Package ‘nlsic’

June 26, 2023

Title Non Linear Least Squares with Inequality Constraints

Version 1.0.4

Maintainer Serguei Sokol <sokol@insa-toulouse.fr>

Description We solve non linear least squares problems with optional
equality and/or inequality constraints. Non linear iterations are
globalized with back-tracking method. Linear problems are solved by
dense QR decomposition from ‘LAPACK’ which can limit the size of
treated problems. On the other side, we avoid condition number
degradation which happens in classical quadratic programming approach.
Inequality constraints treatment on each non
linear iteration is based on 'NNLS' method (by Lawson and Hanson).
We provide an original function 'lsi_ln' for solving linear least squares
problem with inequality constraints in least norm sens. Thus if Jacobian of
the problem is rank deficient a solution still can be provided.
However, truncation errors are probable in this case.
Equality constraints are treated by using a basis of Null-space.
User defined function calculating residuals must return a list having
residual vector (not their squared sum) and Jacobian. If Jacobian is
not in the returned list, package 'numDeriv' is used to calculated
finite difference version of Jacobian. The 'NLSIC' method was fist

License GPL-2

Encoding UTF-8

RoxygenNote 7.1.1

Depends nnls

Suggests numDeriv, RUnit, limSolve

URL https://github.com/MathsCell/nlsic

BugReports https://github.com/MathsCell/nlsic/issues

NeedsCompilation no

Author Serguei Sokol [aut, cre] (<https://orcid.org/0000-0002-5674-3327>)

Repository CRAN

Date/Publication 2023-06-26 10:30:02 UTC
R topics documented:

equa2vecmat .. 2
join ... 3
ldp ... 3
lsi ... 4
lsie_Ln .. 5
lsi_Ln ... 5
lsi_reg .. 6
ls_Ln .. 7
ls_Ln_svd .. 8
nlsic .. 8
Nulla .. 11
tls ... 12
uplo2uco .. 12

Index 14

equa2vecmat Parse linear equations/inequalities

Description
parse a text vector of linear equations and produce a corresponding matrix and right hand side vector

Usage
equa2vecmat(nm_par, linear, sep = "=")

Arguments

 nm_par a string vector of variable names. It will be used in the symbolic derivation.
 linear string vector of linear equations like "a+2*c+3*b = 0"
 sep separator of two parts of equations. Use for example ">=" for linear inequalities

Value
an augmented matrix. Its first column is the rhs vector. Other columns are named by nm_par. If the vector linear is NULL or its content is empty a NULL is returned

Examples
equa2vecmat(c("a", "b", "c"), "a+2*c+3*b = 0", ">=")
join

Join elements into a string

Description

Convert elements of vector v (and all following arguments) in strings and join them using sep as separator.

Usage

```r
join(sep, v, ...)
```

Arguments

- `sep` A string used as a separator
- `v` A string vector to be joined
- `...` Other variables to be converted to strings and joined

Value

A joined string

Examples

```r
join(" ", c("Hello", "World"))
```

ldp

Least Distance Problem

Description

Solve least distance programming: find x satisfying \(u^T x \geq co \) and s.t. \(\min(\|x\|) \) by passing to nnls (non negative least square) problem.

Usage

```r
ldp(u, co, rcond = 1e+10)
```

Arguments

- `u` A dense matrix of inequality constraints
- `co` A right hand side vector of inequality constraints
- `rcond` Maximal condition number for determining rank deficient matrix

Value

Solution vector or NULL if constraints are unfeasible
Linear Least Squares with Inequality constraints (LSI)

Description

solve linear least square problem \(\min \|Ax-b\| \) with inequality constraints \(u^\top x \geq c_0 \)

Usage

```r
lsi(a, b, u = NULL, c0 = NULL, rcond = 1e+10, mnorm = NULL, x0 = NULL)
```

Arguments

- `a`: dense matrix A or its QR decomposition
- `b`: right hand side vector. Rows containing NA are dropped.
- `u`: dense matrix of inequality constraints
- `c0`: right hand side vector of inequality constraints
- `rcond`: maximal condition number for determining rank deficient matrix
- `mnorm`: dummy parameter
- `x0`: dummy parameter

Details

Method:

1. reduce the problem to ldp \(\min(x^\top a^\top a) \Rightarrow \) least distance programming
2. solve ldp
3. change back to \(x \)
 - If b is all NA, then a vector of NA is returned.

