Package ‘nivm’

September 26, 2015

Type Package

Title Noninferiority Tests with Variable Margins

Version 0.3

Date 2015-09-25

Author Michael P. Fay

Maintainer Michael P. Fay <mfay@niaid.nih.gov>

Depends stats, bpcp, ssanv

Description Noninferiority tests for difference in failure rates at a prespecified control rate or prespecified time.

License GPL (>= 3)

NeedsCompilation no

Repository CRAN

Date/Publication 2015-09-26 01:31:34

R topics documented:

nivm-package ... 2
brkControl ... 2
brkTest ... 3
findPowerR ... 5
fmecTest ... 5
nicqControl ... 7
nicqTest ... 8
nimDiffOR ... 10
powerNicqTest .. 12
print.brk ... 13

Index 15
nivm-package

Non-inferiority Tests with Variable Margins

Description

This package was developed to give the control quantile non-inferiority test described in Fay and Follmann (2015), and the function to calculate that test is `nicqTest`. Some competitors to that test are some tests described in Rohmel and Kieser (2013): `brkTest`, `fmecTest`, and `fmecExact`.

Details

```
Package: nivm
Type: Package
Version: 0.3
Date: 2015-09-25
License: >=GPL3
```

Author(s)

Michael P. Fay

Maintainer: Michael P. Fay <mfay@niaid.nih.gov>

References

See Also

`nicqTest`

brkControl

Arguments for Algorithm Control for brkTest.

Description

Function that gives a list.
brkTest

Usage

brkControl(alpha = 0.025, alphastar = 0.001, ngrid = 1000)

Arguments

- alpha: significance level for test
- alphastar: a value that is much much less than the significance level. Used to speed up calculations since we group all values less than alphastar together and do not need to add them one-at-a-time.
- ngrid: number of elements in the grid search over the control proportion.

Value

a list with values names the same as the arguments.

See Also

brkTest

brkTest

Barnard-Rohmel-Kieser Test

Description

A variable margin difference in proportion test for non-inferiority. The test is based on Barnard's test.

Usage

brkTest(x1, n1, x2, n2, threshold = 0.2, delta = 0.1, control = brkControl())

Arguments

- x1: number of events in the control group
- n1: number of individuals in the control group
- x2: number of events in the test group
- n2: number of events in the test group
- threshold: proportion in the control group associated with the threshold, above that threshold use a constant difference margin, below the threshold use a difference margin with a constant odds ratio. We use only continuous variable margins that meet at the threshold.
- delta: difference in proportions at the threshold
- control: list of parameters for algorithm control, see brkControl
Details

This test is labeled T4 in Rohmel and Keiser (2013).

Value

a list of class brk, with elements:

- **statistic**: the threshold, delta (difference margin at threshold), and odds ratio at threshold
- **data.name**: gives x1, x2, n1, n2 as a character string
- **method**: description of test
- **p.value**: one-sided p-value
- **FullResults**: a list with 4 matrices, each n1+1 by n2+1 representing the total sample space. R=a matrix with logical values with TRUE elements representing the rejection region, its 'sig.level' attribute gives the significance level of the test; PVAL-bounds=a matrix of p-value bounds, pb; PVALsymbols=a matrix of symbols that describe the pb, '<=' means 'p<=pb', '=' means 'p=pb' and '>' means 'p>pb'; PVALUES=a matrix giving the p-value expression, e.g., 'p<=.00321' or 'p>0.025'.

Author(s)

Michael P. Fay

References

See Also

See Also *nicqTest*, ~~~

Examples

```r
x <- brkTest(3, 8, 0, 6)
x
x$FullResults$PVALUES
```
findPowerR

Get power from brkTest.

Description

Power under an alternative F1 and F2 relationship, represented by a F2=g(F1).

