Type Package
Title Generalized Laplace Mixed-Effects Models
Version 1.0.1
Date 2020-03-21
Maintainer Marco Geraci <geraci@mailbox.sc.edu>
Depends R (>= 3.0.0), nlme
Imports utils, lqmm, HI, mvtnorm, MASS, numDeriv, statmod, stats,
Matrix, Qtools, Rcpp (>= 0.12.13)
LinkingTo Rcpp, RcppArmadillo, BH
Description Provides functions to fit linear mixed models
 based on convolutions of the generalized Laplace (GL) distribution.
 The GL mixed-effects model includes four special cases with normal random
 effects and normal errors (NN), normal random effects and Laplace errors (NL),
 Laplace random effects and normal errors (LN), and Laplace random effects
 and Laplace errors (LL). The methods are described in Geraci and Farcomeni (2020,
License GPL (>= 2)
LazyLoad yes
NeedsCompilation yes
Author Marco Geraci [aut, cph, cre] (<https://orcid.org/0000-0002-6311-8685>),
 Alessio Farcomeni [ctb]
Repository CRAN
Date/Publication 2020-03-24 16:30:02 UTC

R topics documented:

 nlmm-package .. 2
 fixef.nlmm ... 3
 generate.data ... 4
 GenLaplace .. 6
 Laplace ... 7
nlmm-package

nlmm-package

nlmm: Generalized Laplace Mixed-Effects Models

Description

The nlmm package provides functions to fit linear mixed models based on convolutions of the generalized Laplace (GL) distribution. The GL mixed-effects model includes four special cases with normal random effects and normal errors (NN), normal random effects and Laplace errors (NL), Laplace random effects and normal errors (LN), and Laplace random effects and Laplace errors (LL). The methods are described in Geraci and Farcomeni (2020). See also Geraci (2017) for details on special cases.

Details

Package: nlmm
Type: Package
Version: 1.0.1
Date: 2020-03-21
License: GPL (>=3)
LazyLoad: yes

Author(s)

Marco Geraci [aut, cph, cre], Alessio Farcomeni [ctb]
Maintainer: Marco Geraci <geraci@mailbox.sc.edu>
References

fixef.nlmm

Extract Generalized Mixed-Effects Models Coefficients

Description

fixef extracts estimated fixed effects from nlmm objects.

Usage

S3 method for class 'nlmm'
fixef(object, ...)

Arguments

object a nlmm object.
...
not used.

Value

a vector of estimated fixed effects.

Author(s)

Marco Geraci

See Also

nlmm summary.nlmm

Examples

Not run:
data(rats)
fit <- nlmm(y ~ trt*time, random = ~ 1, group = id, data = rats, control = nlmmControl(multistart = FALSE))
fixef(fit)

End(Not run)
generate.data
Simulate Data from Mixed-Effects Models

Description

This function generates data from a 2-level hierarchical design.

Usage

```r
generate.data(R, n, M, sigma_1 = NULL, sigma_2 = NULL,  
shape_1 = NULL, shape_2 = NULL, dist.u, dist.e,  
beta, gamma, fixed = FALSE, seed = round(runif(1,1,1000)))
```

Arguments

- `R`: number of replications.
- `n`: number of observations within cluster.
- `M`: number of clusters.
- `sigma_1`: scale parameter for the random effects.
- `sigma_2`: scale parameter for the errors.
- `shape_1`: shape parameter for the random effects.
- `shape_2`: shape parameter for the errors.
- `dist.u`: distribution of the random effects.
- `dist.e`: distribution of the errors.
- `beta`: vector of coefficients for fixed effects.
- `gamma`: vector of coefficients for heteroscedasticity.
- `fixed`: logical flag. See details.
- `seed`: seed for random number generation.

Details

This function generates data as in the simulation study by Geraci and Farcomeni (2020). The data-generating model is

where \((u[i], v[i])\) follows a distribution with scale \(\text{sigma}_1\) and shape \(\text{shape}_1\), and \(e\) follows a distribution with scale \(\text{sigma}_2\) and shape \(\text{shape}_2\).

