Package ‘nlts’

October 13, 2022

Title Nonlinear Time Series Analysis
Date 2018-10-11
Author Ottar N. Bjornstad [aut, cre]
Maintainer Ottar N. Bjornstad <onb1@psu.edu>
Description R functions for (non)linear time series analysis with an emphasis on nonparametric autoregression and order estimation, and tests for linearity / additivity.
Version 1.0-2
Depends R (>= 2.2.0), locfit (>= 1.5.3), acepack
NeedsCompilation no
URL http://ento.psu.edu/directory/onb1
License GPL-3
RoxygenNote 6.0.1
Repository CRAN
Date/Publication 2018-10-12 20:00:02 UTC

R topics documented:

add.test .. 2
contingency.periodogram 3
lin.order.cls .. 4
lin.test .. 5
ll.edm ... 6
ll.order .. 7
lpx ... 9
mkx ... 9
plodia .. 10
plot.contingency.periodogram 11
plot.lin.order .. 11
plot.ll.order ... 12
plot.lomb .. 13
plot.ppll .. 13
add.test

Lagrange multiplier test for additivity in a timeseries

Description

add.test is a function to test the permissibility of the additive autoregressive model:

Usage

add.test(x, order, n.cond = FALSE)

Arguments

x
A time series (vector without missing values).

order
a scalar representing the order to be considered.

n.cond
The number of observation to condition on. The default is order (must be >= order)

Details

N(t) = f1(N(t-1)) + f2(N(t-2)) + ... + fd(N(t-d)) + e(t)

against the alternative:

N(t) = F(N(t-1), N(t-2), ..., N(t-d)) + e(t)

This is the Lagrange multiplier test for additivity developed by Chen et al. (1995: test II).

Value

A vector is returned consisting of the asymptotic chi-square value, the associated d.f. and asymptotic p.val for the test of additivity.
References

Examples

data(plodia)
add.test(sqrt(plodia), order = 3)

contingency.periodogram

The contingency periodogram for periodicity in categorical time series

Description

A function to estimate the contingency periodogram to test for periodicity in categorical time series.

Usage

contingency.periodogram(x, maxper = 6, exact = FALSE)

Arguments

x A vector representing the categorical time series.
maxper the maximum lag (period) considered.
exact If TRUE the FISHER exact test is calculated

Details

This is the contingency periodogram of Pierre Legedre and Pierre Dutielle to test for periodicity in categorical time series. I have coded the function so as to provide both the Fisher exact test and the asymptotic chi-square test.

Value

An object of class "contingency.periodogram" is returned consisting of a matrix with a row for each period considered. The columns are:

exact.p the Fisher exact test at each lag (if exact=TRUE).
chi2 the asymptotic chi-square value.
df the chi-square degrees-of-freedom.
asympt.p the chi-squared asymptotic p-value.
References

Examples

data(plodia)
data<-as.factor((scale(plodia) > 0))
fit <- contingency.periodogram(data, maxper = 9)
Not run: plot(fit)

lin.order.cls

The order of a time series using cross-validation of the linear autoregressive model (conditional least-squares).

Description

A function to estimate the order of a time series using cross-validation of the linear autoregressive model. Coefficients are estimated using conditional least-squares. I coded this functions to estimate the order of ecological time series. Bjornstad et al. (1998, 2001)

Usage

lin.order.cls(x, order = 1:5, n.cond = 5, echo = TRUE)

Arguments

x A time series without missing values
order The candidate orders. The default is 1:5
n.cond The number of observation to condition on. The default is 5 (must be >= max(order))
echo if TRUE a counter for the data points and the orders is produced to monitor progress.

Details

The time series is normalized prior to cross-validation.

Note that if the dynamics is highly nonlinear, the nonparametric order-estimators (ll.order) may be more appropriate. (I coded this function to use for comparison with the nonparametric methods, because these also uses (nonlinear) conditional least-squares.)

Value

An object of class "lin.order" is returned consisting of the following components:

order the grid of orders considered.
CVd the cross-validation errors across the grid of orders.
References

See Also

ll.order

Examples

data(plodia)
fit <- lin.order.cls(sqrt(plodia), order=1:5)
Not run: plot(fit)
summary(fit)

lin.test A Tukey one-degree-of-freedom test for linearity in time series.

Description

A function to test the permissibility of the linear autoregressive model:

Usage

lin.test(x, order)

Arguments

x A time series (vector without missing values).
order a scalar representing the order to be considered.

