Package ‘nncc’

August 30, 2022

Title Nearest Neighbors Matching of Case-Control Data

Version 1.0.0

Description Provides nearest-neighbors matching and analysis of case-control data. Cui, Z., Marder, E. P., Click, E. S., Hoekstra, R. M., & Bruce, B. B. (2022) <doi:10.1097/EDE.0000000000001504>.

Depends R (>= 3.3.2)

License GPL (>= 3)

Encoding UTF-8

LazyData true

Imports dplyr, furrr, tidyrr, igraph, ggplot2, cluster, rlang, mgcv, stats, formula.tools, mice

RoxygenNote 7.2.1

Suggests rmarkdown, knitr, future, future.batchtools, survival

VignetteBuilder knitr

NeedsCompilation yes

Author Beau Bruce [aut, cre], Zhaohui Cui [aut], Georg Heinze [cph] (Author of included logistf package), Meinhard Ploner [cph] (Author of included logistf package), Lena Jiricka [cph] (Author of included logistf package)

Maintainer Beau Bruce <lue7@cdc.gov>

Repository CRAN

Date/Publication 2022-08-30 13:00:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>logistf-package</td>
<td>3</td>
</tr>
<tr>
<td>add1.logistf</td>
<td>5</td>
</tr>
<tr>
<td>anifood</td>
<td>6</td>
</tr>
<tr>
<td>anova.logistf</td>
<td>7</td>
</tr>
<tr>
<td>backward</td>
<td>8</td>
</tr>
</tbody>
</table>
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cacheit</td>
<td>11</td>
</tr>
<tr>
<td>calc_strata_or</td>
<td>11</td>
</tr>
<tr>
<td>CLIP.confint</td>
<td>12</td>
</tr>
<tr>
<td>CLIP.confint.diflevel</td>
<td>14</td>
</tr>
<tr>
<td>CLIP.profile</td>
<td>16</td>
</tr>
<tr>
<td>distance_density_plot</td>
<td>18</td>
</tr>
<tr>
<td>excl_vars</td>
<td>19</td>
</tr>
<tr>
<td>finalize_data</td>
<td>20</td>
</tr>
<tr>
<td>fix_df</td>
<td>20</td>
</tr>
<tr>
<td>flac</td>
<td>21</td>
</tr>
<tr>
<td>flic</td>
<td>23</td>
</tr>
<tr>
<td>get_paf</td>
<td>25</td>
</tr>
<tr>
<td>get_threshold</td>
<td>26</td>
</tr>
<tr>
<td>isspecnum</td>
<td>27</td>
</tr>
<tr>
<td>logistf</td>
<td>27</td>
</tr>
<tr>
<td>logistf.control</td>
<td>31</td>
</tr>
<tr>
<td>logistf.fit</td>
<td>32</td>
</tr>
<tr>
<td>logistf.pdf</td>
<td>33</td>
</tr>
<tr>
<td>logistftest</td>
<td>34</td>
</tr>
<tr>
<td>logistpl.control</td>
<td>36</td>
</tr>
<tr>
<td>make_analysis_set</td>
<td>38</td>
</tr>
<tr>
<td>make_analysis_sets</td>
<td>39</td>
</tr>
<tr>
<td>make_knn_strata</td>
<td>39</td>
</tr>
<tr>
<td>nncc</td>
<td>40</td>
</tr>
<tr>
<td>original_compare_plot</td>
<td>41</td>
</tr>
<tr>
<td>plot.logistf.profile</td>
<td>42</td>
</tr>
<tr>
<td>plot_results</td>
<td>44</td>
</tr>
<tr>
<td>predict.flac</td>
<td>44</td>
</tr>
<tr>
<td>predict.flic</td>
<td>45</td>
</tr>
<tr>
<td>predict.logistf</td>
<td>46</td>
</tr>
<tr>
<td>profile.logistf</td>
<td>46</td>
</tr>
<tr>
<td>PVR.confint</td>
<td>48</td>
</tr>
<tr>
<td>sex2</td>
<td>50</td>
</tr>
<tr>
<td>sexagg</td>
<td>51</td>
</tr>
<tr>
<td>test_mh</td>
<td>52</td>
</tr>
<tr>
<td>threshold_model_plot</td>
<td>52</td>
</tr>
<tr>
<td>unique_controls</td>
<td>53</td>
</tr>
<tr>
<td>write_strata_or_output</td>
<td>53</td>
</tr>
</tbody>
</table>

Index: 54
Description

Fit a logistic regression model using Firth’s bias reduction method, equivalent to penalization of the log-likelihood by the Jeffreys prior. Confidence intervals for regression coefficients can be computed by penalized profile likelihood. Firth’s method was proposed as ideal solution to the problem of separation in logistic regression. If needed, the bias reduction can be turned off such that ordinary maximum likelihood logistic regression is obtained.

