
NIPALS optimization notes
Kevin Wright

October 25, 2017

Abstract

These are some notes to document some of the optimization process for the nipals package. As such, it is
not complete and the R code chunks cannot be re-run.

Optimizing performance is an art form that requires a good understanding of how functions manage memory
and calculations, but also involves a fair bit of trial and error. For example, code that is optimal for small
data may not be optimal for large data. There can also be a trade-off between code that is optimal and code
that is readable. Our view leans heavily toward the philosophy that programmer time is more expensive than
processor time, so code should be written for humans.

General computational performance tips

In this section x and y are matrices and v is a vector.

1. When possible, avoid looping over the columns of a matrix. Instead, use apply and similar functions.

2. Do not use cbind (or rbind) to assemble results into a matrix. Instead, initialize a full matrix of NA
values and insert the results into the appropriate column of the matrix.

3. Use x*x instead of xˆ2.

4. Use sqrt(x) instead of xˆ0.5.

5. Use crossprod(x,y) instead of t(x) %*% y, since the latter has to transpose first and then multiply.

6. Use crossprod(v) instead of sum(v*v) if v has a lot more than a million numbers or if the result
could have numeric overflow.

v = rnorm(1e8) # 100 million
system.time(sum(v*v))
user system elapsed
0.24 0.17 0.40
system.time(crossprod(v))
user system elapsed
0.24 0.00 0.23

v = rnorm(1e9) # 1000 million
system.time(sum(v*v))
user system elapsed
3.25 45.71 141.76
system.time(crossprod(v))
user system elapsed
2.99 0.72 19.20

v = 1:1e6 # 1 million
system.time(crossprod(v))
user system elapsed

1

0 0 0
system.time(sum(v*v))
user system elapsed
0 0 0
#Warning message:
#In k * k : NAs produced by integer overflow

7. Use colSums(x*x) instead of diag(crossprod(x)) if x is much wider than 1000 columns.
x = matrix(rnorm(10000), nrow=10, ncol=1000)
system.time(colSums(x*x))
user system elapsed
0 0 0
system.time(crossprod(x))
user system elapsed
0.83 0.14 0.97

8. Avoid making copies of data structures, and avoid repeating calculations.

Calculating scores t = Xp/p’p

Part of the NIPALS algorithm involves iterating between calculating the loadings p and the scores t. This
section shows some of the ideas that were tried to increase the performance of the calculation of the t vector.

For testing purposes, a 100 × 100 matrix is big enough so that tweaks to the code will show differences in
performance time, but small enough so that each call of the function does not require a lot of waiting. A
missing value is inserted to force the function to use the method needed for missing data.
set.seed(42)
Bbig <- matrix(rnorm(100*100), nrow=100)
Bbig2 <- Bbig
Bbig2[1,1] <- NA

For the optimizing process, we use code taken from mixOmics::nipals since it avoids for loops over the
columns of X, and should have better performance than ade4::nipals or plsdepot::nipals.

The timings are the median of 3 runs. The timings in this section were recorded before the Gram-Schmidt
orthogonalization step was added.

Version 1

This is the version taken from the mixOmics package.
th = x0 %*% ph
P = drop(ph) %o% nr.ones # ph in each column, nr.ones is a vector of 1
P[t(x.miss)] = 0
ph.cross = crossprod(P)
th = th / diag(ph.cross)

system.time(res0 <- nipals(Bbig2, ncomp=100))
user system elapsed
10.76 0.00 10.78

2

Version 2

There’s no need to store the ph.cross object, and the diag(crossprod()) is needlessly expensive since we
only need the diagonal elements. This is an easy change and has a big reward.
th = x0 %*% ph
P = drop(ph) %o% nr.ones # ph in each column
P[t(x.miss)] = 0
th = th / colSums(P*P)

system.time(res <- nipals(Bbig2, ncomp=100))
user system elapsed
4.4 0.0 4.4

all.equal(res0, res)
TRUE

Version 3

Most of the columns of P are the same, so the element-wise multiplication P*P is repeating a lot of the same
multiplications in the different columns. Better to square the numbers in one column, then put those into all
columns. Also, there’s no need to calculate th in two steps.
P2 <- drop(ph*ph) %o% nr.ones # ph in each column
P2[t(x.miss)] <- 0
th = x0 %*% ph / colSums(P2)

system.time(res <- nipals(Bbig2, ncomp=100))
user system elapsed
4 0 4

all.equal(res0, res)
TRUE

Version 4

The first line of code is squaring the elements of ph, then outer-multiplying by a vector of 1s to insert these
into each column of P2. It makes sense algebraically, but we can avoid the multiplications and just build the
matrix P2 by recycling the first column.
P2 <- matrix(ph*ph, nrow=nc, ncol=nr)
P2[t(x.miss)] <- 0
th = x0 %*% ph / colSums(P2)

system.time(res <- nipals(Bbig2, ncomp=100))
user system elapsed
3.38 0.00 3.41

all.equal(res0, res)
TRUE

3

Comments

Although this look like an easy optimization, there were numerous other (failed) versions, and each version
often required fiddling with the syntax to make sure the right results were calculated. For example, what
happens if ph is a vector (not a matrix) and is put into a matrix operation? Not always what you might
expect.

The optimizations described above reduced the user time from 10.76 seconds to 3.38 seconds.

The total effect of all optimizations in the algorithm reduced the user time for the nipals function from
19.20 seconds to 3.38 seconds in this example.

Calculating PP’ and TT’

In the Gram-Schmidt orthogonalization part of the algorithm, it is necessary to calculate PhP ′h where Ph is a
matrix of the first h columns of the loadings matrix P . It is not necessary to re-calculate the entire PhP ′h
product for each Principal Component, but only to update the product PhP′h = Ph−1P′h−1 + php′h. Here’s
a numerical illustration:
set.seed(42)
P = matrix(rnorm(9), 3)
PPp = P %*% t(P)
all.equal(PPp,

P[,1,drop=FALSE] %*% t(P[,1,drop=FALSE]) +
P[,2,drop=FALSE] %*% t(P[,2,drop=FALSE]) +
P[,3,drop=FALSE] %*% t(P[,3,drop=FALSE]))

TRUE

all.equal(PPp,
tcrossprod(P[,1]) + tcrossprod(P[,2]) + tcrossprod(P[,3]))

TRUE

multiply by a vector
all.equal(PPp %*% 1:3,

tcrossprod(PPp, t(1:3)))
TRUE

Using the 100 × 100 matrix example, the Gram-Schmidt method adds only a modest increase in time.
system.time(m1 <- nipals(Bbig2, ncomp=100, gramschmidt=FALSE))
user system elapsed
3.68 0.02 3.70
system.time(m2 <- nipals(Bbig2, ncomp=100, gramschmidt=TRUE))
user system elapsed
4.29 0.03 4.37

R vs C comment

The nipals() function makes heavy use of the crossprod() and tcrossprod() functions, which are already
extensively optimized. Non-optimized coding of the NIPALS algorithm in C would probably be less efficient
than the R version used in this package.

4

	Abstract
	General computational performance tips
	Calculating scores t = Xp/p'p
	Version 1
	Version 2
	Version 3
	Version 4
	Comments

	Calculating PP' and TT'
	R vs C comment

