Package ‘nlmeU’

February 20, 2015

Version 0.70-3
Date $Date$
Author Andrzej Galecki <agalecki@umich.edu>, Tomasz Burzykowski <tomasz.burzykowski@uhasselt.be>
Maintainer Andrzej Galecki <agalecki@umich.edu>
Title Datasets and utility functions enhancing functionality of nlme package.
Depends R (>= 2.14.2)
Imports nlme
Suggests reshape, WWGbook, lattice, ellipse, roxygen2, testthat
License GPL (>= 2)
URL http://www-personal.umich.edu/~agalecki/
LazyData yes
Collate 'logLik1.R' 'nlmeU-package.R' 'Pwr.R' 'simulateY.R' 'varia.R'
Repository CRAN
Repository/R-Forge/Project nlmeu
Repository/R-Forge/Revision 121
Repository/R-Forge/DateTimeStamp 2013-08-02 14:32:31
Date/Publication 2013-08-04 02:14:48
NeedsCompilation no

R topics documented:

nlmeU-package .. 2
armd .. 2
armd.wide ... 3

<agalecki@umich.edu>,<Tomasz Burzykowski <tomasz.burzykowski@uhasselt.be>>

Data from Age-Related Macular Degeneration (ARMD) clinical trial
armd.wide

Format

The `armd` data frame has 867 rows and 8 columns. It contains data for n=234 subjects stored in a long format with up to four rows for one subject.

- **subject**: a factor with 234 levels 1, 2, 3, 4, 6, ..., 240
- **treat.f**: a factor with 2 levels Placebo, Active
- **visual0**: an integer vector with values ranging from 20 to 85
- **miss.pat**: a factor with 8 levels -----, ----X, --XX--, --X--X, -XX-, ..., X-XX
- **time.f**: a factor with 4 levels 4wks, 12wks, 24wks, 52wks
- **time**: a numeric vector with values 4, 12, 24, 52
- **visual**: an integer vector with values ranging from 3 to 85
- **tp**: a numeric vector with values 1, 2, 3, 4 corresponding to time points 4, 12, 24, 52, respectively

Details

The ARMD data arise from a randomized multi-center clinical trial comparing an experimental treatment (interferon-alpha) versus placebo for patients diagnosed with ARMD.

Source

See Also

armd0, armd.wide

Examples

```r
summary(armd)
```

Description

Data from Age-Related Macular Degeneration (ARMD) clinical trial
Format

The `armd.wide` data frame has 240 rows and 10 columns. Data are stored in wide format with each row corresponding to one subject.

- **subject**: a factor with 240 levels 1, 2, 3, 4, 5, ..., 240
- **lesion**: an integer vector with values 1, 2, 3, 4
- **line0**: an integer vector with values ranging from 5 to 17
- **visual0**: an integer vector with values of visual acuity measured at baseline ranging from 20 to 85
- **visual4**: an integer vector with values of visual acuity measured at 4 weeks ranging from 12 to 84
- **visual12**: an integer vector with values of visual acuity measured at 12 weeks ranging from 3 to 85
- **visual24**: an integer vector with values of visual acuity measured at 24 weeks ranging from 5 to 85
- **visual52**: an integer vector with values of visual acuity measured at 52 weeks ranging from 4 to 85
- **treat.f**: a factor with 2 levels Placebo, Active
- **miss.pat**: a factor with 9 levels ----, ---X, --X-, --XX, ~XX-, ~X-, ..., XXXX

Details

The ARMD data arise from a randomized multi-center clinical trial comparing an experimental treatment (interferon-alpha) versus placebo for patients diagnosed with ARMD.

Source

See Also

armd, armd0

Examples

```r
summaryHarmdNwideI
```

```
armd0 Data (1107 x 8)
```

Description

Data from Age-Related Macular Degeneration (ARMD) clinical trial
fcat

Format

The armd0 data frame has 1107 rows and 8 columns. It contains data for n=240 subjects stored in a long format with up to five rows for one subject.

- **subject** a factor with 240 levels 1, 2, 3, 4, 5, ...
- **treat.f** a factor with 2 levels Placebo, Active
- **visual0** an integer vector with values from 20 to 85
- **miss.pat** a factor with 9 levels ----, --X-, --XX, --XX-, ..., ...
- **time.f** a factor with 5 levels Baseline, 4wks, 12wks, 24wks, 52wks
- **time** a numeric vector with values from 0 to 52
- **visual** an integer vector with values from 3 to 85
- **tp** a numeric vector with values from 0 to 4

Details

The ARMD data arise from a randomized multi-center clinical trial comparing an experimental treatment (interferon-alpha) versus placebo for patients diagnosed with ARMD.