Details

\[N(t) = a_0 + a_1N(t-1) + a_2N(t-2) + ... + a_dN(t-d) + e(t) \]

against the alternative:
\[N_t = F(N(t-1), N(t-2), ..., N(t-d)) + e(t) \]

This is the Tukey one-degree-of-freedom test of linearity developed by Tsay (1986). Orders up to 5 is permissible. [although the code is easily extended].

Value

A vector is returned consisting of the asymptotic F-value, the associated numerator and denominator d.f.’s and asymptotic p.val for the test of linearity.
References

Examples

```
data(plodia)
lin.test(sqrt(plodia), order = 3)
```

ll.edm

Nonlinear forecasting of local polynomial ‘empirical dynamic model’.

Description

A function to forcaste a local polynomial ‘empirical dynamic model’.

Usage

```
ll.edm(x, order, bandwidth, len = NA, deg = 2)
```

Arguments

- `x` A time series without missing values.
- `order` The order for the nonparametric (local polynomial) autoregression.
- `bandwidth` The bandwidth for the nonparametric (local polynomial) autoregression.
- `len` The length of the predicted time-series. If NA the length of the training time series will be used.
- `deg` The degree of the local polynomial.

Details

The function produces a nonlinear (nonparametric) forecast using the conditional mean method of Fan et al (1996). A Gaussian kernel is used for the local polynomial autoregression.

The bandwidth and order is best estimated with the `ll.order`-function.

Missing values are NOT permitted.

If deg is set to 0, the forecast uses the Nadaraya-Watson (locally constant) estimator of the conditional expectation against lagged-abundances.

Value

A time series with the nonlinear (nonparametric) forecast is returned.

References

`ll.order`

See Also
`ll.order`

Examples

```r  
data(plodia)  
siml <- ll.edm(sqrt(plodia), order=2, bandwidth = 1.5)  
```

Description

A function to estimate the order of a time series using the nonparametric order selection method of Cheng and Tong (1992, 1994) as modified by Yao & Tong (1994; see also Fan, Yao & Tong 1996). The method uses leave-one-out cross-validation of the locally linear regression against lagged-abundances.

Usage

```r  
ll.order(x, order = 1:5, step = 1, deg = 2, bandwidth = c(seq(0.3, 1.5, by = 0.1), 2:10), cv = TRUE, echo = TRUE)  
```

Arguments

- `x`
 A time series without missing values.
- `order`
 The candidate orders. The default is 1:5.
- `step`
 The time step for prediction.
- `deg`
 The degree of the local polynomial.
- `bandwidth`
 The candidate bandwidths to be considered.
- `cv`
 if TRUE leave-one-out cross-validation will be performed.
- `echo`
 if TRUE a counter shows the progress

Details

The time series is normalized prior to cross-validation.
A Gaussian kernel is used for the locally linear regression.
The bandwidth is optimized using cross-validation. If a single bandwidth is provided, no cross validation of bandwidth will be carried out. Highly nonlinear data will require more narrow bandwidths. If NA is returned it may be because the min bandwidth considered is too small relative to the density of data.
Missing values are NOT permitted.
If deg is set to 0, the order is estimated on the basis of the Nadaraya-Watson (locally constant) estimator of the conditional expectation against lagged-abundances (Cheng and Tong 1992, 1994).
Value

An object of class "ll.order" is returned consisting of the following components:

- `grid`: the grid of orders, bandwidths, and CV’s.
- `grid$order`: the orders.
- `grid$CV`: the cross-validation score across the grid of orders and bandwidths. (If `cv = TRUE`).
- `grid$GCV`: the generalized cross-validation score.
- `grid$bandwidth`: the bandwidths.
- `grid$df`: the degrees of freedom of the fitted model.
- `order`: the vector of orders considered.
- `deg`: The degree of the local polynomial.

References

Examples

data(plodia)

fit <- ll.order(sqrt(plodia), order=1:3, bandwidth = seq(0.5, 1.5, by = 0.5))

Not run: plot(fit)

summary(fit)
Utility function

Description

`lp` is a utility function that makes `ll.order` work with `locfit` > 1.5. It is not to be called by the user.

Usage

```r
lp(x, nn = 0, h = 0, adpen = 0, deg = 2, acri = "none",
    scale = FALSE, style = "none")
```

Arguments

- `x`: ...
- `nn`: ...
- `h`: ...
- `adpen`: ...
- `deg`: ...
- `acri`: ...
- `scale`: ...
- `style`: ...