Details

The package logistf provides a comprehensive tool to facilitate the application of Firth’s modified score procedure in logistic regression analysis. It was written on a PC with S-PLUS 4.0, later translated to S-PLUS 6.0, and to R.

Version 1.10 improves on previous versions by the possibility to include case weights and offsets, and better control of the iterative fitting algorithm.

Version 1.20 provides a major update in many respects:

1. Many S3Methods have been defined for objects of type logistf, including add1, drop1 and anova methods
2. New forward and backward functions allow for automated variable selection using penalized likelihood ratio tests
3. The core routines have been transferred to C code, and many improvements for speed have been done
4. Handling of multiple imputed data sets: the ‘combination of likelihood profiles’ (CLIP) method has been implemented, which builds on datasets that were imputed by the package mice, but can also handle any imputed data.

The call of the main function of the library follows the structure of the standard functions as lm or glm, requiring a data.frame and a formula for the model specification. The resulting object belongs to the new class logistf, which includes penalized maximum likelihood (‘Firth-Logistic’- or ‘FL’-type) logistic regression parameters, standard errors, confidence limits, p-values, the value of the maximized penalized log likelihood, the linear predictors, the number of iterations needed to arrive at the maximum and much more. Furthermore, specific methods for the resulting object are supplied. Additionally, a function to plot profiles of the penalized likelihood function and a function to perform penalized likelihood ratio tests have been included.

In explaining the details of the estimation process we follow mainly the description in Heinze & Ploner (2003). In general, maximum likelihood estimates are often prone to small sample bias. To reduce this bias, Firth (1993) suggested to maximize the penalized log likelihood \(\log L(\beta)^* = \log L(\beta) + 1/2 \log |I(\beta)| \), where \(I(\beta) \) is the Fisher information matrix, i. e. minus the second derivative of the log likelihood. Applying this idea to logistic regression, the score function \(U(\beta) \) is replaced by the modified score function \(U(\beta)^* = U(\beta) + a \), where \(a \) has \(r \)th entry \(a_r = 0.5tr I(\beta)^{-1} [dI(\beta)/d\beta_r] \), \(r = 1, ..., k \). Heinze and Schepner (2002) give the explicit formulae for \(I(\beta) \) and \(I(\beta)/d\beta_r \).
In our programs estimation of β is based on a Newton-Raphson algorithm. Parameter values are initialized usually with 0, but in general the user can specify arbitrary starting values.

With a starting value of $\beta^{(0)}$, the penalized maximum likelihood estimate β is obtained iteratively:

$$\beta^{(s+1)} = \beta^{(s)} + I(\beta^{(s)})^{-1}U(\beta^{(s)})$$

If the penalized log likelihood evaluated at $\beta^{(s+1)}$ is less than that evaluated at $\beta^{(s)}$, then $(\beta^{(s+1)})$ is recomputed by step-halving. For each entry r of β with $r = 1, \ldots, k$ the absolute step size $|\beta_r^{(s+1)} - \beta_r^{(s)}|$ is restricted to a maximal allowed value maxstep. These two means should avoid numerical problems during estimation. The iterative process is continued until the parameter estimates converge, i.e., until three criteria are met: the change in log likelihood is less than lconv, the maximum absolute element of the score vector is less than gconv, the maximum absolute change in beta is less than xconv. lconv, gconv, xconv can be controlled by control=logistf.control(lconv=..., gconv=..., xconv=...).

