Package ‘nlnet’

April 8, 2018

Type Package

Title Nonlinear Network Reconstruction, Clustering, and Variable Selection Based on DCOL (Distance Based on Conditional Ordered List)

Version 1.2

Date 2018-04-07

Author Tianwei Yu, Haodong Liu

Maintainer Tianwei Yu <tianwei.yu@emory.edu>

Description It includes four methods: DCOL-based K-profiles clustering, nonlinear network reconstruction, nonlinear hierarchical clustering, and variable selection for generalized additive model.

License GPL (>= 2)

Imports ROCR, TSP, igraph, fdrtool, coin, methods, graphics, stats, earth, randomForest, e1071

NeedsCompilation no

Repository CRAN

Date/Publication 2018-04-08 14:43:21 UTC

R topics documented:

data.gen ... 2
KPC ... 3
nlhc ... 4
nlnet ... 6
nvsd .. 8
stage.forward ... 9

Index 11
Simulated Data Generation

Description

Generating gene matrix as an example of input.

Usage

```r
data.gen(n.genes=100, n.samples=100, n.grps=10, aver.grp.size=10,
    n.fun.types=6, epsilon=0.1, n.depend=0)
```

Arguments

- `n.genes`: the number of rows of the matrix.
- `n.samples`: the number of columns of the matrix.
- `n.grps`: the number of hidden clusters.
- `aver.grp.size`: average number of genes in a cluster.
- `n.fun.types`: number of function types to use.
- `epsilon`: noise level.
- `n.depend`: data generation dependence structure. can be 0, 1, 2.

Details

Value

return the data including gene and clustering.

```r
data
grps
```

Author(s)

Tianwei Yu<tyu8@emory.edu>

Examples

```r
## generating a gene matrix with 100 genes, some in 5 clusters, and 100 samples per gene.
output<-data.gen(n.genes=100, n.samples=10, n.grps=5)
## get the gene matrix from the source of data.
matrix<-output$data
## get the hidden clusters from the source of data.
grps<-output$grp
```
Description

implementation of K-Profiles Clustering

Usage

\[\text{KPC(dataset, nCluster, maxIter = 100, p.max = 0.2, p.min = 0.05)} \]

Arguments

- **dataset**
 the data matrix with genes in the row and samples in the column
- **nCluster**
 the number of clusters \(K \)
- **maxIter**
 the maximum number of iterations
- **p.max**
 the starting p-value cutoff to exclude noise genes
- **p.min**
 the final p-value cutoff to exclude noise genes

Value

return a list about gene cluster and the list of value \(p \)

- **cluster**
 gene cluster
- **p.list**
 a list of value \(p \)

Author(s)

Tianwei Yu <tianwei.yu@emory.edu>

References

http://www.hindawi.com/journals/bmri/aa/918954/

See Also

data.gen

Examples

```r
## generating the data matrix & hiden clusters as a sample
input<-data.gen(n.genes=40, n.grps=4)
## now input includes data matrix and hiden clusters, so get the matrix as input.
input<-input$data
## set nCluster value to 4
```
nlhc

Description

The non-linear hierarchical clustering based on DCOL

Usage

nlhc(array, hamil.method = "nn", concorde.path = NA,
use.normal.approx = FALSE, normalization = "standardize", combine.linear = TRUE,
use.traditional.hclust = FALSE, method.traditional.hclust = "average")

Arguments

- **array**: the data matrix with no missing values
- **hamil.method**: the method to find the hamiltonian path.
- **concorde.path**: If using the Concorde TSP Solver, the local directory of the solver
- **use.normal.approx**: whether to use the normal approximation for the null hypothesis.
- **normalization**: the normalization method for the array.
- **combine.linear**: whether linear association should be found by correlation to combine with non-linear association found by DCOL.
- **use.traditional.hclust**: whether traditional agglomerative clustering should be used.
- **method.traditional.hclust**: the method to pass on to hclust() if traditional method is chosen.