The scale parameter \(\text{sigma}_1\) must be a 1 by 1 or a 2 by 2 matrix. In the former case, the model will include only random intercepts. In the latter case, then both random intercepts and slopes will be included. Currently, no more than 2 random effects can be specified. The scale parameter \(\text{sigma}_2\) must be a matrix \(n\) by \(n\).
The options for dist.u and dist.e are: multivariate normal ("norm") (`rmvnorm`), multivariate symmetric Laplace ("laplace") (`ralc`), multivariate symmetric generalized Laplace ("genlaplace") (`rmgl`), and multivariate Student’s t ("t") (`rmvt`).

The shape parameter specifies the degrees of freedom for Student’s t and chi-squared, and the kurtosis of the generalized Laplace.

The values \(x_{ij}\) are generated as \(x_{ij} = \delta[i] + \zeta_{ij}\), where \(\delta[i]\) and \(\zeta_{ij}\) are independent standard normal. If the argument fixed = TRUE, then \(x_{ij} = j\). The values \(z_{ij}\) are generated from Bernoullis with probability 0.5.

Value

nlmm returns an object of class `nlmm`.

The function `summary` is used to obtain and print a summary of the results.

An object of class `nlmm` is a list containing the following components:

- `Y` a matrix \(R \times N\), where \(N = n \times M\), with responses
- `X` an array \(N \times 3 \times R\) with fixed design matrix
- `group` vector of length \(N\) with cluster labels
- `u` an array \(M \times 2 \times R\) with random effects
- `e` a matrix \(R \times N\) with errors

Author(s)

Marco Geraci

References

See Also

`nlmm`

Examples

```r
# Simulate 10 replications from a homoscedastic normal mixed model.
generate.data(R = 10, n = 3, M = 5, sigma_1 = diag(2), sigma_2 = diag(3),
shape_1 = NULL, shape_2 = NULL, dist.u = "norm", dist.e = "norm",
beta = c(1,2,1), gamma = c(1,0))

# Simulate 10 replications from a generalized Laplace. Note: the shape
# parameter that is passed to rmgl corresponds to the reciprocal of the
# parameter alpha in Geraci and Farcomeni (2020)
generate.data(R = 10, n = 3, M = 5, sigma_1 = diag(2), sigma_2 = diag(3),
shape_1 = 1/0.5, shape_2 = 1/0.5, dist.u = "genlaplace", dist.e = "genlaplace")
```
\begin{verbatim}
beta = c(1,2,1), gamma = c(1,0))
\end{verbatim}

GenLaplace

The Symmetric Generalized Laplace Distribution

Description

Density, distribution function, quantile function and random generation for the generalized Laplace distribution.

Usage

dgl(x, mu = 0, sigma = 1, shape = 1, log = FALSE)
pgl(x, mu = 0, sigma = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
qgl(p, mu = 0, sigma = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
rgl(n, mu = 0, sigma = 1, shape = 1)

Arguments

- `x` vector of quantiles.
- `p` vector of probabilities.
- `n` number of observations.
- `mu` location parameter.
- `sigma` positive scale parameter.
- `shape` shape parameter.
- `log, log.p` logical; if TRUE, probabilities are log–transformed.
- `lower.tail` logical; if TRUE (default), probabilities are \(P[X \leq x] \) otherwise, \(P[X > x] \).

Details

The generalized Laplace distribution has density

\[
f(x) = \frac{1}{\sqrt{2} \Gamma(\beta)\sigma^{\beta+1/2}} \left(\frac{|y - \mu|}{\sqrt{2}}\right)^{\omega} B[\omega]\left(\frac{\sqrt{2}|y - \mu|}{\sigma}\right)
\]

where \(\omega = \beta - 1/2 \), \(\mu \) is the location parameter, \(\sigma \) is the scale parameter, and \(\beta \) is the shape parameter (note that the parameterization in `nlmm` is \(\alpha = \frac{1}{2} \)). \(\Gamma() \) denotes the Gamma function and \(B[u]() \) the modified Bessel function of the third kind with index \(u \).

