4.60517 4.605276

## ord 1 10.60380 10.604121

## ord 2 32.55486 32.771042

## xi = 1e-06

## lim der

## ord 0 4.60517 4.605181

## ord 1 10.60380 10.603811

## ord 2 32.55486 68.213867

## xi = 1e-07

## lim der

## ord 0 4.60517 4.605171

## ord 1 10.60380 10.601845

## ord 2 32.55486 39126.437500

## xi = 1e-08

## lim der

## ord 0 4.60517 4.605170e+00

## ord 1 10.60380 1.085129e+01

## ord 2 32.55486 -4.949912e+07

## xi = 1e-09

## lim der

## ord 0 4.60517 4.605170e+00

## ord 1 10.60380 -3.794649e+01

## ord 2 32.55486 9.710058e+10

We see that the formula for the function works fine. However, the formula for the 2-nd order
derivative can be completely wrong when ξ is about 1e-6 and the formula for the 1-st order derivative
can also be wrong when ξ is about 1e-8. Although evaluated at a reasonably small value of ξ, the
derivative given in the column der differs much from its limit in column lim. The reason is that
the formulas for the derivatives involve difference and/or fractions or small quantities because ξ
or ξ2 comes at the denominator. As a general rule, the derivatives with higher order are more
difficult to evaluate numerically, since they involve more complex expressions. Note that using a
shape ξ with |ξ| ⩽ 1e-6 is quite common in EV analysis because the values of ξ used in practice
are often quite small, and moreover very small values of ξ are often used in the initialization of the
Maximum-Likelihood (ML) optimization.
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Let us now see what nieve tells about the derivatives. These can be found as attributes of
the result returned by the qGPD2 function, with names "gradient" and "hessian". If the formal
argument p is a vector with length n, the attributes are arrays with dimension c(n, p) and c(n,

p, p) where p stands for the number of parameters, here p = 2. The arrays of derivatives have
suitable dimnames hence can be indexed with characters as in H[1 , "scale", "shape"] if H is the
Hessian found in the corresponding attribute.

library(nieve)

for (xi in xis) {

x <- qGPD2(p, shape = xi, deriv = TRUE, hessian = TRUE)

r <- rbind("ord 0" = c("lim" = -log(pBar), "der" = x),

"ord 1" = c("lim" = log(pBar)^2 / 2, "der" = attr(x, "gradient")[1, "shape"]),

"ord 2" = c("lim" = -log(pBar)^3 / 3, "der" = attr(x, "hessian")[1, "shape", "shape"]))

cat("xi = ", xi, "\n")

print(r)

}

## xi = 1e-04

## lim der

## ord 0 4.60517 4.606231

## ord 1 10.60380 10.607052

## ord 2 32.55486 32.566137

## xi = 1e-05

## lim der

## ord 0 4.60517 4.605276

## ord 1 10.60380 10.604122

## ord 2 32.55486 32.554857

## xi = 1e-06

## lim der

## ord 0 4.60517 4.605181

## ord 1 10.60380 10.603829

## ord 2 32.55486 32.554857

## xi = 1e-07

## lim der

## ord 0 4.60517 4.605171

## ord 1 10.60380 10.603799

## ord 2 32.55486 32.554857

## xi = 1e-08

## lim der

## ord 0 4.60517 4.60517

## ord 1 10.60380 10.60380

## ord 2 32.55486 32.55486

## xi = 1e-09

## lim der

## ord 0 4.60517 4.60517

## ord 1 10.60380 10.60380

## ord 2 32.55486 32.55486

So, no more major departures from the theory can be seen.
Although not yet widespread, the use of the exact formulas for the derivatives w.r.t. the pa-

rameters can be of great help in the optimization tasks required in EV analysis. These tasks of
course involve the ML estimation, but also profile likelihood inference for models with covariates.
Differential equations methods can be also used to derive confidence intervals. Note that the use of
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formulas for the derivatives is called symbolic differentiation and differs from automatic differentia-
tion as increasingly available. However, from the previous analysis it transpires that the cure might
be worse than the disease. Unless the derivatives are evaluated with great care, they can merely
ruin an optimization in which they are involved, instead of improving it.