Details

Not to be called by the user.

Author(s)

Catherine Loader

Utility function

Description

`mkx` is a utility function that creates a matrix of lagged time series. Called by various functions.

Usage

```r
mkx(x, lags)
```
Arguments

- x: A univariate time series.
- lags: The vector of time lags.

Details

If lags is c(1, 4), say, then the function returns a matrix that consist of columns x(t-1), x(t-4), x(t).

Value

A matrix of lagged abundances. The last column is the current

Author(s)

Upmanu Lall

References

Description

This is replicate 3 in Bjornstad et al. (1998).

Usage

plodia

Format

A vector containing 55 values

References

plot.contingency.periodogram

Plot contingency periodograms

Description

'plot' method for "contingency.periodogram" class object.

Usage

```r
## S3 method for class 'contingency.periodogram'
plot(x, ...)
```

Arguments

- `x`: an object of class "contingency.periodogram", usually, as a result of a call to `contingency.periodogram`.
- `...`: generic plot arguments.

Value

A contingency periodogram is plotted. The line represents the critical value based on the chi-squared test (95%).

See Also

`contingency.periodogram`

plot.lin.order

Plot linear cross-validation for time-series order

Description

'plot' method for class "lin.order".

Usage

```r
## S3 method for class 'lin.order'
plot(x, ...)
```

Arguments

- `x`: an object of class "lin.order", usually, as a result of a call to `lin.order.cls` or `lin.order.mle`.
- `...`: generic plot arguments.
Value

A xy-plot of order against cross-validation error is produced.

See Also

lin.order.cls

Description

‘plot’ method for class "ll.order".

Usage

```r
## S3 method for class 'll.order'
plot(x, ...)
```

Arguments

- `x` an object of class "ll.order", usually, as a result of a call to `ll.order`.
- `...` generic plot arguments.

Details

See `ll.order` for details.

Value

A xy-plot of minimum cross-validation error against order is produced.

See Also

`ll.order`
plot.lomb

Plot Lomb periodograms

Description

‘plot’ method for objects of class "lomb".

Usage

S3 method for class 'lomb'
plot(x, ...)

Arguments

x an object of class "lomb", usually, as a result of a call to spec.lomb.

... generic plot arguments.

Value

A Lomb periodogram is composed of a xy-plot of amplitude against frequency.

See Also

spec.lomb

plot.ppll

Plot function for prediction profile objects

Description

‘plot’ method for class "ppll".

Usage

S3 method for class 'ppll'
plot(x, ...)

Arguments

x an object of class "ppll", usually, as a result of a call to prediction.profile.ll.

... generic plot arguments.

Details

See prediction.profile.ll for details.
Value

A xy-plot of one minus the cross-validation error (i.e. the prediction accuracy against prediction time step.

See Also

prediction.profile.ll

Description

'plot' method for class "specar.ci".

Usage

```r
## S3 method for class 'specar.ci'
plot(x, period = TRUE, ...)
```

Arguments

- `x` an object of class "specar.ci", usually, as a result of a call to specar.ci.
- `period` if TRUE x-axis is period, if FALSE frequency.
- `...` generic plot arguments.

Value

A xy-plot of amplitude against period (or frequency).

See Also

specar.ci
portman.Q

portman.Q uses the cumulative ACF to test for whiteness of a time series.

Usage

portman.Q(x, K)

Arguments

x
A time series (vector without missing values).

K
the maximum lag of the ACF to be used in the test.

Details

This is the Ljung-Box version of the Portemanteau test for whiteness (Tong 1990). It may in particular be useful to test for whiteness in the residuals from time series models.

Value

A vector is returned consisting of the asymptotic chi-square value, the associated d.f. and asymptotic p.val for the test of whiteness.

References

Examples

data(plodia)
portman.Q(sqrt(plodia), K = 10)
fit <- ar(sqrt(plodia))
portman.Q(na.omit(fit$resid), K = 10)
predict.ll.order
Predict values from ll.order object.

Description
Calculates the leave-one-out predicted values for the optimal ll.order object.

Usage
```r
## S3 method for class 'll.order'
predict(object, ...)
```

Arguments
- `object`
an object of class "ll.order", usually, as a result of a call to `ll.order`.
- `...`
no other arguments currently allowed

Details
See `ll.order` for details.