Value

dgl gives the density, pgl gives the distribution function, qgl gives the quantile function, and rgl generates random deviates.
The Laplace Distribution

Density and random generation for the (symmetric) Laplace distribution.

Usage

dl(x, mu = 0, sigma = 1, log = FALSE)
rl(n, mu = 0, sigma = 1)

Arguments

x
vector of quantiles.
n
number of observations.
mu
location parameter.
sigma
positive scale parameter.
log
logical; if TRUE, probabilities are log–transformed.

Details

The Laplace distribution has density

\[f(x) = \frac{1}{\sqrt{2\sigma}} e^{-\frac{|x-\mu|}{\sqrt{2}\sigma}} \]

where \(\mu \) is the location parameter and \(\sigma \) is the scale parameter.

Value

dl gives the density and rl generates random deviates.

Author(s)

Marco Geraci
References

See Also

MultivariateLaplace, GenLaplace

logLik.nlmm

Extract Log-Likelihood

Description

logLik.nlmm extracts the log-likelihood of a fitted nlmm.

Usage

S3 method for class 'nlmm'
logLik(object, ...)

Arguments

object an object of class "nlmm".
... not used.

Value

Returns the loglikelihood of the fitted model. This is a number with at one attribute, "df" (degrees of freedom), giving the number of (estimated) parameters in the model.

Author(s)

Marco Geraci

See Also

nlmm
lrt_nlmm

Likelihood Ratio Test for Generalized Laplace Mixed-Effects Models

Description

This function is used to perform a likelihood ratio test for two fitted generalized Laplace mixed-effects models.

Usage

lrt_nlmm(object0, object1)

S3 method for class 'lrt_nlmm'
print(x, digits = max(3,getOption("digits") - 3), ...)

Arguments

object0 object of class nlmm with estimates of the constrained model.
object1 object of class nlmm with estimates of the unconstrained model.
x a lrt_nlmm object.
digits a non-null value for digits specifies the minimum number of significant digits to be printed in values.
... not used.

Value

An object of class lrt_nlmm is a list containing the following components:

statistic the value of the test statistic
p.value the p-value of the test
df either the degrees of freedom of a chi-squared test or the weights of a chi-bar-squared test
V the matrix based on which the weights for the chi-bar-squared test are calculated
alpha values of the shape parameter in the constrained object
alpha.index index of the constrained shape parameter
chibar logical flag. If TRUE, the test statistic is a chi-bar

Note

The function lrt_nlmm is a wrapper for routines developed by Alessio Farcomeni.

Author(s)

Marco Geraci and Alessio Farcomeni
References

See Also
nlmm

MultivariateGenLaplace
The Multivariate Symmetric Generalized Laplace Distribution

Description
Density and random generation for the multivariate generalized Laplace distribution.

Usage
dmgl(x, mu = rep(0, n), sigma = diag(n), shape = 1, log = FALSE)
rmgl(n, mu, sigma, shape = 1)

Arguments
x vector of quantiles.
n number of observations.
mu location parameter.
sigma scale parameter – positive-definite matrix.
shape shape parameter.
log logical; if TRUE, probabilities are log–transformed.

Details
This is the multivariate extension of the (univariate) generalized Laplace distribution (GenLaplace). Note that the parameter α used in Geraci and Farcomeni (2020) corresponds to the reciprocal of the shape parameter in these functions.

Value
dmgl gives the density and rmgl generates random deviates.

Author(s)
Marco Geraci
The Multivariate Asymmetric Laplace Distribution

Description
Density and random generation for the multivariate asymmetric Laplace distribution.

Usage
```
dmal(x, m = rep(0, nrow(sigma)), sigma, log = FALSE)
rmal(n, m = rep(0, nrow(sigma)), sigma)
```

Arguments
- `x`: vector of quantiles.
- `n`: number of observations.
- `m`: asymmetry parameter.
- `sigma`: scale parameter – positive-definite matrix.
- `log`: logical; if TRUE, probabilities are log–transformed.

Details
This is the multivariate extension of the (univariate) asymmetric Laplace distribution.

