Package ‘nlmixr2plot’

October 20, 2022

Title Nonlinear Mixed Effects Models in Population PK/PD, Plot Functions

Version 2.0.7

Description Fit and compare nonlinear mixed-effects models in
differential equations with flexible dosing information commonly seen
in pharmacokinetics and pharmacodynamics (Almquist, Leander, and
solving is by compiled C code provided in the ‘rxode2’ package (Wang,
Hallow, and James 2015 <doi:10.1002/psp4.12052>). This package is for
‘ggplot2’ plotting methods for ‘nlmixr2’ objects.

License GPL (>= 3)

URL https://github.com/nlmixr2/nlmixr2plot

BugReports https://github.com/nlmixr2/nlmixr2plot/issues/

Imports ggplot2, nlmixr2est, nlmixr2extra, rxode2, utils, vpc, xgxr

Suggests testthat (>= 3.0.0), dplyr, withr, nlmixr2data

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation no

Author Matthew Fidler [aut, cre] (<https://orcid.org/0000-0001-8538-6691>),
Bill Denney [ctb] (<https://orcid.org/0000-0002-5759-428X>),
Wenping Wang [aut],
Vipul Mann [aut]

Maintainer Matthew Fidler <matthew.fidler@gmail.com>

Repository CRAN

Date/Publication 2022-10-20 03:12:36 UTC
plot.nlmixr2AugPred

Plot a nlmixr2 augPred object

Description
Plot a nlmixr2 augPred object

Usage
S3 method for class 'nlmixr2AugPred'
plot(x, y, ...)

Arguments
x augPred object
y ignored, used to mach plot generic
... Other arguments (ignored)

Value
Nothing called for side effects

Examples

library(nlmixr2est)
The basic model consiss of an ini block that has initial estimates
one.compartment <- function() {
in((
tka <- 0.45 # Log Ka
tcl <- 1 # Log Cl
tv <- 3.45 # Log V
eta.ka ~ 0.6
eta.cl ~ 0.3
teta.v ~ 0.1
add.sd <- 0.7
))
and a model block with the error sppecification and model specification
model({}
```r
ka <- exp(tka + eta.ka)
c1 <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)
}

## The fit is performed by the function nlmixr/nlmix2 specifying the model, data and estimate
fit <- nlmixr2est::nlmixr2(one.compartment, theo_sd, est="saem", saemControl(print=0))

# augPred shows more points for the fit:
a <- nlmixr2est::augPred(fit)

# you can plot it with plot(augPred object)
plot(a)
```

plot.nlmixr2FitData

Plot a nlmixr2 data object

Description

Plot some standard goodness of fit plots for the focei fitted object

Usage

```r
## S3 method for class 'nlmixr2FitData'
plot(x, ...)
```

Arguments

- `x` a focei fit object
- `...` additional arguments

Value

Nothing, called for its side effects

Author(s)

Wenping Wang & Matthew Fidler
library(nlmixr2est)

The basic model consiss of an ini block that has initial estimates
one.compartment <- function() {
 ini({
 tka <- 0.45 # Log Ka
 tcl <- 1 # Log Cl
 tv <- 3.45 # Log V
 eta.ka ~ 0.6
 eta.cl ~ 0.3
 eta.v ~ 0.1
 add.sd <- 0.7
 })
 # and a model block with the error specification and model specification
 model({
 ka <- exp(tka + eta.ka)
 cl <- exp(tcl + eta.cl)
 v <- exp(tv + eta.v)
 d/dt(depot) = -ka * depot
 d/dt(center) = ka * depot - cl / v * center
 cp = center / v
 cp ~ add(add.sd)
 })
}

The fit is performed by the function nlmixr/nlmix2 specifying the model, data and estimate
fit <- nlmixr2(one.compartment, theo_sd, est="saem", saemControl(print=0))

This shows many goodness of fit plots
plot(fit)

==

traceplot Produce trace-plot for fit if applicable

Description

Produce trace-plot for fit if applicable

Usage

traceplot(x, ...)

S3 method for class 'nlmixr2FitCore'
traceplot(x, ...)
Arguments

- `x` fit object
- `...` other parameters

Value

Fit traceplot or nothing.