Our strategy consists in fixing a small ϵ > 0 and use the formulas for ξ ̸= 0 only when |ξ| > ϵ.
When |ξ| ⩽ ϵ, we use a few terms from the Taylor series at ξ = 0 e.g.,

q(p; ξ) ≈ q(p; 0) + ∂ξq(p; ξ)|ξ=0 × ξ +
1

2
∂2
ξ,ξq(p; ξ)

∣

∣

ξ=0
× ξ2 + o(ξ2).

In order to maintain the consistency between the derivatives, it seems good to use the same ϵ for all
the derivatives and use consistent Taylor approximations, so use the order 1 for the derivative ∂ξq
and the order order 0 for ∂2

ξ,ξq or for a crossed derivative such as ∂2
σ,ξq. Since the 2-nd order

derivatives can be required, we must take a value for ϵ which is not too small: 1e-4 or 1e-5, not
much smaller. Note that ϵ gives the level of error for the 2-nd order derivative; since the error on
the function is O(ξ3), using ϵ = 1e-4 leads to an error of order 1e-12 on the function, which seems
acceptable in practice. This kind of approximation is used in some codes of the revdbayes package
by Paul Northrop, see the code if the dgev and pgev functions on GitHub repos.

2 Deriving the formulas

The technical reports provided with nieve: GEV.pdf, GPD2.pdf, PoisGP2PP.pdf and PP2PoisGP.pdf
give the exact expressions for the first-order and the second-order derivatives of the probability func-
tions w.r.t. the parameters and also provide workable approximations for the case ξ ≈ 0. We used
the Maxima Computer Algebra System (Maxima, 2022) along with the maxiplot package for
LATEX. The technical reports follow the following rules.

• The raw expressions given by Maxima are reported in green. The expressions can be
regarded as exact, not being influenced by manual computations. However these formulas are
usually difficult to use in a compiled code and require some manual transformation for this
aim.

• The simplified expressions are reported in red. These expressions are derived by us from
the raw expressions; they are influenced by manual computations hence could in principle
contain errors, although they have been carefully checked. These formulas are used to write
the compiled code. They often use auxiliary variables that are shared across several formulas.

3 Testing the derivatives

The nieve package comes with a series of tests in the format of the testthat package. The
numDeriv package is used to compute the derivatives by numeric differentiation up to the or-
der 2; these derivatives are compared to those provided by the formulas.

A quite difficult task when checking derivatives is to give a threshold used to decide if the
difference between the numeric derivative and the symbolic derivative, say the “error”, is acceptable
or not. This error has two sources: one is the numerical evaluation of the symbolic derivative or of
its approximation for ξ ≈ 0 (see example above), and the other is the approximation used in numeric
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Figure 1: Block maxima by aggregation of the Poisson-GP.

differentiation where the limit defining the derivative is replaced by a finite difference. We should
use small values of ξ with |ξ| < ϵ to check that the approximation for small ξ is correct, although
we can only test the approximation at the first order by doing so. Then, with a good choice of ϵ the
error should be mainly due to the numeric differentiation. But when the true derivative is small,
the relative error may be large (think of a true derivative which is exactly zero). On the other
hand, when a derivative is large in absolute value, the absolute error may also be quite large. Mind
that the derivatives can in practice be very small or very large, and also that a gradient vector or
a Hessian matrix often contain values that are not of the same order of magnitude.

We check that either the absolute error or the relative error is small. The idea is that none of
these two things can come by chance, and if one holds, the formula used must be good even if the
other criterion suggests an opposed conclusion. The test is made elementwise, meaning that the
relative error is computed for each element of a gradient vector or Hessian matrix ignoring the other
elements.

4 Parameterizations for Peaks Over Threshold models

Peaks Over Threshold (POT) models are very popular in EV analysis. These models relate to
marked Poisson Process: at each time Ti in a sequence or random times T1 < T2 < . . . we observe
a random variable Yi called the mark. In applications, the time Ti is typically for the occurrence
a storm and the mark Yi can be an amount of precipitation or a sea level. The following two
frameworks are commonly used, see Northrop et al. (2016) for more details.