`mnorm`, and `x0` are dummy parameters which are here to make lsi() compatible with lsi_ln() argument list

Value

solution vector whose attribute 'mes' may contain a message about possible numerical problems

See Also

lsi_ln, ldp, base::qr
lsie_ln

Linear Least Squares problem with inequality and equality constraints, least norm solution

Description

solve linear least square problem (min ||A·x-b||) with inequality constraints u·x>=co and equality constraints e·x=ce Method: reduce the pb to lsie_ln on the null-space of e

Usage

lsie_ln(a, b, u = NULL, co = NULL, e = NULL, ce = NULL, rcond = 1e+10)

Arguments

a dense matrix A or its QR decomposition
b right hand side vector
u dense matrix of inequality constraints
c0 right hand side vector of inequality constraints
e dense matrix of equality constraints
ce right hand side vector of equality constraints
rcond maximal condition number for determining rank deficient matrix

Value

solution vector whose attribute ’mes’ may contain a message about possible numerical problems

See Also

lsi_ln

lsi_ln

Linear Least Squares with Inequality constraints, least norm solution

Description

solve linear least square problem min_x ||A·x-b|| with inequality constraints u·x>=co If A is rank deficient, least norm solution ||mnorm·(x-x0)|| is used. If the parameter mnorm is NULL, it is treated as an identity matrix. If the vector x0 is NULL, it is treated as 0 vector.

Usage

lsi_ln(a, b, u = NULL, co = NULL, rcond = 1e+10, mnorm = NULL, x0 = NULL)
Arguments

- **a**: dense matrix A or its QR decomposition
- **b**: right hand side vector
- **u**: dense matrix of inequality constraints
- **co**: right hand side vector of inequality constraints
- **rcond**: maximal condition number for determining rank deficient matrix
- **mnorm**: norm matrix (can be dense or sparse) for which `%*%` operation with a dense vector is defined
- **x0**: optional vector from which a least norm distance is searched for

Value

solution vector whose attribute `mes` may contain a message about possible numerical problems

See Also

lsi, ldp, base::qr

lsi_reg

Regularized Linear Least Squares

Description

solve linear least square problem \(\min_x ||a x - b|| \) with inequality constraints \(u x \geq co \) If a is rank deficient, regularization term \(\lambda^2 ||mnorm*(x-x0)||^2 \) is added to \(||a x - b||^2 \).

Usage

lsi_reg(a, b, u = NULL, co = NULL, rcond = 1e+10, mnorm = NULL, x0 = NULL)

Arguments

- **a**: dense matrix A or its QR decomposition
- **b**: right hand side vector
- **u**: dense matrix of inequality constraints
- **co**: right hand side vector of inequality constraints
- **rcond**: used for calculating \(\lambda = d[1]/\sqrt{rcond} \) where \(d[1] \) is maximal singular value of a
- **mnorm**: norm matrix (can be dense or sparse) for which `%*%` operation with a dense vector is defined
- **x0**: optional vector from which a least norm distance is searched for
Details

The rank of a is estimated as number of singular values above $d[1]\times 10^{-10}$ where $d[1]$ is the highest singular value. The scalar lambda is a positive number and is calculated as $d[1]/\sqrt{\text{rcond}}$ (‘rcond’ parameter is preserved for compatibility with others lsi_...() functions). At return, lambda can be found in attributes of the returned vector x. NB. lambda is set to NA

- if rank(a)==0 or a is of full rank
- or if there is no inequality. If the matrix mnorm is NULL, it is supposed to be an identity matrix. If the vector x0 is NULL, it is treated as 0 vector.

Value

solution vector whose attribute ’mes’ may contain a message about possible numerical problems and ’lambda’ is regularization parameter used in solution.