Computation of profile penalized likelihood confidence intervals for parameters (logistf) follows the algorithm of Venzon and Moolgavkar (1988). For testing the hypothesis of $\gamma = \gamma_0$, let the likelihood ratio statistic

$$LR = 2[\log L(\gamma, \delta) - \log L(\gamma_0, \delta)]$$

where (γ, δ) is the joint penalized maximum likelihood estimate of $\beta = (\gamma, \delta)$, and δ_{γ_0} is the penalized maximum likelihood estimate of δ when $\gamma = \gamma_0$. The profile penalized likelihood confidence interval is the continuous set of values γ_0 for which LR does not exceed the $(1 - \alpha)100$th percentile of the χ^2_k-distribution. The confidence limits can therefore be found iteratively by approximating the penalized log likelihood function in a neighborhood of β by the quadratic function

$$l(\beta + \delta) = l(\beta) + \delta'U^* - 0.5\delta'\delta$$

where $U^* = U(\beta)^*$ and $-I = -I(\beta)$.

In some situations computation of profile penalized likelihood confidence intervals may be time consuming since the iterative procedure outlined above has to be repeated for the lower and for the upper confidence limits of each of the k parameters. In other problems one may not be interested in interval estimation, anyway. In such cases, the user can request computation of Wald confidence intervals and P-values, which are based on the normal approximation of the parameter estimates and do not need any iterative estimation process. Standard errors $\sigma_r, r = 1, \ldots, k$, of the parameter estimates are computed as the roots of the diagonal elements of the variance matrix $V(\beta) = I(\beta)^{-1}$. A 100$(1 - \alpha)$ per cent Wald confidence interval for parameter β_r is then defined as $[\beta_r + \Psi_{\alpha/2}\sigma_r, \beta_r + \Psi_{1-\alpha/2}\sigma_r]$ where Ψ_{α} denotes the α-quantile of the standard normal distribution function. The adequacy of Wald confidence intervals for parameter estimates should be verified by plotting the profile penalized log likelihood (PPL) function. A symmetric shape of the PPL function allows use of Wald intervals, while an asymmetric shape demands profile penalized likelihood intervals (Heinze & Schenper (2002)). Further documentation can be found in Heinze & Ploner (2004). The latest version now also includes functions to work with multiply imputed data sets, such as generated by the mice package. Results on individual fits can be pooled to obtain point and interval estimates, as well as profile likelihood confidence intervals and likelihood profiles in general (Heinze, Ploner and Beyea, 2013).
add1.logistf

Add or Drop All Possible Single Terms to/from a logistf Model

Description

Compute all the single terms in the scope argument that can be added to or dropped from the model, fit those models and compute a table of the changes in fit.

Usage

```r
## S3 method for class 'logistf'
add1(object, scope, test = "PLR", ...)
```

Arguments

- `object`: A fitted logistf, flic or flac object
- `scope`: The scope of variables considered for adding or dropping. Should be a vector of variable names. Can be left missing; the method will then use all variables in the object’s data slot which are not identified as the response variable.
- `test`: The type of test statistic. Currently, only the PLR test (penalized likelihood ratio test) is allowed for logistf fits.
- `...`: Further arguments passed to or from other methods.
Details

drop1 and add1 generate a table where for each variable the penalized likelihood ratio chi-squared, the degrees of freedom, and the p-value for dropping/adding this variable are given.

Value

A matrix with nvar rows and 3 columns (Chisquared, degrees of freedom, p-value).

Examples

data(sex2)
fit<-logistf(data=sex2, case~1, pl=FALSE)
add1(fit, scope=c("dia", "age"))

fit2<-logistf(data=sex2, case~age+oc+dia+vic+vicl+vis)
drop1(fit2)