Value
A data frame with observed and predicted values for the optimal ll-model is returned.

See Also
- `ll.order`

prediction.profile.ll
Nonlinear forecasting at varying lags using local polynomial regression.

Description
A wrapper function around `ll.order` to calculate prediction profiles (a la Sugihara and May 1990 and Yao and Tong 1994). The method uses leave-one-out cross-validation of the local regression (with CV optimized bandwidth) against lagged-abundances at various lags.

Usage
```r
prediction.profile.ll(x, step = 1:10, order = 1:5, deg = 2, bandwidth = c(seq(0.3, 1.5, by = 0.1), 2:10))
```
Arguments

x A time series without missing values.
step The vector of time steps for forward prediction.
order The candidate orders. The default is 1:5.
deg The degree of the local polynomial.
bandwidth The candidate bandwidths to be considered.

Details

see \texttt{ll.order} for details.

Value

An object of class "ppll" consisting of a list with the following components:

\begin{itemize}
 \item \texttt{step} the prediction steps considered.
 \item \texttt{CV} the cross-validation error.
 \item \texttt{order} the optimal order for each step.
 \item \texttt{bandwidth} the optimal bandwidth for each step.
 \item \texttt{df} the degrees of freedom for each step.
\end{itemize}

References

See Also

\texttt{ll.order}

Examples

data(plodia)

fit <- \texttt{prediction.profile.ll(sqrt(plodia), step=1:3, order=1:3,}
\texttt{ bandwidth = seq(0.5, 1.5, by = 0.5))}

Not run: plot(fit)
print.ll.order

Print nonparametric cross-validation for time-series order

Description

'print' method for class "ll.order".

Usage

```r
## S3 method for class 'll.order'
print(x, verbose = FALSE, ...)
```

Arguments

- `x`: an object of class "ll.order", usually, as a result of a call to `ll.order`.
- `verbose`: if TRUE provides a raw-printing of the object.
- `...`: no other arguments currently allowed

Details

See `ll.order` for details.

Value

A matrix summarizing the minimum cross-validation error (cv.min) and the associated Gaussian-kernel bandwidth (bandwidth.opt) and model degrees-of-freedom for each order considered.

See Also

`ll.order`

spec.lomb

The Lomb periodogram for unevenly sampled data

Description

The function to estimate the Lomb periodogram for a spectral analysis of unevenly sampled data.

Usage

```r
spec.lomb(y = stop("no data arg"), x = stop("no time arg"), freq = NULL)
```
Arguments

- **y**: vector of length n representing the unevenly sampled time series.
- **x**: the a vector (of length n) representing the times of observation.
- **freq**: the frequencies at which the periodogram is to be calculated. If NULL the canonical frequencies (the Fourier frequencies) are used.

Details

This is the Lomb periodogram to test for periodicity in time series of unevenly sampled data. Missing values should be deleted in both x and y before execution.

Value

An object of class "lomb" is returned consisting of the following components:

- **freq**: the frequencies as supplied.
- **spec**: the estimated amplitudes at the different frequencies.
- **f.max**: the frequency of maximum amplitude.
- **per.max**: the corresponding period of maximum amplitude.
- **p**: the level of significance associated with the max period.

References

Examples

data(plodia)
y <- sqrt(plodia)
x <- 1:length(y)

make some missing values
omit NAs
y <- na.omit(y); x <- na.omit(x)

the lomb p'gram
fit <- spec.lomb(y, x)
summary(fit)
Not run: plot(fit)
specar.ci

Confidence interval for the ar-spectrum and the dominant period.

Description
A function to estimate a "confidence interval" for the power spectrum and in particular a confidence interval for the dominant period. The function uses resampling of the autoregressive parameters to attain the estimate.

Usage
specar.ci(x, order, resamp = 500, nfreq = 100, echo = TRUE)

Arguments

x
A time series without missing values.

order
a scalar representing the order to be considered. If "aic" the order is selected automatically using the AIC criterion.

resamp
the number of resamples of the ar-coefficients from the covariance matrix.

nfreq
the number of points at which to save the value for the power spectrum (and confidence envelope).

echo
If TRUE, a counter for each nrun shows the progress.

Details
A "confidence interval" for the periodogram is obtained by resampling the ar-coefficients using the variance-covariance matrix from the ar.mle object.

If a zero'th order process is chosen by using the AIC criterion, a first order process will be used.
If the dynamics is highly nonlinear, the parametric estimate of the power spectrum may be inappropriate.