• The Poisson-GP framework involves a given threshold u having the same physical dimension
as the marks Yi. It assumes that the Ti form an homogeneous Poisson Process with rate λu,
and that Yi are i.i.d. with a Generalized Pareto distribution GPD(u, σu, ξ) or equivalently
that the so-called excesses over the threshold Yi−u follow the two-parameter GP distribution
with scale σ > 0 and shape ξ. The marks Yi are further assumed to be independent of the
event process {Ti}i. The parameters form the vector θu = [λu, σu, ξ].
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• An alternative framework is often named Point Process (PP) or Non-Homogeneous Poisson
Process (NHPP). It involves a reference duration w > 0, usually chosen to be one year, and
a vector of parameters θ⋆ := [µ⋆

w, σ
⋆
w, ξ

⋆]. The random observations [Ti, Yi] are given by a
Poisson process on the (t, y)-plane with intensity

γ⋆w(t, y) :=
1

w
×

1

σ⋆
w

[

1 + ξ⋆
y − µ⋆

w

σ⋆
w

]−1/ξ⋆−1

1Sθ⋆w
(t, y),

where Sθ
⋆
w

is the domain of the plane

Sθ
⋆
w
:= {[t, y] : σ⋆

w + ξ⋆[y − µ⋆
w] > 0} .

This is a half-plane for ξ⋆ ̸= 0 and the whole plane for ξ⋆ = 0.

If we take the observation region for the PP model as being the product of the time interval
(0, t†) by the y-interval (u, ∞) where the threshold u is such that σ⋆

w + ξ⋆[u− µ⋆
w] > 0, we get the

same model as the Poisson-GP on (0, t†), up to a re-parameterization. As an interesting feature
of the PP parameter θ⋆

w, it does not depend on the threshold u. It relates to the distribution of
the maximum M of the marks Yi corresponding to a time interval with duration w, see Figure 4.
This distribution is indeed essentially the GEV(µ⋆

w, σ
⋆
w, ξ

⋆), up to an atom corresponding to the
possibility that no mark is observed during the time interval. We can then define M := −∞ since
this is arguably the maximum of the empty set, and the probability of the corresponding event is
exp{−λuw}. We may speak of GEV(µ⋆

w, σ
⋆
w, ξ

⋆) as the GEV reference distribution in relation to w,
although this is not exactly the distribution of a maximum M over the reference duration.

For a given threshold u and a given reference duration w > 0, the one-to-one correspondence
between the vectors θu and θ⋆

w is given by











µ⋆
w = u+ (λuw)ξ−1

ξ σu,

σ⋆
w = (λuw)

ξ σu,

ξ⋆ = ξ,

(2)

the fraction [(λuw)
ξ − 1]/ξ of the first equation being to be replaced for ξ = 0 by its limit log(λuw).

The reciprocal transformation is










σu = σ⋆
w + ξ⋆ [u− µ⋆

w] ,

λu = w−1 [σu/σ
⋆
w]

−1/ξ⋆ ,

ξ = ξ⋆,

(3)

where the second equation becomes λu = w−1 for ξ⋆ = 0.
When a vector x of covariates can be used, two different kinds of so-called non-stationary

POT models can be obtained by relating or “linking” the three parameters to the covariates, either
parametrically or non-parametrically. For instance the Poisson-GP scale or its logarithm can be
specified as having the parametric form x

⊤βσ where βσ is a vector of parameters. Different forms of
models arise from the two frameworks. Moreover, parametric Poisson-GP models relate to a specific
threshold since the same form of link can not persist when the threshold is changed. Remind also
that the threshold should in general depend on the covariates. Anyway, for non-stationary models
it is often useful to transform one of the two parameterizations into the other. If a Poisson-GP
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Poisson-GP

threshold u

λu (rate)

σu (scale)

ξ (shape)

exceedances over u: Ti ∼ PoisProc(λu)
marks: Yi ∼ GPD(u, σu, ξ)
excesses: Yi − u ∼ GPD(0, σu, ξ).

Point-Process

ref.
duration
w > 0

µ⋆w (location)

σ⋆w (scale)

ξ⋆ (shape)

The maximum M of the marks

Yi on an interval with duration w has a

tail which is GEV(µ⋆w, σ⋆w, ξ⋆). It has a

mixed distribution with an atom at M =

−∞ = sup(∅).

Figure 2: Two parameterizations for POT models.

model is used, we may be interested in the GEV reference distribution conditional on a given value
x. When instead a PP model is used, it may be useful to investigate the relation of the implied rate
λu with the covariates, and possibly to compare the POT estimate with a non-parametric estimate.