anifood case-control data

Description

A toy dataset containing 7-day exposure history of 250 cases and 250 controls

Usage

anifood

Format

A data frame with 500 rows and 11 variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
<td>case status, 1 = case, 0 = control</td>
</tr>
<tr>
<td>exp01</td>
<td>whether exposed to exp01, 1 = yes, 0 = no</td>
</tr>
<tr>
<td>exp09</td>
<td>whether exposed to exp09, 1 = yes, 0 = no</td>
</tr>
<tr>
<td>exp20</td>
<td>whether exposed to exp20, 1 = yes, 0 = no</td>
</tr>
<tr>
<td>exp24</td>
<td>whether exposed to exp24, 1 = yes, 0 = no</td>
</tr>
<tr>
<td>exp27</td>
<td>whether exposed to exp27, 1 = yes, 0 = no</td>
</tr>
<tr>
<td>exp43</td>
<td>whether exposed to exp43, 1 = yes, 0 = no</td>
</tr>
<tr>
<td>exp45</td>
<td>whether exposed to exp45, 1 = yes, 0 = no</td>
</tr>
<tr>
<td>exp50</td>
<td>whether exposed to exp50, 1 = yes, 0 = no</td>
</tr>
<tr>
<td>exp52</td>
<td>whether exposed to exp52, 1 = yes, 0 = no</td>
</tr>
<tr>
<td>exp57</td>
<td>whether exposed to exp57, 1 = yes, 0 = no</td>
</tr>
</tbody>
</table>
Description

This method compares hierarchical and non-hierarchical logistf models using penalized likelihood ratio tests. It replaces the function logistftest of former versions of logistf.

Usage

```r
## S3 method for class 'logistf'
anova(object, fit2, formula, method = "nested", ...)
```

Arguments

- `object` A fitted logistf model object
- `fit2` Another fitted logistf model object, to be compared with `object`
- `formula` Alternatively to `fit2`, a formula which specifies terms to omit from the object model fit.
- `method` One of c("nested","PLR"). nested is the default for hierarchically nested models, and will compare the penalized likelihood ratio statistics (minus twice the difference between maximized penalized log likelihood and null penalized log likelihood), where the null penalized log likelihood is computed from the same, hierarchically superior model. Note that unlike in maximum likelihood analysis, the null penalized likelihood depends on the penalty (Jeffreys prior) which itself depends on the scope of variables of the hierarchically superior model. PLR compares the difference in penalized likelihood ratio between the two models, where for each model the null penalized likelihood is computed within the scope of variables in that model. For PLR, the models need not be hierarchically nested.
- `...` Further arguments passed to the method.

Details

Comparing models fitted by penalized methods, one must consider that the penalized likelihoods are not directly comparable, since a penalty is involved. Or in other words, inserting zero for some regression coefficients will not lead to the same penalized likelihood as if the corresponding variables are simply "unknown" to a model. The anova method takes care that the same penalty is used for two hierarchically nested models, and if the models are not hierarchically nested, it will first relate each penalized likelihood to its null penalized likelihood, and only compare the resulting penalized likelihood ratio statistics. The chi-squared approximation for this latter method (PLR) is considered less accurate than that of the nested method. Nevertheless, it is the only way to go for comparison of non-nested models.
Value

An object of class anova.logistf with items

- **chisq**: the chisquared statistic for the model comparison
- **df**: The degrees of freedom
- **pval**: The p-value
- **call**: The function call
- **method**: The method of comparison (input)
- **model1**: The first model
- **model2**: The second model which was compared to the first model
- **PLR1**: The PLR statistic of the first model
- **PLR2**: the PLR statistic of the second model; for the nested method, this will be the drop in chi-squared due to setting the coefficients to zero

Examples

```r
data(sex2)
fit<-logistf(data=sex2, case~age+oc+dia+vic+vicl+vis)

# simultaneous test of variables vic, vicl, vis:
anova(fit, formula=~vic+vicl+vis)

# test versus a simpler model
fit2<-logistf(data=sex2, case~age+oc+dia)
# or: fit2<-update(fit, case~age+oc+dia)
anova(fit,fit2)

# comparison of non-nested models (with different df):
fit3<-logistf(data=sex2, case~age+vic+vicl+vis)
anova(fit2,fit3, method="PLR")
```

Description

These functions provide simple backward elimination/forward selection procedures for logistf models.
Usage

backward(object, ...)

S3 method for class 'logistf'
backward(
 object,
 scope,
 steps = 1000,
 slstay = 0.05,
 trace = TRUE,
 printwork = FALSE,
 full.penalty = FALSE,
 ...
)

S3 method for class 'flic'
backward(
 object,
 scope,
 steps = 1000,
 slstay = 0.05,
 trace = TRUE,
 printwork = FALSE,
 full.penalty = FALSE,
 ...
)

forward(object, ...)