Usage

findPowerR(R, g, psearch = (0:1000)/1000)

Arguments

R matrix of rejection region, if x is the output from brk.test, then R=x$FullResults$R

G function under which to calculate the power, F2=g(F1).

psearch vector of values over which to calculate the power

fmecTest

Odds Ratio/Difference Non-inferiority tests

Description

Rohmel and Keier (2013) developed these non-inferiority tests with variable margins. One margin function, NiM3, has the variable margin measuring a constant difference in proportions (0.10 in paper) after a threshold (0.20 proportion in the control group), or tests for differences defined in terms of a constant odds ratio (1.71 in paper) at values less than the threshold. The fmecTest with type='max' gives the maximum of two p-values, either a difference in proportions test (one-sided asymptotic method of Farrington and Manning, 1990) or an odds ratio test (one-sided Fisher's exact). This test is NiM3/T2 in Rohmel and Keier (2013). We also provide an exact version of this test with fmecExact, denoted NiM3/T3 in Rohmel and Keier (2013). When type='switch' the tests are like T1 of Rohmel and Keier (2013).

Usage

fmecTest(x1, n1, x2, n2, threshold = 0.2, delta = 0.1,
alternative = c("less","greater"),

type = c("max","switch"))

fmecExact(x1, n1, x2, n2, threshold = 0.2, delta = 0.1,
alternative = c("less","greater"),

type = c("max","switch"), ngrid = 1000)
Arguments

- x1: number of failures in control group
- n1: number of individuals in control group
- x2: number of failures in test group
- n2: number of individuals in test group
- threshold: threshold on proportion in control group: above it use constant difference margin, below it use difference margin with constant odds ratio
- delta: difference margin at threshold
- alternative: must be 'less'. the value 'greater' is not supported at this time.
- type: either 'max' (maximum of Fisher's exact p-value or Farrington and Manning p-value) or 'switch' (Fisher's exact p-value below threshold and Farlington and Manning p-value above threshold).
- ngrid: grid size for the search for the maximum p-value. Search over the control proportion values 0:ngrid/ngrid.

Details

For details see Rohmel and Keier (2013, Section 3). These functions only use NiM3.

Value

a list of class 'htest':
- statistic: the threshold, delta (difference margin at threshold), and odds ratio at threshold
- data.name: gives x1,x2,n1,n2 as a character string
- method: description of test
- p.value: one-sided p-value
- null.value: delta, the difference margin at threshold
- alternative: direction of alternative hypothesis

Author(s)

Michael P. Fay

References

See Also

nicqTest
Examples

```r
fmecTest(6,10,2,12,alternative="less",type="max")
fmecExact(6,10,2,12,alternative="less",type="max")
```

nicqControl

Function that returns a list of algorithm controls for nicq

Description

Controls for numeric integration, etc. Mostly used in `getfx2` that is called by `nicqTest`.

Defined as a function instead of a list, so sanity checks can be built in (but none have been included yet).

Usage

```r
nicqControl(rdig = 5, slowint = FALSE, mint = 100,
            interr = 10^-3, epsilon=10^-4, alpha = 0.025,
            tau.conf.level=0.95)
```

Arguments

- `rdig` number of digits for rounding, used to eliminate some computer errors. Used in `getimaxpower` called by `nicqTest` when ic="maxpower".
- `slowint` use slow integration for `getfx2`
- `mint` number of summands in numeric integration for `getfx2`
- `interr` tolerance for integration for `getfx2`
- `epsilon` small value to give the range for the uniroot function that calculates the confidence intervals. It searches from -q+epsilon to 1-q-epsilon. Used in `nicq.calc` called by `nicqTest`.
- `alpha` significance level for calculation of `getimaxpower` called by `nicqTest` when ic="maxpower".
- `tau.conf.level` confidence level for tau, where F1(tau)=q. Uses `bpcp` then `quantile.kmciLR`.

Value

- a list with each argument as a named value

See Also

- `nicqTest`
Non-inferiority control quantile test

Description

Tests for a difference in proportion of failures between test and control by the time the qth quantile of the control group has failed. Uses a variable margin function, and the time of the qth quantile of the control group is unknown.