See Also

lsi_ln

Description

Linear Least Squares, least norm solution

Usage

ls_ln(a, b, rcond = 1e+10)

Arguments

a matrix or its QR decomposition
b vector of right hand side
rcond maximal condition number for rank definition

Value

solution vector
ls_ln_svd

Linear Least Squares, least norm solution (by svd)

Description

Least squares $a\%\%x = b$ of least norm $\|x\|$ by using svd(a)

Usage

```r
ls_ln_svd(a, b, rcond = 1e+10)
```

Arguments

- `a`: dense matrix
- `b`: right hand side vector
- `rcond`: maximal condition number for determining rank deficient matrix

Value

solution vector

nlsic

Non Linear Least Squares with Inequality Constraints

Description

Solve non linear least squares problem $\min_{\text{par}} \|r(\text{par},\ldots)\|_{\text{res}}$ with optional inequality constraints $u\%\%\text{par} >= \text{co}$ and optional equality constraints $e\%\%\text{par} = \text{eco}$

Usage

```r
nlsic(par, r, u = NULL, co = NULL, control = list(), e = NULL, eco = NULL, flsi = lsi, ...
```
Arguments

- **par**
 initial values for parameter vector. It can be in non feasible domain, i.e. for which \(u^\top \cdot par \geq c_0 \) is not always respected.

- **r**
 a function calculating residual vector by a call to \(r(par, cjac, \ldots) \) where \(par \) is a current parameter vector, and cjac is set to TRUE if Jacobian is required or FALSE if not. A call to \(r() \) must return a list having a field "res" containing the residual vector and optionally a field "jacobian" when cjac is set to TRUE.

- **u**
 constraint matrix in \(u^\top \cdot par \geq c_0 \)

- **co**
 constraint right hand side vector

- **control**
 a list of control parameters (’=’ indicates default values):
 - `errx=1.e-7` error on l2 norm of the iteration step \(\sqrt{pt^\top \cdot p} \).
 - `maxit=100` maximum of newton iterations
 - `btstart=1` staring value for backtracking coefficient
 - `btfrac=0.5` (0;1) by this value we diminish the step till tight up to the quadratic model of norm reduction in backtracks (bt) iterations
 - `btdesc=0.1` (0;1) how good we have to tight up to the quadratic model 0 - we are very relaxe, 1 - we are very tight (may need many bt iterations)
 - `btmaxit=15` maximum of backtrack iterations
 - `btkmin=1.e-7` a floor value for backtracking fractioning
 - `trace=0` no information is printed during iterations (1 - print is active)
 - `rcond=1.e10` maximal condition number in QR decomposition starting from which a matrix is considered as numerically rank deficient. The inverse of this number is also used as a measure of very small number.
 - **ci** = list of options relative to confidence interval estimation
 - `p=0.95` p-value of confidence interval. If you need a plain sd value, set p-value to 0.6826895
 - `report=T` report (or not and hence calculate or not) confidence interval information (in the field hci, as 'half confidence interval' width)
 - `history=TRUE` report or not the convergence history
 - `adaptbt=FALSE` use or not adaptive backtracking
 - `mnorm=NULL` a norm matrix for a case sln==TRUE (cf next parameter)
 - `sln=FALSE` use or not (default) least norm of the solution (instead of least norm of the increment)
 - `maxstep=NULL` a maximal norm for increment step (if not NULL), must be positive
 - `monotone=FALSE` should or not the cost decrease be monotone. If TRUE, then at first non decrease of the cost, the iterations are stopped with a warning message.

- **e**
 linear equality constraint matrix in \(e^\top \cdot par = c_0 \) (dense)

- **eco**
 right hand side vector in equality constraints

- **flsi**
 function solving linear least squares problem. For a custom function, see interfaces in lsi or lsi_ln help pages.

- **...**
 parameters passed through to \(r() \)
Details

Solving method consist in sequential LSI problems globalized by backtracking technique. If e, eco are not NULL, reduce jacobian to basis of e’s kernel before lsi() call.

NB. If the function r() returns a list having a field "jacobian" it is supposed to be equal to the jacobian dr/dpar. If not, numerical derivation numDeriv::jacobian() is automatically used for its calculation.

NB2. nlsic() does not call stop() on possible errors. Instead, ‘error’ field is set to 1 in the returned result. This is done to allow a user to examine the current state of data and possibly take another path then to merely stop the program. So, a user must always check this field at return from nlsic().

NB3. User should test that field ‘mes’ is not NULL even when error is 0. It may contain a warning message.