Source

See Also

armd, armd.wide

fcat

fcat Data (4851 x 3)

Description

Data from Flemish Community Attainment-Targets (FCAT) Study

Format

The fcat data frame has 4851 rows and 3 columns

- **target** a factor with 9 levels T1(4), T2(6), T3(8), T4(5), T5(9), ..., T9(5)
- **id** a factor with 539 levels 1, 2, 3, 4, 5, ..., 539
- **scorec** an integer vector with values from 0 to 9
Details

An educational study, in which elementary school graduates were evaluated with respect to reading comprehension in Dutch. Pupils from randomly selected schools were assessed for a set of nine attainment targets. The dataset is an example of grouped data, for which the grouping factors are crossed.

Source

Examples

summary(fcat)

logLik1

Calculates contribution of one subject to the log-likelihood

Description

This function is generic; method functions can be written to handle specific classes of objects.

Usage

`logLik1(modfit, dt1, dtInit)`

Arguments

- `modfit` an object representing model fitted to data using ML estimation.
- `dt1` a data frame with data for one subject, for whom the log-likelihood function is to be evaluated
- `dtInit` an optional auxiliary data frame.

Value

numeric scalar value representing contribution of a given subject to the overall log-likelihood returned by `logLik()` function.

Author(s)

Andrzej Galecki and Tomasz Burzykowski

References

???
Examples

```r
require(nlme)
logLik(fm1 <- lme(distance ~ age, data = Orthodont)) # random is ~ age
dt1 <- subset(Orthodont, Subject == "M01")
logLik1(fm1, dt1)
```

Description

This is method for `logLik1()` generic function.

Usage

```r
## S3 method for class 'lme'
logLik1(modfit, dt1, dtInit)
```

Arguments

- `modfit`: an `lme` object representing model fitted using maximum likelihood.
- `dt1`: a data frame with data for one subject, for whom the log-likelihood function is to be evaluated.
- `dtInit`: an optional auxiliary data frame.

Details

Calculates profile likelihood (with beta profiled out) for *one* subject. Data with *one* level of grouping only. Correlation component in `modelStruct` not implemented.

Value

Numeric scalar value representing contribution of a given subject to the overall log-likelihood returned by `logLik()` function applied to `lme` object defined by `modfit` argument.

Author(s)

Andrzej Galecki and Tomasz Burzykowski
Examples

```r
require(nlme)
lm3.form <- visual ~ visual0 + time + treat.f
(fm16.5ml <- lme(lm3.form,
    random = list(subject = pdDiag(~time)),
    weights = varPower(form = ~time),
    data = armd, method = "ML"))
df1 <- subset(armd, subject == "1")  # Panel R20.7
logLik1(fm16.5ml, df1)
```

missPat

Extract pattern of missing data

Description

This function allows to compactly present pattern of missing data in a given vector/matrix/data frame or combination of thereof.

Usage

```r
missPat(..., symbols = c("X", "-"), collapse = "",
    missData = FALSE)
```

Arguments

- `...`: one or more vectors/matrices/data frames. They need to be compatible for columnwise binding.
- `symbols`: vector containing two single characters used to indicate NA and remaining values. By default it has values: `X` and `-`.
- `collapse`: an optional character string. It is used in the internal call `paste()` function to separate the results. Rarely used. By default set to NULL.
- `missData`: logical. If TRUE data frame with pattern of missing values is saved in `missData` attribute of the vector returned by this function.

Value

character vector with as many elements as length of vectors(s)/number of rows in matrices and/or data frames in `...()` argument(s). Attribute `cnames` contains names of vectors/columns/variables. Optional attribute `missData` contains data frame with missing pattern.

Author(s)

Andrzej Galecki and Tomasz Burzykowski
Examples

dtf <- subset(armd.wide,
 select = c(visual12, visual24, visual52))
missPat(dtf, symbols = c("?", "+"))

Description

Data from a Progressive Resistance Randomized Trial.

Format

The prt data frame has 2471 rows and 9 columns. It contains data for n = 63 subjects. Each subject underwent muscle biopsy before and after intervention. Data are stored in a long format with each record corresponding to one muscle fiber. There are two types of muscle fibers: Type 1 and Type 2. Dependent variables: specific force and isometric force are measured pre- and post intervention.

id a factor with 63 levels 5, 10, 15, 20, 25, ..., 520 (subject id)
prt.f a factor with 2 levels High, Low, i.e. training (intervention) intensity
age.f a factor with 2 levels Young, Old (stratifying variable)
sex.f a factor with 2 levels Female, Male (stratifying variable)
bmi a numeric vector with values of BMI at baseline ranging from 18.36 to 32.29
iso.fo a numeric vector with values of isometric force ranging from 0.16 to 2.565
spec.fo a numeric vector with values of specific force ranging from 80.5 to 290
occ.f a factor with 2 levels Pre, Post, i.e. pre- and post-intervention.
fiber.f a factor with 2 levels type 1, type R, i.e. Type 1 and Type 2 muscle fiber.