Value
An object of class "specar.ci" is returned consisting of the following components:

order
the ar-order.

specturm$freq
the spectral frequencies.

specturm$spec
the estimated power-spectrum of the data.

resamp$spectrum
gives the quantile summary for the resampling distribution of the spectral powers.

resamp$maxfreq
the full vector of output for the resampled max.frequencies.

See Also
plot.specar.ci summary.specar.ci
Examples

data(plodia)

fit <- specar.ci(sqrt(plodia), order=3, resamp=10)

Not run: plot(fit, period=FALSE)

summary(fit)

summary.lin.order

Summary linear cross-validation for time-series order

Description

'summary' method for class "lin.order".

Usage

S3 method for class 'lin.order'
summary(object, ...)

Arguments

object an object of class "lin.order", usually, as a result of a call to lin.order.cls or lin.order.mle.

... no other arguments currently allowed

Value

A slightly prettyfied version of the object is printed.

See Also

lin.order.cls
summary.1l.order

Summarize nonparametric cross-validation for time-series order

Description

`summary' method for class "1l.order".

Usage

```r
## S3 method for class '1l.order'
summary(object, GCV = FALSE, ...)
```

Arguments

- `object` an object of class "1l.order", usually, as a result of a call to 1l.order.
- `GCV` if TRUE (or if cross-validation was not done), uses GCV values.
- `...` no other arguments currently allowed

Details

See 1l.order for details.

Value

A matrix summarizing the minimum cross-validation error (`cv.min`) and the associated Gaussian-kernel bandwidth (`bandwidth.opt`) and model degrees-of-freedom for each order considered.

See Also

1l.order

summary.lomb

Summarizes Lomb periodograms

Description

`summary' method for objects of class "lomb".

Usage

```r
## S3 method for class 'lomb'
summary(object, ...)```

**Arguments**

- `object` an object of class "lomb", usually, as a result of a call to lomb.
- `...` no other arguments currently allowed
Arguments

object   an object of class "lomb", usually, as a result of a call to spec.lomb.
...     generic plot arguments.

Value

A list summarizing the analysis is printed:

period    the dominant period.
p.val     the p.value.

See Also

spec.lomb

summary.specar.ci  Summarize ar-spectra with CI's

Description

‘summary’ method for objects of class "specar.ci".

Usage

## S3 method for class 'specar.ci'
summary(object, period = TRUE, ...)

Arguments

object   an object of class "specar.ci", usually, as a result of a call to specar.ci.
period   If TRUE the summary is given in terms of the period, if false it is in terms of the frequency
...     generic plot arguments.

Value

A list summarizing the analysis is printed:

period    the dominant period.
p.val     the p.value.

See Also

specar.ci
Index

* datasets
  plodia, 10

* misc
  lpx, 9
  mkx, 9

* ts
  add.test, 2
  contingency.periodogram, 3
  lin.order.cls, 4
  lin.test, 5
  ll.edm, 6
  ll.order, 7
  plot.contingency.periodogram, 11
  plot.lin.order, 11
  plot.ll.order, 12
  plot.lomb, 13
  plot.ppll, 13
  plot.specar.ci, 14
  portman.Q, 15
  predict.ll.order, 16
  prediction.profile.ll, 13, 14, 16
  print.ll.order, 18
  print.ppll (prediction.profile.ll), 16
  spec.lomb, 13, 18, 23
  specar.ci, 14, 20, 23
  summary.lin.order, 21
  summary.ll.order, 22
  summary.lomb, 22
  summary.specar.ci, 20, 23

add.test, 2

contingency.periodogram, 3, 11

lin.order.cls, 4, 12, 21
lin.test, 5
ll.edm
ll.order, 4–7, 12, 16–18, 22
lpx, 9
mkx, 9

plodia, 10
plot.contingency.periodogram, 11
plot.lin.order, 11
plot.ll.order, 12
plot.lomb, 13
plot.ppll, 13
plot.specar.ci, 14, 20
portman.Q, 15
predict.ll.order, 16
prediction.profile.ll, 13, 14, 16
print.ll.order, 18
print.ppll (prediction.profile.ll), 16
spec.lomb, 13, 18, 23
specar.ci, 14, 20, 23
summary.lin.order, 21
summary.ll.order, 22
summary.lomb, 22
summary.specar.ci, 20, 23