S3 method for class 'logistf'
forward(
 object,
 scope,
 steps = 1000,
 slentry = 0.05,
 trace = TRUE,
 printwork = FALSE,
 pl = TRUE,
 ...
)

S3 method for class 'flac'
backward(
 object,
 steps = 1000,
 slstay = 0.05,
 trace = TRUE,
 printwork = FALSE,
Arguments

 object A fitted logistf model object. To start with an empty model, create a model fit
 with a formula=<y>-1, pl=FALSE. (Replace <y> by your response variable.)

 ... Further arguments to be passed to methods.

 scope The scope of variables to add/drop from the model. Can be missing for back-
 ward, backward will use the terms of the object fit. Alternatively, an arbitrary
 vector of variable names can be given, to allow that only some of the variables
 will be competitively selected or dropped. Has to be provided for forward.

 steps The number of forward selection/backward elimination steps.

 slstay For backward, the significance level to stay in the model.

 trace If TRUE, protocols selection steps.

 printwork If TRUE, prints each working model that is visited by the selection procedure.

 full.penalty If TRUE penalty is not taken from current model but from start model.

 slentry For forward, the significance level to enter the model.

 pl For forward, computes profile likelihood confidence intervals for the final model
 if TRUE.

Details

 The variable selection is simply performed by repeatedly calling add1 or drop1 methods for logistf,
 and is based on penalized likelihood ratio test. It can also properly handle variables that were
 defined as factors in the original data set.

Value

 An updated logistf, flic or flac fit with the finally selected model.

Functions

 • forward(): Forward Selection

Examples

 data(sex2)
 fit<-logistf(data=sex2, case~1, pl=FALSE)
 fitf<-forward(fit, scope = c("dia", "age"))

 fit2<-logistf(data=sex2, case~age+oc+vic+vicl+vis+dia)
 fitb<-backward(fit2)
Function to cache long operations

Description
Save results from code that takes a long time to execute to a .rds file if that file does not exist in the cache directory. If the file exists in the cache directory, that file will be loaded to memory without evaluating the code.

Usage
```r
cacheit(name, code, dir, createdir = FALSE, clearcache = FALSE)
```

Arguments
- `name`: Name of the file to create without extension
- `code`: Expression of the code to execute and cache
- `dir`: Name of cache directory which should be placed in the working directory
- `createdir`: Logical about whether to create the directory if it does not exist
- `clearcache`: Logical about whether to recalculate the cached .rds file for this object

Details
For more information, please refer to the vignette using `browseVignettes("nncc")`.

Value
Output of code, either freshly executed if the file does not exist or or clearcache is TRUE otherwise returns result from the cache file

Calculate the pooled strata OR

Description
Each case and matched controls form a stratum in the data set. This function is to calculate the pooled OR for the data set.

Usage
```r
calc_strata_or(dfs, filter = TRUE, filterdata = NULL)
```
Arguments

dfs A named list of dataframes created by package functions
filter Filter statement to apply
filterdata Extra data to left join to the dfs for filtering

Details

Uses the M-H method unless there is only one strata for which the fisher.test is used. For more information, please refer to the vignette using browseVignettes("nncc").

Description

This function implements the new combination of likelihood profiles (CLIP) method described in Heinze, Ploner and Beyea (2013). This method is useful for computing confidence intervals for parameters after multiple imputation of data sets, if the normality assumption on parameter estimates and consequently the validity of applying Rubin's rules (pooling of variances) is in doubt. It consists of combining the profile likelihoods into a posterior. The function CLIP.confint searches for those values of a regression coefficient, at which the cumulative distribution function of the posterior is equal to the values specified in the argument ci.level (usually 0.025 and 0.975). The search is performed using R's optimize function.

Usage

CLIP.confint(
 obj = NULL,
 variable = NULL,
 data,
 firth = TRUE,
 weightvar = NULL,
 control = logistf.control(),
 ci.level = c(0.025, 0.975),
 pvalue = TRUE,
 offset = NULL,
 bound.lo = NULL,
 bound.up = NULL,
 legacy = FALSE
)
Arguments