Author(s)
Marco Geraci

References

See Also
Laplace, MultivariateGenLaplace
nlmm

Fitting Generalized Laplace Mixed-Effects Models

Description

nlmm is used to fit mixed-effects models based on the generalized Laplace distribution.

Usage

```r
nlmm(fixed, random, group, covariance = "pdDiag", data = sys.frame(sys.parent()),
subset, weights = NULL, na.action = na.fail, control = list(), contrasts = NULL,
fit = TRUE)
```

Arguments

- `fixed`: an object of class `formula` for fixed effects: a symbolic description of the model to be fitted.
- `random`: a one-sided formula of the form `~x1 + x2 + ... + xn` for random effects: a symbolic description of the model to be fitted.
- `group`: grouping factor.
- `covariance`: variance–covariance matrix of the random effects. Default is `pdDiag` (see details).
- `data`: an optional data frame containing the variables named in `fixed`, `random`, `group`, and `weights`. By default the variables are taken from the environment from which `nlmm` is called.
- `subset`: an optional vector specifying a subset of observations to be used in the fitting process.
- `weights`: an optional `varFunc` object or one-sided formula describing the within-group heteroscedasticity structure. If given as a formula, it is used as the argument to `varFixed`, corresponding to fixed variance weights. See the documentation on `varClasses` in `nlme` package for a description of the available `varFunc` classes. Defaults to `NULL`, corresponding to homoscedastic within-group errors.
- `na.action`: a function that indicates what should happen when the data contain NAs. The default action (`na.fail`) causes `nlmm` to print an error message and terminate if there are any incomplete observations.
- `control`: list of control parameters of the fitting process. See `nlmmControl`.
- `contrasts`: not yet implemented.
- `fit`: logical flag. If FALSE the function returns a list of objects used for fitting.
Details

The function fits a generalized Laplace mixed-effects model conditional on the covariates, as specified by the formula argument, and on random effects, as specified by the random argument. The predictor is assumed to be linear. The function maximizes the (log)likelihood of the generalized Laplace regression as proposed by Geraci and Farcomeni (2020). The likelihood is numerically integrated via Gaussian quadrature techniques. The optimization algorithm can be either optim (Nelder-Mead by default) or nlminb. See nlmmControl for more details.

By default, the function fits a mixed-effects model where both random effects and error term follow a generalized Laplace distribution (GenLaplace). This is a family of distributions that includes the normal and the Laplace distributions as special cases. Constrained fitting can be controlled via the arguments alpha.index and alpha in nlmmControl. For example, if alpha.index = 0, the model is Normal-Normal if alpha = c(0, 0), Normal-Laplace if alpha = c(0, 1), Laplace-Normal if alpha = c(1, 0), and Laplace-Laplace if alpha = c(1, 1). But any value of alpha between 0 (normal distribution) and 1 (Laplace distribution) is allowed.

Different standard types of positive–definite matrices for the random effects can be specified: pdIdent multiple of an identity; pdCompSymm compound symmetry structure (constant diagonal and constant off–diagonal elements); pdDiag diagonal; pdSymm general positive–definite matrix, with no additional structure.

Within-group heteroscedasticity can be modeled via the weights argument using varClasses in the nlme packages.

Value

nlmm returns an object of class nlmm.

The function summary is used to obtain and print a summary of the results.

An object of class nlmm is a list containing the following components:

- **theta**: a vector containing (in this order) fixed regression coefficients, parameters of the variance–covariance matrix of the random effects, shape parameter, scale parameter, and (optional) within-group variance function parameters. All parameters are unconstrained. See VarCorr.nlmm to extract the variance–covariance of the random effects from an "nlmm" object.

- **theta_x, theta_z**: partition of theta: fixed regression coefficients (theta_x) and unique variance–covariance unconstrained parameters (theta_z).

- **tau**: unconstrained shape parameter.

- **alpha**: constrained shape parameter.

- **phi**: unconstrained scale parameter.

- **sigma**: constrained scale parameter.

- **vf**: (fitted) within-group variance function of class varFunc. S3 methods (summary.varFunc, varWeights.varFunc, coef.varFunc) can be applied.