If the cumulative distributions for the two groups are F1 (control) and F2 (test), then we are interested in the difference: \(\Delta = F_2(t_0) - F_1(t_0) \), where \(F_1(t_0) = q \). Note F1, F2 are unknown and non-parametric, and \(t_0 \) is unknown. In this case, using a constant \(\Delta \) does not give practical non-inferiority margins, therefore we use a variable margin function, so that we test (when alternative='less') \(H_0: F_2(t) \geq g(F_1(t)) \) versus \(H_1: F_2(t) < g(F_1(t)) \) for all \(t \).

The test also works for other types of continuous responses besides time to failure (see details), but the help description uses time to failure for brevity.

Usage

\[
nicqTest(x, delta0, q, g=\text{nimDiffOR}, yc=NULL, nc=NULL, nt=NULL,
\quad ic="prop",
\quad z=NULL, status=NULL, ties=c("cons","approx"),
\quad alternative=c("less","greater"),
\quad conf.level=0.95,
\quad conf.int=\text{TRUE},
\quad conf.sided=c("\text{two.sided","\text{one.sided"},
\quad gname=NULL,
\quad control=nicqControl())
\]

Arguments

- **x**: either a vector of failure times for the both groups (when \(z \) is given), a vector of failure times for the test group (when \(yc \) is given), or the number of failures in the test group that have occurred by the \(ic \)-th failure in the control group (when \(ic \) is an integer, \(nc \) and \(nt \) are given). See details.
- **delta0**: difference, \(F_2(t_0) - F_1(t_0) \), on the boundary between the null and alternative hypotheses, where \(t_0 \) is defined so that \(F_1(t_0) = q \).
- **q**: probability associated with the quantile of interest in control group
- **g**: non-inferiority margin function. Must have arguments \(q \) (representing the quantile of interest in the control group) and \(\Delta \) (representing the difference, \(F_2(t_0) - F_1(t_0) \)), where \(F_2 \) and \(F_2 \) are the cumulative distributions of failures for the test (F2) and control (F1) at t, where \(F_1(t_0) = q \). Default values for \(q \) and \(\Delta \) are ignored. Default function is \text{nimDiffOR}.
- **yc**: vector of failure times in the control group. If given, \(x \) is the vector of failure times in the test group.
- **nc**: number of individuals in the control group. Not needed if \(z \) or \(yc \) is given.
nt

number of individuals in the test group. Not needed if z or yc is given.

ic

used to find i. The test is based on the number of failures in the test group that have occurred by the \ith failure in the control group. \texttt{ic="prop"} gives \(i=\text{ceiling}(q*nc)\), \texttt{ic="maxpower"} gives the \(i\) value that maximizes the power given \(F1=F2\) and \(g\), and \texttt{ic=a positive integer} gives \(i=ic\) (with \(ic\) between 1 and \(nc\) inclusive).

z

a vector of group indicators, with either 1 (for control) or 2 (for test). If given, \(x\) is a vector of all failures in both groups.

status

a vector denoting right censoring (0) or not (1). Not needed if there is no censoring. Only used when \(z\) is given. If any censoring occurs at or before the \(i\)th failure (see \texttt{ic} argument) in the control group, then the test is undefined.

ties

how should ties be handled, "cons" use a conservative adjustment for ties, "approx" use an approximate adjustment. See details.

alternative

direction of alternative hypothesis.

conf.level

confidence level

conf.int

logical, do confidence intervals

conf.sided

character, either 'one.sided' or 'two.sided' (see warning)

gname

name for g function, if NULL uses name of inputed g function

control

a list of arguments for numeric calculation settings, see \texttt{nicqControl}.

Details

The data may be entered in 3 different formats, and the first argument \(x\) changes depending on which format. When \(z\) is given then \(x\) is the vector of failure times from both groups and \(z\) gives the group membership of each of those failures. If there is right censoring this may be given using \texttt{status}, and the \texttt{nicq} function will make sure that the censoring happens late enough so that the test can still be calculated. When \(yc\) is given then \(x\) is a vector of failure times in the test group and \(yc\) are the failure times in the control group. When \(ic\) is an integer, then \(x\) represents the number of failure times that have occurred in the test group at or before the time of the \(ic\)th failure in the control group. In this last format only \(nc\) (number in control group) and \(nt\) (number in the test group) must be given.