- **obj**: Either a list of logistf fits (on multiple imputed data sets), or the result of analysis of a mice (multiply imputed) object using with.mids
- **variable**: The variable of interest, for which confidence intervals should be computed. If missing, confidence intervals for all variables will be computed.
- **data**: A list of data set corresponding to the model fits. Can be left blank if obj was obtained with the dataout=TRUE option or if obj was obtained by mice
- **firth**: If TRUE, applies the Firth correction. Should correspond to the entry in obj.
- **weightvar**: An optional weighting variable for each observation.
- **control**: Control parameters for logistf, usually obtained by logistf.control()
- **ci.level**: The two confidence levels for each tail of the posterior distribution.
- **pvalue**: If TRUE, will also compute a P-value from the posterior.
- **offset**: An optional offset variable
- **bound.lo**: Bounds (vector of length 2) for the lower limit. Can be left blank. Use only if problems are encountered.
- **bound.up**: Bounds (vector of length 2) for the upper limit. Can be left blank. Use only if problems are encountered.
- **legacy**: If TRUE, will use pure R code for all model fitting. Can be slow. Not recommended.

Details

For each confidence limit, this function performs a binary search to evaluate the combined posterior, which is obtained by first transforming the imputed-data likelihood profiles into cumulative distribution functions (CDFs), and then averaging the CDFs to obtain the CDF of the posterior. Usually, the binary search manages to find the confidence intervals very quickly. The number of iterations (mean and maximum) will be supplied in the output object. Further details on the method can be found in Heinze, Ploner and Beyea (2013).

Value

An object of class CLIP.confint, with items:

- **variable**: The variable(s) which were analyzed
- **estimate**: The pooled estimate (average over imputations)
- **ci**: The confidence interval(s)
- **pvalue**: The p-value(s)
- **imputations**: The number of imputed datasets
- **ci.level**: The confidence level (input)
- **bound.lo**: The bounds used for finding the lower confidence limit; usually not of interest. May be useful for error-tracing.
- **bound.up**: The bounds used for finding the upper confidence limit
- **iter**: The number of iterations (for each variable and each tail)
- **call**: The call object
Author(s)
Georg Heinze and Meinhard Ploner

References

See Also
[logistf()] for Firth’s bias-Reduced penalized-likelihood logistic regression.

Examples
generate data set with NAs
freq=c(5,2,2,7,5,4)
y<-c(rep(1,freq[1]+freq[2]), rep(0,freq[3]+freq[4]), rep(1,freq[5]), rep(0,freq[6]))
x<-c(rep(1,freq[1]), rep(0,freq[2]), rep(1,freq[3]), rep(0,freq[4]), rep(NA,freq[5]), rep(NA,freq[6]))
toy<-.data.frame(x=x, y=y)

impute data set 5 times
set.seed(169)
toymi<-list(0)
for(i in 1:5){
 toymi[[i]]<-toy
 y1<-.toymi[[i]]$y==1 & is.na(toymi[[i]]$x)
 y0<-.toymi[[i]]$y==0 & is.na(toymi[[i]]$x)
 xnew1<-rbinom(sum(y1),1,freq[1]/(freq[1]+freq[2]))
 xnew0<-rbinom(sum(y0),1,freq[3]/(freq[3]+freq[4]))
 toymi[[i]]$x[y1==TRUE]<-xnew1
 toymi[[i]]$x[y0==TRUE]<-xnew0
}

logistf analyses of each imputed data set
fit.list<-lapply(1:5, function(X) logistf(data=toymi[[X]], y~x, pl=TRUE))

CLIP confidence limits
CLIP.confint(obj=fit.list, data = toymi)

CLIP.confint.difflevel
Combine confidence interval for logistf after multiple imputation

Description
The function was modified from [CLIP.confint](https://CRAN.R-project.org/package=logistf/index.html) to combine results from m imputed data sets that have different structures (e.g., a covariate in a model have different levels across different imputed data sets) on April 15, 2022.
Usage

CLIP.confint.difflevel(
 obj = NULL,
 variable = NULL,
 data,
 firth = TRUE,
 weightvar = NULL,
 control = logistf.control(),
 ci.level = c(0.025, 0.975),
 pvalue = TRUE,
 offset = NULL,
 bound.lo = NULL,
 bound.up = NULL,
 legacy = FALSE
)