Author(s)

Rik Schoemaker, Wenping Wang & Matthew L. Fidler

Examples

```r
library(nlmixr2est)
## The basic model consists of an ini block that has initial estimates
one.compartment <- function() {
  ini({
    tka <- 0.45 # Log Ka
    tcl <- 1 # Log Cl
    tv <- 3.45 # Log V
    eta.ka ~ 0.6
    eta.cl ~ 0.3
    eta.v ~ 0.1
    add.sd <- 0.7
  })
  # and a model block with the error specification and model specification
  model({
    ka <- exp(tka + eta.ka)
    cl <- exp(tcl + eta.cl)
    v <- exp(tv + eta.v)
    d/dt(depot) = -ka * depot
    d/dt(center) = ka * depot - cl / v * center
    cp = center / v
    cp ~ add(add.sd)
  })
}
## The fit is performed by the function nlmixr/nlmix2 specifying the model, data and estimate
fit <- nlmixr2(one.compartment, theo_sd, est="saem", saemControl(print=0))
# This shows the traceplot of the fit (useful for saem)
traceplot(fit)
```
vpcPlot

VPC based on ui model

Description

VPC based on ui model

Usage

vpcPlot(
 fit,
 data = NULL,
 n = 300,
 bins = "jenks",
 n_bins = "auto",
 bin_mld = "mean",
 show = NULL,
 stratify = NULL,
 pred_corr = FALSE,
 pred_corr_lower_bnd = 0,
 pi = c(0.05, 0.95),
 ci = c(0.05, 0.95),
 uloq = fit$dataUloq,
 lloq = fit$dataLloq,
 log_y = FALSE,
 log_y_min = 0.001,
 xlab = NULL,
 ylab = NULL,
 title = NULL,
 smooth = TRUE,
 vpc_theme = NULL,
 facet = "wrap",
 scales = "fixed",
 labeller = NULL,
 vpcdb = FALSE,
 verbose = FALSE,
 ...
)

vpcPlotTad(..., idv = "tad")

vpcCensTad(..., cens = TRUE, idv = "tad")

vpcCens(..., cens = TRUE, idv = "time")
Arguments

fit
- nlmixr2 fit object
- this is the data to use to augment the VPC fit. By default is the fitted data, (can be retrieved by `getData`), but it can be changed by specifying this argument.

data
- Number of VPC simulations. By default 100
- either "density", "time", or "data", "none", or one of the approaches available in classInterval() such as "jenks" (default) or "pretty", or a numeric vector specifying the bin separators.

n
- when using the "auto" binning method, what number of bins to aim for
- either "mean" for the mean of all timepoints (default) or "middle" to use the average of the bin boundaries.

n_bins
- what to show in VPC (obs_dv, obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median, sim_median_ci)
- character vector of stratification variables. Only 1 or 2 stratification variables can be supplied.

stratify
- perform prediction-correction?

pred_corr
- lower bound for the prediction-correction
- simulated prediction interval to plot. Default is c(0.05, 0.95),
- confidence interval to plot. Default is (0.05, 0.95)
- Number or NULL indicating upper limit of quantification. Default is NULL.
- Number or NULL indicating lower limit of quantification. Default is NULL.
- Boolean indicating whether y-axis should be shown as logarithmic. Default is FALSE.
- minimal value when using log_y argument. Default is 1e-3.
- label for x axis
- label for y axis
- title
- "smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE.
- theme to be used in VPC. Expects list of class vpc_theme created with function vpc_theme()
- either "wrap", "columns", or "rows"
- either "fixed" (default), "free_y", "free_x" or "free"
- ggplot2 labeller function to be passed to underlying ggplot object
- Boolean whether to return the underlying vpcdb rather than the plot
- show debugging information (TRUE or FALSE)
- Args sent to rxSolve
- an object specifying if and how the random number generator should be initialized
Name of independent variable. For `vpcPlot()` and `vpcCens()` the default is "time" for `vpcPlotTad()` and `vpcCensTad()` this is "tad"

cens is a boolean to show if this is a censoring plot or not. When `cens=TRUE` this is actually a censoring vpc plot (with `vpcCens()` and `vpcCensTad()`). When `cens=FALSE` this is traditional VPC plot (`vpcPlot()` and `vpcPlotTad()`).

Value

Simulated dataset (invisibly)

Author(s)

Matthew L. Fidler

Examples

```r
one.cmt <- function() {
  ini({
    ## You may label each parameter with a comment
    tka <- 0.45 # Log Ka
    tcl <- log(c(0, 2.7, 100)) # Log Cl
    ## This works with interactive models
    ## You may also label the preceding line with label("label text")
    tv <- 3.45; label("log V")
    ## the label("Label name") works with all models
    eta.ka ~ 0.6
    eta.cl ~ 0.3
    eta.v ~ 0.1
    add.sd <- 0.7
  })
  model({
    ka <- exp(tka + eta.ka)
    cl <- exp(tcl + eta.cl)
    v <- exp(tv + eta.v)
    linCmt() ~ add(add.sd)
  })
}

fit <- nlmixr2est::nlmixr(one.cmt, nlmixr2data::theo_sd, est="focei")

vpcPlot(fit)
```
Index

getData, 7
plot.nlmixr2AugPred, 2
plot.nlmixr2FitData, 3
rxSolve, 7
traceplot, 4
vpcCens (vpcPlot), 6
vpcCensTad (vpcPlot), 6
vpcPlot, 6
vpcPlotTad (vpcPlot), 6