The confidence interval is calculated on the difference, \(F2(t0)-F1(t0)\), where \(t0\) is unknown and defined so that \(F1(t0)=q\), with \(q\) given.

The responses can be any numeric values, as long as the difference, \(F2(t0)-F1(t0)\), is of interest.

For more details see Fay and Follmann (2015).

The confidence intervals for the \(q\)th quantile of the control is calculated using the \texttt{bpcp} function followed by the \texttt{quantile.kmciLR} from the \texttt{bpcp} R package.

Value

An \texttt{nicq} object which inherits from \texttt{htest} class (the print method for is slightly different). A list with elements:

\begin{itemize}
 \item \texttt{statistic} \hspace{1cm} number of failure in test group at or before the \(q\)th quantile of the control group
 \item \texttt{parameter} \hspace{1cm} vector with elements: \(q\) (quantile of interest in control group),\(i\) (rank of \(q\)th quantile), \(n1\) (number in control group), \(n2\) (number in test group)
\end{itemize}
Description

For testing the alternative $F_2(t) < g(F_1(t))$. We give several built-in choices for the function g. All functions must be defined in terms of δ and q, where $F_1(t_0) = q$ and t_0 is defined implicitly, and $\delta = F_2(t_0) - g(F_1(t_0))$.

Examples

```r
## if you know that q=0.20 and there are no ties then ic=q*nc=40
nicqTest(66,g=nimDiffOR,delta0=.1,q=.2,nc=200,nt=300,ic=40,conf.int=FALSE)
```

References

Usage

nimDiffOR(p, delta = 0.1, q = 0.2)
nimOR(p, delta=0.1, q=0.2)
nimDiff(p,delta=.1, q=NULL)

Arguments

 p a vector of F1(t) values, where F1(t) is the proportion of control that failed by t.
 q the probability associated with the control quantile of interest, not used for calculations in nimDiff but needs to be in the call.
 delta the difference: F2(t0) - g(F1(t0))

Details

The functions are defined in terms of delta and q so that the function can change as a function of delta and we can use the function to get confidence intervals for delta (defined in terms of q, since q=F1(t0) which defines t0).

Functions should handle vectors of F1(t) values, and the output is a vector of the same length. The results should be between 0 and 1.

The function nimDiffOR gives the minimum of the difference (defined by delta) or the odds ratio (defined in terms of q and delta) when delta>0, and the maximum when delta<0.

For plots of the functions see Fay and Follmann (2015).

Value

 a vector of values g(F1(t)).

References

See Also

 nicqTest

Examples

 ## notice that the second values, F1(t)=0.20=q,
 ## all equal
 ## q+delta=0.30
 nimDiff(c(1:9)/10)
 nimOR(c(1:9)/10)
 nimDiffOR(c(1:9)/10)
 ## for delta<0, take max of difference and odds ratio
 nimDiffOR(c(1:9)/10,delta=-.1)
Description
Function gives power (if \(n_1=\text{NULL}\)) or sample size (if \(\text{power}=\text{NULL}\)). Assumes no ties.

Usage

\[
\text{powerNicqTest}(n_1 = \text{NULL}, n_2 = \text{NULL}, \text{power} = \text{NULL}, \\
\text{sig.level} = 0.025, n_2.\text{over.n1} = 1, q = 0.2, \\
delta0 = 0.1, \text{alternative} = c(\"less\", \"greater\"), \\
gnull = \text{nimDiffOR}, \text{galt} = \text{function}(x)\{x\}, \\
\text{minn} = 5, \text{maxn} = 10^5, \ldots)
\]