- **value**: negative log–likelihood.

- **call**: the matched call.

- **nn**: column names of mmf.
mm column names of mnr.
nobs the number of observations.
dim_theta the number of columns in mmf and mnr.
dim_theta_z the length of theta_z.
mmf the model matrix – fixed effects.
mnr the model matrix – random effects.
y the model response.
revOrder original order of observations (now ordered according to group).
group the grouping factor.
ngroups the number of groups.
InitialPar starting values for theta, included the fitted lme or lm object from where starting
 values have been taken.
control list of control parameters used for optimization (see nlmmControl).
cov_name class of variance-covariance matrix for the random effects.
mfArgs arguments for model.frame to return the full data frame.
sc model’s distribution. "Generalized Laplace" if unconstrained estimation, or one
 of four special case for specific values of alpha ("Normal-Normal", "Normal-
 Laplace", "Laplace-Normal", "Laplace-Laplace").

Author(s)
Marco Geraci

References
Geraci M (2017). Mixed-effects models using the normal and the Laplace distributions: A 2 x 2

Geraci, M. and Farcomeni A (2020). A family of linear mixed-effects models using the general-

See Also
summary.nlmm, fixef.nlmm, ranef.nlmm, VarCorr.nlmm, predict.nlmm, residuals.nlmm, nlmmControl

Examples

data(rats)
nlmm(y ~ trt*time, random = ~ 1, group = id, data = rats, control = nlmmControl(multistart = FALSE))
nlmmControl

Control parameters for nlmm estimation

Description

A list of parameters for controlling the fitting process.

Usage

nlmmControl(method = "Nelder-Mead", nK = 8, multistart = TRUE,
grid = c(0.001, 0.5, 0.999), alpha = c(0.5, 0.5), alpha.index = 9,
lme = TRUE, lmeMethod = "REML", lmeOpt = "nlminb", verbose = FALSE)

Arguments

method character vector that specifies the optimization algorithm to fit a generalized Laplace mixed-effects model. The default is "Nelder-Mead".

nK number of knots for each of the two quadratures.

multistart logical flag. If TRUE (default), the algorithm is run with multiple starting values for the parameter alpha. See also grid.

grid a vector of values for multi-start optimization. It can be used in conjunction with constrained estimation.

alpha vector of length 2 with starting values between 0 and 1 for the parameter alpha (ignored if multistart is TRUE) or values at which alpha is constrained if alpha.index is one of 0, 1, or 2. The first element is for the shape parameter of the random effects, the second for the error term. See Geraci and Farcomeni (2020).

alpha.index the estimation with parameter alpha is unconstrained if alpha.index is equal to 9 (default). If equal to 0, both shape parameters (random effects and error term) are constrained during estimation and set equal to alpha. If equal to 1, the first shape parameter (random effects) is constrained during estimation and set equal to the first element of alpha. If equal to 2, the second shape parameter (error term) is constrained during estimation and set equal to the second element of alpha.

lme logical flag. Should lme be used to get starting values? If FALSE, lm is used instead.

lmeMethod fitting method for lme when obtaining starting values. If "REML" the model is fit by maximizing the restricted log-likelihood. If "ML" the log-likelihood is maximized.

lmeOpt optimization algorithm for lme. Either either nlminb (the default) or optim. This is passed to argument opt in lmeControl.

verbose logical flag. If TRUE, information about the fitting process is printed out.
Details

The estimation algorithm for fitting generalized Laplace mixed-effects (GLME) models is described in Geraci and Farcomeni (2020). For unconstrained estimation, it is recommended to leave the default arguments in `nlmmControl` unchanged.

The integrated log-likelihood is maximized with either `optim`, in which case method has to be one of `optim`'s options ("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"), or `nlminb`, in which case one must use method = "nlminb".

Since the parameter alpha is bidimensional, care should be taken when increasing the number of quadrature knots nK since the total number of quadrature points is given by 2^{nK}. For the same reason, care should be taken when providing the grid values for multi-start optimization since the total number of starting points will be s^2, where $s = \text{length(grid)}$.