Details

Hamil.method: It is passed onto the function tsp of library TSP. To use linkern method, the user needs to install concord as instructed in TSP.

use.normal.approx: If TRUE, normal approximation is used for every feature, AND all covariances are assumed to be zero. If FALSE, generates permutation based null distribution - mean vector and a variance-covariance matrix.

normalization: There are three choices - "standardize" means removing the mean of each row and make the standard deviation one; "normal_score" means normal score transformation; "none" means do nothing. In that case we still assume some normalization has been done by the user such that each row has approximately mean 0 and sd 1.

combine.linear: The two pieces of information is combined at the start to initiate the distance matrix.
Value

Returns a hclust object same as the output of hclust(). Reference: help(hclust)

merge

an n-1 by 2 matrix. Row i of merge describes the merging of clusters at step i of the clustering. If an element j in the row is negative, then observation -j was merged at this stage. If j is positive then the merge was with the cluster formed at the (earlier) stage j of the algorithm.

height

a set of n-1 real values, the value of the criterion associated with the clustering method for the particular agglomeration

order

a vector giving the permutation of the original observations suitable for plotting, in the sense that a cluster plot using this ordering and matrix merge will not have crossings of the branches.

labels

labels for each of the objects being clustered

call

the call which produced the result

dist.method

the distance that has been used to create d

height.0

original calculation of merging height

Author(s)

Tianwei Yu <tianwei.yu@emory.edu>

References

See Also

data.gen

Examples

```r
## generating the data matrix & hidden clusters as a sample
input<-data.gen(n.genes=40, n.grps=4)
## now input includes data matrix and hidden clusters, so get the matrix as input.
input<-input$data

nlhc.data<-nlhc(input)
plot(nlhc.data)
## get the merge from the input.
merge<-nlhc.data$merge
```
nlnet

Non-Linear Network reconstruction from expression matrix

Description

Non-Linear Network reconstruction method

Usage

```r
nlnet(input, min.fdr.cutoff=0.05, max.fdr.cutoff=0.2, conn.proportion=0.007, gene.fdr.plot=FALSE, min.module.size=0, gene.community.method="multilevel", use.normal.approx=FALSE, normalization="standardize", plot.method="communitygraph")
```

Arguments

- **input**: the data matrix with no missing values.
- **min.fdr.cutoff**: the minimum allowable value of the local false discovery cutoff in establishing links between genes.
- **max.fdr.cutoff**: the maximum allowable value of the local false discovery cutoff in establishing links between genes.
- **conn.proportion**: the target proportion of connections between all pairs of genes, if allowed by the fdr cutoff limits.
- **gene.fdr.plot**: whether plot a figure with estimated densities, distribution functions, and (local) false discovery rates.
- **min.module.size**: the min number of genes together as a module.
- **gene.community.method**: the method for community detection.
- **use.normal.approx**: whether to use the normal approximation for the null hypothesis.
- **normalization**: the normalization method for the array.
- **plot.method**: the method for graph and community plotting.

Details

gene.community.method: It provides three kinds of community detection method: "multilevel", "label.propagation" and "leading.eigenvector".

use.normal.approx: If TRUE, normal approximation is used for every feature, AND all covariances are assumed to be zero. If FALSE, generates permutation based null distribution - mean vector and a variance-covariance matrix.

normalization: There are three choices: "standardize" means removing the mean of each row and make the standard deviation one; "normal_score" means normal score transformation; "none"
means do nothing. In that case we still assume some normalization has been done by the user such that each row has approximately mean 0 and sd 1.

plot.method: It provides three kinds of plotting method: "none" means plotting no graph, "communitygraph" means plotting community with graph, "graph" means plotting graph, "membership" means plotting membership of the community

Value
it returns a graph and the community membership of the graph.

algorithm The algorithm name for community detection

graph An igraph object including edges: Numeric vector defining the edges, the first edge points from the first element to the second, the second edge from the third to the fourth, etc.

community Numeric vector, one value for each vertex, the membership vector of the community structure.