Arguments

- \(n_1\): sample size of control group, calculated if NULL
- \(n_2\): sample size of test group. If \(n_1=\text{NULL}\), \(n_2\) is ignored and calculated based on power and \(n_2.\text{over.n1}\). If \(\text{power}=\text{NULL}\), then \(n_2=\text{ceiling}(n_2.\text{over.n1}*n_1)\).
- \(\text{power}\): power under \(\text{galt}\), calculated if NULL
- \(\text{sig.level}\): significance level
- \(n_2.\text{over.n1}\): ratio of sample sizes
- \(q\): probability associated with control quantile of interest
- \(\delta_0\): difference in proportions at control quantile of interest
- \(\text{alternative}\): alternative hypothesis direction, 'less' means \(F_2(t)\) less than \(\text{gnull}(F_1(t))\) for some \(t\).
- \(\text{gnull}\): variable margin function under null hypothesis (more formally, at the boundary between the null and alternative hypotheses for the pre-specified hypotheses)
- \(\text{galt}\): variable margin function for which we calculate the power
- \(\text{minn}\): minimum value for sample size for \(n_1\), input into \textit{uniroot.integer}.
- \(\text{maxn}\): maximum value for sample size for \(n_1\), input into \textit{uniroot.integer}.
- \(...\): extra arguments passed to \textit{uniroot.integer}.

Details
The function either calculates the power (if \(n_1=\text{NULL}\)) or calculates \(n_1\) and \(n_2\) (if \(\text{power}=\text{NULL}\)). In the latter case, we use \textit{uniroot.integer} to find the smallest \(n_1\) that gives power at least as large as the given power [with \(n_2\) defined as \text{ceiling}(n_2.\text{over.n1}*n_1)].
Value

a `power.htest` object. A list with elements:

- `n1`: sample size for control group
- `n2`: sample size for test group
- `delta0`: \(F_2(\tau) - F_1(\tau) \), with \(\tau \) defined by \(F_1(\tau) = q \)
- `q`: probability associated with \(\tau \)
- `sig.level`: significance level
- `power`: power under galt
- `method`: character description of method

See Also

`nicqTest`

Examples

```r
# to calculate power, leave power=NULL and supply n1 and n2
powerNicqTest(n1=200, n2=300)
# or supply n1 and n2.over.n1
powerNicqTest(n1=200, n2.over.n1=3/2)
## to calculate n1 and n2, supply power
## find minimum n1 that have power greater than 0.80
## takes 13 iterations to find n1=346
## so do not run it here
#powerNicqTest(power=.80, print.steps=TRUE)
```

print.brk

Print Method for brk or nicq Object.

Description

For `brk` did not use `print.htest` because the p-values are just bounds for some values (e.g., p greater than 0.025). So I needed to print the results differently.

For `nicq`, uses `print.htest` except for $estimates has some special printing instructions since there may be some extra confidence intervals on the control quantile of interest.

Usage

```r
## S3 method for class 'brk'
print(x, digits = getOption("digits"), prefix = "\t", ...)

## S3 method for class 'nicq'
print(x, ...)
```
Arguments

- x: the brk object
- digits: number of significant digits for printing
- prefix: prefix below some values
- ...: for passing arguments. In nicq passed to print.htest.

Value

Does not print out FullResults list because it is generally too large.
Index

* Topic htest
 brkTest, 3
 fmecTest, 5
 nicqTest, 8
 nivm-package, 2
 powerNicqTest, 12
* Topic misc
 brkControl, 2
 findPowerR, 5
 nicqControl, 7
 nimDiffOR, 10
 print.brk, 13

bpcp, 7, 9
brkControl, 2, 3
brkTest, 2, 3, 5

findPowerR, 5
fmecExact, 2
fmecExact(fmecTest), 5
fmecTest, 2, 5

getfx2, 7
getimaxpower, 7

nicqControl, 7, 9
nicqTest, 2, 4, 6, 7, 8, 11, 13
nimDiff (nimDiffOR), 10
nimDiffOR, 8, 10
nimOR (nimDiffOR), 10
nivm (nivm-package), 2
nivm-package, 2

powerNicqTest, 12
print.brk, 13
print.nicq (print.brk), 13

quantile.kmcilR, 7, 9

uniroot.integer, 12