If `alpha.index` is 1 (or 2), the first (or second) element of the alpha parameter is constrained during estimation and set equal to the corresponding value of `alpha`. The element of the alpha parameter that is unconstrained is initialized with the corresponding element of `alpha` (if `multistart` is FALSE) or with values in `grid` (if `multistart` is TRUE).

If `alpha.index` is 0, both elements of the alpha parameter are fixed and set equal to `alpha`. In this case, the argument `multistart` is ignored. If `alpha` is `c(0,0)`, the corresponding model is Normal-Normal and `lme` is used for fitting (only via maximum likelihood). Note that in this case, `lmeOpt` can still be used.

Value

a list of control parameters.

Author(s)

Marco Geraci

References

See Also

`nlmm`

Description

The predictions at level 0 correspond to predictions based only on the fixed effects estimates. The predictions at level 1 are obtained by adding the best linear predictions of the random effects to the predictions at level 0.
Usage

```r
## S3 method for class 'nlmm'
predict(object, level = 0, ...)
```

Arguments

- `object`: an `nlmm` object.
- `level`: an integer vector giving the level of grouping to be used in obtaining the predictions.
- `...`: not used.

Value

a vector of predictions.

Author(s)

Marco Geraci

References

See Also

`nlmm`, `ranef.nlmm`, `fixef.nlmm`

Examples

```r
## Not run:
data(rats)
fit <- nlmm(y ~ trt*time, random = ~ 1, group = id, data = rats,
            control = nlmmControl(multistart = FALSE))

# Individual growth trajectories
predict(fit, level = 1)

## End(Not run)
```
print.nlmm \hspace{1cm} \textit{Print an nlmm Object}

\begin{description}
\item[Description] Print an object generated by \texttt{nlmm}.
\item[Usage]
\begin{verbatim}
S3 method for class 'nlmm'
print(x, digits = max(3,getOption("digits") - 3), ...)
\end{verbatim}
\item[Arguments]
\begin{itemize}
\item \texttt{x} \hspace{1cm} an \texttt{nlmm} object.
\item \texttt{digits} \hspace{1cm} a non-null value for digits specifies the minimum number of significant digits to be printed in values.
\item \texttt{...} \hspace{1cm} not used.
\end{itemize}
\item[Author(s)] Marco Geraci
\item[See Also]
\texttt{nlmm}
\end{description}

print.summary.nlmm \hspace{1cm} \textit{Print an nlmm Summary Object}

\begin{description}
\item[Description] Print summary of an \texttt{nlmm} object.
\item[Usage]
\begin{verbatim}
S3 method for class 'summary.nlmm'
print(x, digits = max(3,getOption("digits") - 3), ...)
\end{verbatim}
\item[Arguments]
\begin{itemize}
\item \texttt{x} \hspace{1cm} a \texttt{summary.nlmm} object.
\item \texttt{digits} \hspace{1cm} a non-null value for digits specifies the minimum number of significant digits to be printed in values.
\item \texttt{...} \hspace{1cm} not used.
\end{itemize}
\end{description}
ranef.nlmm

Author(s)
Marco Geraci

See Also
nlmm, summary.nlmm

Description
This function computes random effects for a linear quantile mixed model.

Usage
```r
## S3 method for class 'nlmm'
ranef(object, ...)
```

Arguments
- **object**: an object of class nlmm.
- **...**: not used.

Details
The prediction of the random effects is done via estimated best linear prediction (Geraci and Farcomeni, 2019). The generic function ranef is imported from the nlme package (Pinheiro et al, 2014).

Value
a data frame of predicted random effects.

Author(s)
Marco Geraci

References

See Also

nlmm, fixef.nlmm

Examples

```r
## Not run:
data(rats)
fit <- nlmm(y ~ trt*time, random = ~ time, group = id, data = rats,
control = nlmmControl(multistart = FALSE))

# Predicted random intercepts and slopes
ranef(fit)

## End(Not run)
```

Description

The `rats` data frame has 135 rows and 4 columns of the change in weight measured over time for rats assigned to different treatment groups.