Value

a list with following components (some components can be absent depending on ‘control’ parameter)

- ‘par’ estimated values of par
- ‘lastp’ the last LSI solution during non linear iterations
- ‘hci’ vector of half-width confidence intervals for par
- ‘ci_p’ p-value for which CI was calculated
- ‘ci_fdeg’ freedom degree used for CI calculation
- ‘sd_res’ standard deviation of residuals
- ‘covpar’ covariance matrix for par
- ‘laststep’ the last increment after possible back-tracking iterations
- ‘normp’ the norm of lastp
- ‘res’ the last residual vector
- ‘prevres’ residual vector from previous non linear iteration
- ‘jacobian’ the last used jacobian
- ‘retres’ last returned result of r() call
- ‘it’ non linear iteration number where solution was obtained
- ‘btit’ back-tracking iteration number done during the last non linear iteration
- ‘history’ list with convergence history information
- ‘error’ error code: 0 - normal end, 1 - some error occurred, see message in ‘mes’
- ‘mes’ textual message explaining what problem was in case of error

See Also

lsi, lsi_ln, uplo2uco
Examples

```r
# solve min_{a,b} ||exp(a*x+b)-meas||, a,b>=1
a_true=1; b_true=2; x=0:5
# simulation function
sim=function(par, x) exp(par[["a"]]*x+par[["b"]])
# residual function to be passed to nlsic()
resid=function(par, cjac, ...) {
  dots=list(...)
  s=sim(par, dots$x)
  result=list(res=s-dots$meas)
  if (cjac) {
    result$jacobian=cbind(a=s*dots$x, b=s)
  }
  result
}
# simulated noised measurements for true parameters
set.seed(7) # for reproducible results
meas=sim(c(a=a_true, b=b_true), x)+rnorm(x)
# starting values for par
par=c(a=0, b=0)
# prepare constraints
uco=uplo2uco(par, lower=c(a=1, b=1))
# main call: solve the problem
fit=nlsic(par, resid, uco$u, uco$co, control=list(trace=1), x=x, meas=meas)
if (fit$error == 1) {
  stop(fit$mes)
} else {
  print(fit$par) # a=1.001590, b=1.991194
  if (! is.null(fit$mes)) {
    warning(fit$mes)
  }
}
```

Nulla

Null-space basis

Description

use Lapack for null space basis (derived from MASS::Null)

Usage

```r
Nulla(M, rcond = 1e+10)
```

Arguments

- **M** matrix such that `t(M) %*% B = 0` where `B` is a basis of `t(M)`'s kernel (aka Null-space)
- **rcond** maximal condition number for rank definition
Value

numeric matrix whose columns are basis vectors. Its attribute ‘qr’ contains QR decomposition of M.

See Also

MASS::Null

Examples

Nulla(1:3)

tls

Total Least Squares a%*%x =~ b

Description

Total Least Squares a%*%x =~ b

Usage

tls(a, b)

Arguments

a matrix
b right hand side vector

Value

solution vector

uplo2uco

Transform box-type inequalities into matrix and vector form

Description

Transform a set of inequalities param["name"] >= lower["name"] and param["name"] <= upper["name"] into a list with matrix u and vector co such that u%*%param>=co. In addition to box inequalities above, user can provide linear inequalities in a form like "a+2*c+3*b >= 0" where ‘a’, ‘b’ and ‘c’ must be names of param components. Numeric and symbolic coefficients and right hand sides are allowed in these expressions. However, symbols must be defined at the moment of calling uplo2uco() so that expressions containing such symbols could be eval()-ed to numerical values. All inequalities must be written with ‘>=’ sign (not with ‘<=’, ‘>’, ‘>=').
Usage

```r
uplo2uco(param, upper = NULL, lower = NULL, linear = NULL)
```

Arguments

- `param` a named vector whose names will be used for parsing inequalities
- `upper` a named numeric vector of upper limits
- `lower` a named numeric vector of lower limits
- `linear` a string vector of linear inequalities

Value

A list with numeric matrix `u` and vector `co` such that `u %*% param - co >= 0`

See Also

- `equa2vecmat` for parsing linear expressions
Index

base::qr, 4, 6
equa2vecmat, 2, 13
join, 3
ldp, 3, 4, 6
ls_ln, 7
ls_ln_svd, 8
lsi, 4, 6, 10
lsi_ln, 4, 5, 5, 7, 10
lsi_reg, 6
lsie_ln, 5
MASS::Null, 12
nlsic, 8
Nulla, 11
tls, 12
uplo2uco, 10, 12