Package ‘nlstimedist’

May 15, 2019

Type Package

Title Non-Linear Model Fitting of Time Distribution of Biological Phenomena

Version 1.1.4

Description Fit biologically meaningful distribution functions to time-sequence data (phenology), estimate parameters to draw the cumulative distribution function and probability density function and calculate standard statistical moments and percentiles.

URL https://github.com/nathaneastwood/nlstimedist

BugReports https://github.com/nathaneastwood/nlstimedist/issues

Depends R (>= 3.5.0)

Imports broom (>= 0.5.0), dplyr (>= 0.4.3), ggplot2 (>= 2.1.0), laazyeval (>= 0.2.0), minpack.lm (>= 1.2-0), nlstools (>= 1.0-2)

License GPL-2

LazyData TRUE

RoxygenNote 6.1.1

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Author Nathan Eastwood [cre, prg, trl], Miguel Franco [aut], Paul Ramsay [aut], Nicola Steer [aut]

Maintainer Nathan Eastwood <nathan.eastwood@icloud.com>

Repository CRAN

Date/Publication 2019-05-15 21:40:03 UTC
R topics documented:

- augmentMultiple .. 2
- glance.timedist .. 2
- lobelia ... 3
- nlstimedist ... 4
- pupae ... 4
- tdCdfPlot .. 5
- tdData ... 5
- tdMoments .. 6
- tdPDF ... 7
- tdPercentiles .. 8
- tdRSS ... 8
- tilia ... 9
- timedist .. 9

Index 11

augmentMultiple

Create the data for the plots

Description

Augment the data from a model output to be in a form suitable for ggplot

Usage

```r
augmentMultiple(...) 
```

Arguments

- ... A list of models

glance.timedist

Construct a single row summary "glance" of a timedist model

Description

glance methods always return either a one-row data frame, or NULL

Usage

```r
## S3 method for class 'timedist'
glance(x, ...) 
```
lobelia

Arguments

- x: An object of class `timedist`.
- ...: Additional arguments (not used).

Value

`glance` returns one row with the columns:

- `sigma`: the square root of the estimated residual variance
- `isConv`: whether the fit successfully converged
- `finTol`: the achieved convergence tolerance
- `logLik`: the data’s log-likelihood under the model
- `AIC`: the Akaike Information Criterion
- `BIC`: the Bayesian Information Criterion
- `deviance`: deviance
- `df.residual`: residual degrees of freedom
- `RSS`: corrected residual sum of squares

lobelia | Lobelia urens seeds data

Description

This data describes the number of germinating lobelia urens seeds at different temperatures.

Usage

lobelia

Format

A data frame with 231 rows and 3 variables:

- **Day**: The day number
- **Temperature**: The temperature
- **Germination**: The number which germinated

Details

The total numbers which failed to germinate are 59, 52, 35, 22, 10, 7 and 12 for temperatures 9.8, 12.5, 16.7, 20.2, 24.3, 28.5 and 32.0, respectively.

Examples

lobelia
nlstimedist
Fit the time-course of biological phenomena

Description

nlstimedist fits a biologically meaningful distribution function to time-sequence data (phenology), estimates parameters to draw the cumulative distribution function and probability density function and calculates standard statistical moments and percentiles.

pupae
Emergence of butterflies data

Description

This data describes the emergence of butterflies from their pupae from four different cohorts.

Usage

pupae

Format

A data frame with 64 rows and 3 variables:

- **Day** The day number
- **Cohort** The cohort number
- **Emergence** The number of butterflies to emerge

Examples

pupae
tdCdfPlot

Plot the timedist PDF or CDF

Description

Given a model (or models) of class `timedist`, produce a cumulative distribution plot for each of them.

Usage

```r
tdCdfPlot(..., S = NULL, xVals = NULL)
```

```r
tdPdfPlot(..., S = NULL, xVals = NULL)
```

Arguments

- `...` A model (or a list of models) of class `timedist`.
- `S` Scaling factor for the PDF.
- `xVals` A sequence of values between the x limits (x1, x2) of the plot.

Examples

```r
tdTilia <- tdData(tilia, x = "Day", y = "Trees")
model <- timedist(data = tdTilia, x = "Day", y = "propMax", r = 0.1, c = 0.5, t = 120)
```

```r
tdCdfPlot(model)
```

```r
tdPdfPlot(model)
```

tdData

Prepare nlstimedist data

Description

The data for `nlstimedist` needs to be in a particular format. This function prepares the data for the model.

Usage

```r
tdData(data, x, y, group = NULL)
```
Arguments

- data: The raw data to be cleaned.
- x: The time variable.
- y: The number of events.
- group: The run numbers. This is NULL by default if you are only using the function for one run.

Value

A list containing

- raw: The raw data supplied to the function, i.e. data.
- clean item: The cleaned data to be supplied to timedist.