Format

This data frame contains the following columns:

- **id**: grouping variable.
- **time**: time (week) of measurement (0, 1, 2, 3, 4).
- **trt**: treatment group (1, 2, 3).
- **y**: weight (grams)

Details

In a weight gain experiment, 30 rats were randomly assigned to three treatment groups: treatment 1, a control (no additive); treatments 2 and 3, which consisted of two different additives (thiouracil and thyroxin respectively) to the rats drinking water (Box, 1950). Weight (grams) of the rats was measured at baseline (week 0) and at weeks 1, 2, 3, and 4. Data on three of the 10 rats from the thyroxin group were subsequently removed due to an accident at the beginning of the study.

Source

The residuals at level 0 correspond to population residuals (based only on the fixed effects estimates). The residuals at level 1 are obtained by adding the best linear predictions of the random effects to the predictions at level 0 and the subtracting these from the model response.

S3 method for class 'nlmm'
residuals(object, level = 0, ...)

Arguments

object
an nlmm object.

level
an optional integer vector giving the level of grouping to be used in obtaining the predictions. Level zero corresponds to the population residuals.

... not used.

Value

a matrix of residuals.

Author(s)

Marco Geraci

References

See Also

nlmm, predict.nlmm, fixef.nlmm, ranef.nlmm,
Summary method for class \textit{nlmm}.

\textbf{Usage}

\begin{verbatim}
S3 method for class 'nlmm'
summary(object, alpha = 0.05, ...)
\end{verbatim}

\textbf{Arguments}

- \textit{object} is an object of class \textit{nlmm}.
- \textit{alpha} is the significance level.
- \textit{...} is not used.

\textbf{Details}

\texttt{print.summary.nlmm} formats the coefficients, standard errors, etc. and additionally gives 'significance stars'.

\textbf{Value}

An object of class \textit{summary.nlmm}. The function \texttt{summary.nlmm} computes and returns a list of summary statistics of the fitted generalized Laplace mixed-effects model given in \texttt{object}, using the components (list elements) from its argument, plus

- \texttt{tTable} is a matrix with estimates, standard errors, etc.

\textbf{Author(s)}

Marco Geraci

\textbf{See Also}

\texttt{print.summary.nlmm nlmm}

\textbf{Examples}

\begin{verbatim}
Not run:
data(rats)
fit <- nlmm(y ~ trt*time, random = ~ 1, group = id, data = rats,
 control = nlmmControl(multistart = FALSE))
summary(fit)

End(Not run)
\end{verbatim}
Description

This function extracts the variance-covariance matrix of the random effects from a fitted nlmm object.

Usage

S3 method for class 'nlmm'
VarCorr(x, sigma = NULL, ...)

Arguments

x
an object of class "nlmm".
sigma
not used.
...
not used.

Details

This function returns the variance or the variance-covariance matrix of the random effects. The generic function VarCorr is imported from the nlme package (Pinheiro et al, 2014).

Author(s)

Marco Geraci

References

See Also

nlmm

Examples

Not run:
data(rats)
fit <- nlmm(y ~ trt*time, random = ~ time, group = id, data = rats, cov = "pdSymm",
control = nlmmControl(multistart = FALSE))

Symmetric variance-covariance of random intercepts and slopes
VarCorr(fit)

End(Not run)
vcov.nlmm

Calculate Variance-Covariance Matrix for a Fitted Generalized
Laplace Mixed-Effects Object

Description

Returns the variance-covariance matrix of the all the parameters of a fitted nlmm object.

Usage

S3 method for class 'nlmm'
vcov(object, ...)

Arguments

 object an nlmm object.
 ... not used.

Details

Gives the variance-covariance matrix of the GLME estimator, on the scale of the unconstrained,
unrestricted parameters. The size is $d \times d$, $d = p + r + 2 + 1 + s$, with p fixed coefficients, r non-
redundant parameters of the random effects distribution, 2 shape parameters, 1 scale parameter, s
parameters of the residual variance function (if specified in the model), in this order.

Value

a matrix.