The nieve package provides the two transformations (2) and (3) required for all these tasks
– along with their Jacobian, under the names poisGP2PP and PP2poisGP. As for the probability
functions, the singularity for ξ = 0 or ξ⋆ = 0 is coped with by using a second-order Taylor approxi-
mation. As often required when coping with non-stationary POT models, the functions poisGP2PP
and PP2poisGP are vectorized w.r.t. their arguments including threshold for the PP2poisGP trans-
formation. Each element i in the provided vector arguments (such as lambda) correspond to a value
xi of the covariates, and most often the threshold is then also chosen as depending on the covariates,
hence used via a vector with n elements ui = u(xi). The condition

σ⋆
i + ξ⋆i [ui − µ⋆

i ] > 0, i = 1, . . . , n

should then hold. There does not seem to exist any motivation for using a reference duration w
depending on i, hence the function poisGP2PP only accepts a length-one argument w.

5 EV distributions from other R packages

The EV distributions are implemented in many R packages. A variety of strategies regarding the
problem ξ = 0 can be found. We now describe these strategies and provide for each of them a
“code” (shown as framed: NT , ...) that is used in Table 1, columns ξ = 0. Each strategy is briefly
discussed.

1. NT Use only the formula for ξ ̸= 0 i.e., “do nothing”. In practice, an optimization or sampling
algorithm will never come to the case ξ = 0 exactly and this can only happen when the user
gives this value e.g., as an initial value. There will be some numerical problems when ξ is
very small, say ξ = 1e-14 or less. These problems are not so crucial for the usual probability
functions: we get some wiggling when plotting the curves and zooming. Mind however that
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Package GEV GPD

Lang. Vec. θ Grad. Hess. ξ = 0 Lang. Vec. θ Grad. Hess. ξ = 0

evir R no no no NT R no no no NT
evd R no no no 0.0 R no no no 0.0
ismev R⋆ no no no NT R⋆ no no no NT
Renext R no yes yes ϵ/S
POT R⋆ yes no no 0.0
SpatialExtremes R yes no no 0.0 R yes no no 0.0
revdbayes R yes no no ϵ/AI R yes no no ϵ/AI
mev R yes yes⋆ yes⋆ NT R yes yes⋆ yes⋆ NT
nieve C yes yes yes ϵ/AI C yes yes yes ϵ/AI

Table 1: Features of some CRAN packages. Lang.: the implementation language, Vec. θ: vectorized w.r.t. the

parameters. The columns Grad. and the Hess. indicate if the gradient and Hessian are provided, and the columns

ϵ = 0 indicate the strategy used to cope with a zero or small shape, as described in the text. A star ⋆ means that

the functions are not exported.

the random generation functions1 will produce silly results with a very small ξ if they are
based on the corresponding quantile functions.

2. 0.0 Test the exact equality ξ = 0, and if this is true, switch to the exponential/Gumbel
formula. This helps only when the user gives xi = 0.0, but we are essentially doing the same
thing as in NT .

3. ϵ/S Test the equality |ξ| ⩽ ϵ where ϵ > 0 is very small, and if this is true, switch to the

exponential/Gumbel formula. So this produces a (very small) discontinuity. E.g., Renext

uses ϵ ≈ 2e-14.

4. ϵ/AI Test the equality |ξ| ⩽ ϵ where ϵ > 0 is very small, and if this is true, use a dedicated

approximation or interpolation. Several methods can be used including Taylor approximations.
The discontinuity should then be undetectable. Mind the probability functions although not
being analytic functions, are infinitely differentiable C∞ w.r.t. the parameters.

Note that some of the cited packages are quite old: evir (Pfaff and McNeil, 2018), evd (Stephen-
son, 2002), ismev (Stephenson and Heffernan, 2018), Renext (Deville and IRSN, 2022), POT (Rib-
atet and Dutang, 2022) and SpatialExtremes Ribatet (2022). The packages revdbayes (Northrop,
2022) and mev (Belzile et al., 2022) are more recent. See the CRAN Task View on Extreme Value
Analysis (Dutang, 2022) for an extended list of packages devoted to EV. Also it is worth mentioning
that the extRemes package (Gilleland and Katz, 2016) optionally uses the exact gradient of the
log-likelihood for models with GEV and GP margins but the derivatives are coded (in R) only for
internal use in optimization tasks.
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