Examples

```r
tdTilia <- tdData(tilia, x = "Day", y = "Trees")
tdTilia
```

tdMoments

Calculate moments for the fitted timedist model

Description

Individual functions are provided as well as a wrapper to calculate the moments for your fitted model.

Usage

```r
tdMoments(r, c, t, ...)
tdMean(r, c, t, upper = t * 10, ...)
tdVariance(r, c, t, upper = t * 10, ...)
tdSkew(r, c, t, upper = t * 10, ...)
tdKurtosis(r, c, t, upper = t * 10, alternative = FALSE, ...)
tdEntropy(r, c, t, upper = t * 10, ...)
```
Arguments

r, c, t Parameters of the Franco distribution
...
additional arguments to be passed to integrate
upper The upper limit of integration. Defaults to \(t \times 10 \). Can be infinite for all moment functions except for entropy.
alternative An alternative calculation method.

Value

A single value, or in the case of tdMoments, a data.frame of values.

Examples

```r
tdmoments(r = 0.1, c = 0.5, t = 120)
tdmean(r = 0.1, c = 0.5, t = 120)
tdvariance(r = 0.1, c = 0.5, t = 120)
tdskew(r = 0.1, c = 0.5, t = 120)
tdkurtosis(r = 0.1, c = 0.5, t = 120)
tdentropy(r = 0.1, c = 0.5, t = 120)
```

Description

Calculate values of the probability density function.
Calculate values of the cumulative distribution function

Usage

```r
tdPDF(x, S = 1, r, c, t)
tdCDF(x, S = 1, r, c, t)
```

Arguments

x Points at which to calculate the pdf.
S Scaling factor for the PDF.
r, c, t Parameter values within the model.

Value

A vector of values from the pdf.
A vector of values from the cdf.
tdPercentiles

Calculate percentiles

Description

Calculate the percentiles for a given model output.

Usage

```r
tdPercentiles(model, n, upper = model$m$getPars()["t"] * 10, ...)
```

Arguments

- `model`: An object of class `timedist`.
- `n`: A vector of percentiles to be calculated.
- `upper`: The upper end point of the interval to search.
- `...`: Additional parameters to be passed to `uniroot`.

Examples

```r
tdTilia <- tdData(tilia, x = "Day", y = "Trees")
model <- timedist(data = tdTilia, x = "Day", y = "propMax", r = 0.1, c = 0.5, t = 120)
model
tdPercentiles(model, n = 0.5)
tdPercentiles(model, n = seq(0, 0.9, 0.1))
```

tdRSS

Calculate the corrected residual sum of squares

Description

Calculate the corrected residual sum of squares for a model of class `timedist`.

Usage

```r
tdRSS(model)
```

Arguments

- `model`: An object of class `timedist`.

Value

A single value.
tilia

Examples

tdTilia <- tdData(tilia, x = "Day", y = "Trees")
model <- timedist(data = tdTilia, x = "Day", y = "propMax", r = 0.1, c = 0.5,
t = 120)
model
tdRSS(model)

tilia
Leafing phenology of tilia cordata

Description

This data describes the leafing phenology of lime trees (tilia cordata).

Usage

```r
tilia
```

Format

A data frame with 34 rows and 2 variables:

Day The day number

Trees The number of trees

Examples

```r
tilia
```

timedist
Fit the Franco model

Description

Fit the Franco model

Usage

```r
timedist(data, x, y, r, c, t, ...)
```

Arguments

- **data** The data to be included in the model.
- **x, y** The x and y values in the data, where the y values are the proportions.
- **r, c, t** The starting parameters for the model.
- **...** Additional parameters to be passed to `nlsLM`.

Details

The `nlslm` function is used instead of the `nls` function in order to use the Levenberg-Marquardt algorithm which is an extremely robust method of curve-fitting as it is able to switch between Gauss-Newton and gradient descent. This allows it to cope with far-off-optimal starting values. The standard `nls` function does not use Levenberg-Marquardt; it instead uses the Gauss-Newton type, the PORT routines and a partial linear fit.

Examples

tdTilia <- tdData(tilia, x = "Day", y = "Trees")
model <- timedist(data = tdTilia, x = "Day", y = "propMax", r = 0.1, c = 0.5,
 t = 120)
model
Index

augmentMultiple, 2

integrate, 7

lobelia, 3

nls, 10

dlslm, 9, 10

nlistimedist, 4

nlistimedist-package (nlistimedist), 4

pupae, 4

tdCDF (tdPDF), 7

tdCdfPlot, 5

tdData. 5

tdEntropy (tdMoments), 6

tdKurtosis (tdMoments), 6

tdMean (tdMoments), 6

tdMoments, 6

tdPDF, 7

tdPdfPlot (tdCdfPlot), 5

tdPercentiles, 8

tdRSS, 8

tdSkew (tdMoments), 6

tdVariance (tdMoments), 6

tilia, 9

timedist, 9

uniroot, 8