Author(s)

Marco Geraci

See Also

nlmm

Examples

Not run:
data(rats)

Number of parameters is $d = 6 + 3 + 2 + 1 + 0 = 12$
fit <- nlmm(y ~ trt*time, random = ~ time, group = id, data = rats,
cov = "pdSymm", control = nlmmControl(multistart = FALSE))
fit$par
vcov(fit)
Number of parameters is $d = 6 + 1 + 2 + 1 + 4 = 14$
fit <- nlmm(y ~ trt * time, random = ~ 1, group = id, data = rats,
control = nlmmControl(multistart = FALSE), weights = varIdent(form = ~ 1 | time))
fit$par
vcov(fit)

Number of parameters is $d = 6 + 1 + 0 + 1 + 0 = 8$
Note that the shape parameters are now constrained
fit <- nlmm(y ~ trt * time, random = ~ 1, group = id, data = rats,
control = nlmmControl(alpha.index = 0, multistart = FALSE))
fit$par
vcov(fit)

End(Not run)
Index

* Topic **Generalized Laplace Distribution**
 GenLaplace, 6
 MultivariateGenLaplace, 10
* Topic **Laplace Distribution**
 Laplace, 7
* Topic **Likelihood ratio test**
 lrt_nlmm, 9
* Topic **Multivariate Asymmetric Laplace Distribution**
 MultivariateLaplace, 11
* Topic **Simulation**
 generate.data, 4
* Topic **coefficients**
 fixef.nlmm, 3
 ranef.nlmm, 19
 VarCorr.nlmm, 23
* Topic **control**
 nlmmControl, 15
* Topic **covariance**
 VarCorr.nlmm, 23
 vcov.nlmm, 24
* Topic **datasets**
 rats, 20
* Topic **fitting**
 nlmmControl, 15
* Topic **prediction**
 predict.nlmm, 16
* Topic **print**
 print.nlmm, 18
 print.summary.nlmm, 18
* Topic **random effects**
 nlmm-package, 2
 ranef.nlmm, 19
* Topic **residuals**
 residuals.nlmm, 21
* Topic **standard errors**
 summary.nlmm, 22
 vcov.nlmm, 24

* Topic **summary**
 print.summary.nlmm, 18

 class, 5, 8, 13, 19, 22, 23
 coef.varFunc, 13
 dgl(GenLaplace), 6
 dl(Laplace), 7
 dmal(MultivariateLaplace), 11
 dmgl(MultivariateGenLaplace), 10
 fixef(fixef.nlmm), 3
 fixef.nlmm, 3, 14, 17, 20, 21
 formula, 12
 generate.data, 4
 GenLaplace, 6, 8, 10, 11, 13
 Laplace, 7, 11
 lm, 15
 lme, 15, 16
 lmeControl, 15
 logLik.nlmm, 8
 lrt_nlmm, 9
 model.frame, 14
 MultivariateGenLaplace, 7, 10, 11
 MultivariateLaplace, 8, 11
 nlminb, 13, 15, 16
 nlmm, 3, 5, 6, 8, 10, 12, 16–24
 nlmm-package, 2
 nlmmControl, 12–14, 15
 optim, 13, 15, 16
 pgl(GenLaplace), 6
 predict.nlmm, 14, 16, 21
 print.lrt_nlmm(lrt_nlmm), 9
 print.nlmm, 18
 print.summary.nlmm, 18, 22

26
INDEX

qgl (GenLaplace), 6
ranef (ranef.nlmm), 19
ranef.nlmm, 14, 17, 19, 21
rats, 20
residuals.nlmm, 14, 21
rgl (GenLaplace), 6
rl (Laplace), 7
rmal, 5
rmal (MultivariateLaplace), 11
rmgl, 5
rmgl (MultivariateGenLaplace), 10
rmvnorm, 5
rmvt, 5
summary.nlmm, 3, 14, 19, 22
summary.varFunc, 13

varClasses, 12
VarCorr (VarCorr.nlmm), 23
VarCorr.nlmm, 13, 14, 23
varFixed, 12
varFunc, 12, 13
varWeights.varFunc, 13
vcov.nlmm, 24