Author(s)
Haodong Liu <liuhaodong0828@gmail.com>

References

See Also
data.gen

Examples

generating the data matrix & hidden clusters as a sample
input<-data.gen(n.genes=40, n.grp=4)

now input includes data matrix and hidden clusters, so get the matrix as input.
input<-input$data

change the plotting method
result<-nlnet(input,plot.method="graph")

get the result and see it values
graph<-result$graph ## a igraph object.
comm<-result$community ## community of the graph

use different community detection method
#nlnet(input,gene.community.method="label.propagation")

change the fdr pro to control connections of genes
adjust the modularity size
#nlnet(input,conn.proportion=0.005,min.module.size=10)
Description

This is a nonlinear variable selection procedure for generalized additive models. It's based on DCOL, using forward stagewise selection. In addition, a cross-validation is conducted to tune the stopping alpha level and finalize the variable selection.

Usage

nvsd(x, y, fold = 10, step.size = 0.01, stop.alpha = 0.05, stop.var.count = 20, max.model.var.count = 10, roughening.method = "DCOL", do.plot = F, pred.method = "MARS")

Arguments

x
The predictor matrix. Each row is a gene (predictor), each column is a sample. Notice the dimensionality is different than most other packages, where each column is a predictor. This is to conform to other functions in this package that handles gene expression type of data.

y
The numerical outcome vector.

fold
The fold of cross-validation.

step.size
The step size of the roughening process.

stop.alpha
The alpha level (significance of the current selected predictor) to stop the iterations.

stop.var.count
The maximum number of predictors to select in the forward stagewise selection. Once this number is reached, the iteration stops.

max.model.var.count
The maximum number of predictors to select. Notice this can be smaller than the stop.var.count. Stop.var.count can be set more liniently, and this parameter controls the final maximum model size.

roughening.method
The method for roughening. The choices are "DCOL" or "spline".

do.plot
Whether to plot the points change in each step.

pred.method
The prediction method for the cross validation variable selection. As forward stagewise procedure doesn’t do prediction, a method has to be borrowed from existing packages. The choices include "MARS", "RF", and "SVM".

Details

Please refer to the reference for details.
stage.forward

Value
A list object is returned. The components include the following.
- **selected.pred** The selected predictors (row number).
- **all.pred** The selected predictors by the forward stagewise selection. The $selected.pred is a subset of this.

Author(s)
Tianwei Yu <tianwei.yu@emory.edu>

References
https://arxiv.org/abs/1601.05285

See Also
stage.forward

Examples
```r
x <- matrix(rnorm(2000), ncol=20)
y <- sin(x[,1]) + x[,2]^2 + x[,3]
nvsd(t(x), y, stop.alpha=0.001, step.size=0.05)
```
stage.forward

```
stop.alpha The alpha level (significance of the current selected predictor) to stop the iterations.
stop.var.count The maximum number of predictors to select. Once this number is reached, the iteration stops.
roughening.method The method for roughening. The choices are "DCOL" or "spline".
tol The tolerance level of sum of squared changes in the residuals.
spline.df The degree of freedom for the spline.
dcol.sel.only TRUE or FALSE. If FALSE, the selection of predictors will consider both linear and nonlinear association significance.
do.plot Whether to plot the points change in each step.
```

Details

Please refer to the reference manuscript for details.

Value

A list object is returned. The components include the following.

```
found.pred The selected predictors (row number).
ssx.rec The magnitude of variance explained using the current predictor at each step.
$sel.rec The selected predictor at each step.
$p.rec The p-value of the association between the current residual and the selected predictor at each step.
```

Author(s)

Tianwei Yu<tianwei.yu@emory.edu>

References

https://arxiv.org/abs/1601.05285

See Also

nvsd

Examples

```
X<-matrix(rnorm(2000),ncol=20)
y<-sin(X[,1])+X[,2]^2+X[,3]
stage.forward(t(X),y,stop.alpha=0.001,step.size=0.05)
```
Index

*Topic **nonparametric**
 nvsd, 8
 stage.forward, 9

*Topic **variable selection**
 nvsd, 8
 stage.forward, 9

data.gen, 2, 3, 5, 7

KPC, 3

nlhc, 4
nlnet, 6
nvsd, 8

stage.forward, 9