Details

Data frame prt was obtained by merging prt.subjects and prt.fiber.

Source

See Also

prt.fiber, prt.subjects

Examples

summary(prt)
Description

Data from a Progressive Resistance Randomized Trial.

Format

The `prt.fiber` data frame has 2471 rows and 5 columns. Each row in the data corresponds to one muscle fiber collected during muscle biopsy. See `prt` data frame for the description of the study design.

- **id**: a factor with 63 levels 5, 10, 15, 20, 25, ..., 520
- **iso.fo**: a numeric vector with values of isometric force ranging from 0.16 to 2.565
- **spec.fo**: a numeric vector with values of specific force ranging from 80.5 to 290
- **occ.f**: a factor with 2 levels Pre, Pos, i.e. pre- and post- intervention
- **fiber.f**: a factor with 2 levels Type 1, Type 2, i.e. Type 1 and Type 2 muscle fiber.

Details

PRT trial was aimed for devising evidence-based methods for improving and measuring the mobility and muscle power of elderly men and women.

Source

See Also

- `prt prt.subjects`

Examples

```r
summary(prt.fiber)
```
Description

Data prt.subjects ...

Format

The prt.subjects data frame has 63 rows and 5 columns

- **id** a factor with 63 levels 5, 10, 15, 20, 25, ...
- **prt.f** a factor with 2 levels High, Low
- **age.f** a factor with 2 levels Young, Old
- **sex.f** a factor with 2 levels Female, Male
- **bmi** a numeric vector with values from 18.4 to 32.3

Details

The working hypothesis was that a 12-week program of PRT would increase: (a) the power output of the overall musculature associated with movements of the ankles, knees, and hips; (b) the cross-sectional area and the force and power of permeabilized single fibers obtained from the vastus lateralis muscle; and (c) the ability of young and elderly men and women to safely arrest standardized falls. The training consisted of repeated leg extensions by shortening contractions of the leg extensor muscles against a resistance that was increased as the subject trained using a specially designed apparatus

Source

Examples

`summary(prt.subjects)`
pwrHobjectL NNNI

Arguments

object an object containing the results returned by a model fitting function (e.g., lme).

Value

numeric scalar value.

Author(s)

Andrzej Galecki and Tomasz Burzykowski

See Also

pwrNlme

Examples

not run:
Pwr(object, ...)

End(Not run)
Usage

S3 method for class 'lme'

\texttt{Pwr(object, \ldots,)}

\hspace{1cm} \texttt{type = c("sequential", "marginal"), Terms, L,}

\hspace{1cm} \texttt{verbose = FALSE, sigma, ddf = numeric(0), alpha = 0.05,}

\hspace{1cm} \texttt{altB = NULL, tol = 1e-10)}

Arguments

\textbf{object} \hspace{1cm} an object containing \texttt{lme} fit, which provides information needed for power calculations

\hspace{1cm} \texttt{\ldots} \hspace{1cm} some additional arguments may be required.

\textbf{type} \hspace{1cm} an optional character string specifying the type of sum of squares to be used in F-tests needed for power calculations. Syntax is the same as for \texttt{anova.lme()} in \texttt{nlme} package.

\textbf{Terms} \hspace{1cm} an optional integer or character vector specifying which terms in the model should be jointly tested to be zero using a Wald F-test. See \texttt{anova.lme()} in \texttt{nlme} package for details.

\textbf{L} \hspace{1cm} an optional numeric vector or array specifying linear combinations of the coefficients in the model that should be tested to be zero. See \texttt{anova.lme()} in \texttt{nlme} package for details.

\textbf{verbose} \hspace{1cm} an optional logical value. See \texttt{anova.lme()} in \texttt{nlme} package for details.

\textbf{sigma} \hspace{1cm} numeric scalar value.

\textbf{ddf} \hspace{1cm} numeric scalar value. Argument can be used to redefine default number of denominator degrees of freedom

\textbf{alpha} \hspace{1cm} numeric scalar value. By default 0.05.

\textbf{altB} \hspace{1cm} matrix/vector containing alternative values for beta parameters

\textbf{tol} \hspace{1cm} numeric scalar value.

Value

a data frame inheriting from class \texttt{Pwr.lme}

Author(s)

Andrzej Galecki and Tomasz Burzykowski

See Also

\texttt{anova.lme}
runScript
Executes scripts from GB book

Description

Default call of the function without arguments, prints a list of available scripts.

Usage

```r
runScript(script = NA, package = "nlmeU", subdir = "scriptsR2.15.0", echo = TRUE)
```

Arguments

- **script**: character string containing name of the script to be executed. By default set to NA.
- **package**: character string containing package name. By default nlmeU.
- **subdir**: subdirectory containing scripts. By default: scriptsR15.0.
- **echo**: logical. Used by source function. By default set to TRUE.

Value

Script is executed and results are printed.

Author(s)

Andrzej Galecki and Tomasz Burzykowski

Examples

```r
runScript()
```

sigma
Extract scale parameter sigma from a model fit

Description

This function is generic; method functions can be written to handle specific classes of objects.

Usage

```r
sigma(object, ...)
```
Arguments

object an object for which scale parameter can be extracted.

... some methods for this generic function may require additional arguments.

Value

numeric scalar value.

Author(s)

Andrzej Galecki and Tomasz Burzykowski

Examples

```r
## sigma Hfm1I
```

Description

Data from Study of Instructional Improvement Project

Format

The SIIdata data frame has 1190 rows and 12 columns. The dataset includes results for 1190 first grade pupils sampled from 312 classrooms in 107 schools.

- **sex** a factor with 2 levels M, F, i.e. males and females, respectively
- **minority** a factor with 2 levels Mnrt=No, Mnrt=Yes. An indicator variable for the minority status
- **mathkind** an integer vector with values from 290 to 629. This is pupil’s math score in the spring of the kindergarten year
- **mathgain** an integer vector with values from -110 to 253. Number represents pupil’s gain in the math achievement score from the spring of kindergarten to the spring of first grade
- **ses** a numeric vector with values from -1.61 to 3.21. Value represents socioeconomical status
- **yearstea** a numeric vector with values from 0 to 40. It is number of years of teacher’s experience in teaching in the first grade
- **mathknow** a numeric vector with values from -2.5 to 2.61. Number represents teacher’s knowledge of the first-grade math contents (higher values indicate a higher knowledge of the contents)
- **housepov** a numeric vector containing proportion of households in the neighborhood of the school below the poverty level with values ranging from 0.012 to 0.564
- **mathprep** a numeric vector with values from 1 to 6. Contains the number of preparatory courses on the first-grade math contents and methods followed by the teacher.
- **classid** a factor with 312 levels 1, 2, 3, 4, 5, ..., 312. Classroom’s id
- **schoolid** a factor with 107 levels 1, 2, 3, 4, 5, ..., 107. School’s id
- **childid** a factor with 1190 levels 1, 2, 3, 4, 5, ..., 1190. Pupil’s id
The SII Project was carried out to assess the math achievement scores of first- and third-grade pupils in randomly selected classrooms from a national US sample of elementary schools (Hill et al, 2005). Data were also analyzed in West et al, 2007. The outcome of interest is mathgain variable. Data were created based on classroom data from WWGbook package.

Source

Examples

```r
summary(SIIdata)
```

simulaY

Simulates values of the dependent variable based on a model fit

Description

This function is generic; method functions can be written to handle specific classes of objects.

Usage

```r
simulateY(object, nsim = 1, seed = NULL, ..., verbose = FALSE, sigma)
```

Arguments

- `object`: an object with a model fit for which dependent variable is to be simulated.
- `nsim`: number of simulations. `nsim = 1` by default.
- `seed`: integer scalar used to initiate random numbers generator.
- `...`: some methods for this generic function may require additional arguments.
- `verbose`: logical. If TRUE basic information about arguments is provided. By default set to FALSE.
- `sigma`: numeric scalar. Allows to perform simulations employing alternative value of the scale parameter.

Value

numeric matrix. Number of columns determined by `nsim` argument.
simulateY

Author(s)

Andrzej Galecki and Tomasz Burzykowski

Examples

simulateY

```r
## simulateY (fm1)
```
Index

*Topic **datasets**
 - armd, 2
 - armd.wide, 3
 - armd0, 4
 - fcat, 5
 - prt, 9
 - prt.fiber, 10
 - prt.subjects, 11
 - SIIdata, 15

*Topic **package**
 - nlmeU-package, 2

anova.lme, 13
armd, 2, 4, 5
armd.wide, 3, 3, 5
armd0, 3, 4, 4

fcat, 5

logLik1, 6
logLik1.lme, 7

missPat, 8

nlmeU(nlmeU-package), 2
nlmeU-package, 2

prt, 9, 10
prt.fiber, 9, 10
prt.subjects, 9, 10, 11
Pwr, 12
Pwr.lme, 12, 12

runScript, 14

sigma, 14
SIIdata, 15
simulateY, 16