Arguments

obj Either a list of logistf fits (on multiple imputed data sets), or the result of analysis of a mice (multiply imputed) object using with.mids
variable Must be used to include variables of interest; each of variable of interest must have the same levels across different imputed data sets.
data A list of data set corresponding to the model fits. Can be left blank if obj was obtained with the dataout=TRUE option or if obj was obtained by mice
firth If TRUE, applies the Firth correction. Should correspond to the entry in obj.
weightvar An optional weighting variable for each observation.
control Control parameters for logistf, usually obtained by logistf.control()
ci.level The two confidence levels for each tail of the posterior distribution.
pvalue If TRUE, will also compute a P-value from the posterior.
offset An optional offset variable
bound.lo Bounds (vector of length 2) for the lower limit. Can be left blank. Use only if problems are encountered.
bound.up Bounds (vector of length 2) for the upper limit. Can be left blank. Use only if problems are encountered.
legacy If TRUE, will use pure R code for all model fitting. Can be slow. Not recommended.

Details

The formula in [logistf](https://CRAN.R-project.org/package=logistf/index.html) must be written as variable of interest followed by covariates that have different levels across different imputed data sets.

For more information, please refer to the vignette using browseVignettes("nncc") and the original function [CLIP.confint](https://CRAN.R-project.org/package=logistf/index.html).

Please cite the original function [CLIP.confint](https://CRAN.R-project.org/package=logistf/index.html) for publication.
Value

An object of class \texttt{CLIP.confint}, with items:

\begin{itemize}
 \item \texttt{variable} \hspace{1cm} The variable(s) which were analyzed
 \item \texttt{estimate} \hspace{1cm} The pooled estimate (average over imputations)
 \item \texttt{ci} \hspace{1cm} The confidence interval(s)
 \item \texttt{pvalue} \hspace{1cm} The p-value(s)
 \item \texttt{imputations} \hspace{1cm} The number of imputed datasets
 \item \texttt{ci.level} \hspace{1cm} The confidence level (input)
 \item \texttt{bound.lo} \hspace{1cm} The bounds used for finding the lower confidence limit; usually not of interest. May be useful for error-tracing.
 \item \texttt{bound.up} \hspace{1cm} The bounds used for finding the upper confidence limit
 \item \texttt{iter} \hspace{1cm} The number of iterations (for each variable and each tail)
 \item \texttt{call} \hspace{1cm} The call object
\end{itemize}

CLIP.profile

Combine Profile Likelihoods from Imputed-Data Model Fits

Description

This function uses CLIP (combination of likelihood profiles) to compute the pooled profile of the posterior after multiple imputation.

Usage

\begin{verbatim}
CLIP.profile(
 obj = NULL,
 variable,
 data,
 which,
 firth = TRUE,
 weightvar,
 control = logistf.control(),
 offset = NULL,
 from = NULL,
 to = NULL,
 steps = 101,
 legacy = FALSE,
 keep = FALSE
)
\end{verbatim}
CLIP:profile

Arguments

- **obj**: Either a list of logistf fits (on multiple imputed data sets), or the result of analysis of a mice (multiply imputed) object using with.mids.
- **variable**: The variable of interest, for which confidence intervals should be computed. If missing, confidence intervals for all variables will be computed.
- **data**: A list of data set corresponding to the model fits. Can be left blank if obj was obtained with the dataout=TRUE option or if obj was obtained by mice.
- **which**: Alternatively to variable, the argument which allows to specify the variable to compute the profile for as righthand formula, e.g. which=~X.
- **firth**: If TRUE, applies the Firth correction. Should correspond to the entry in obj.
- **weightvar**: An optional weighting variable for each observation
- **control**: control parameters for logistf, usually obtained by logistf.control()
- **offset**: An optional offset variable
- **from**: Lowest value for the sequence of values for the regression coefficients for which the profile will be computed. Can be left blank.
- **to**: Highest value for the sequence of values for the regression coefficients for which the profile will be computed. Can be left blank.
- **steps**: Number of steps for the sequence of values for the regression coefficients for which the profile will be computed.
- **legacy**: If TRUE, only R code will be used. Should be avoided.
- **keep**: If TRUE, keeps the profiles for each imputed data sets in the output object.

Details

While CLIP:confint iterates to find those values at which the CDF of the pooled posterior equals the confidence levels, CLIP:profile will evaluate the whole profile, which enables plotting and evaluating the skewness of the combined and the completed-data profiles. The combined and completed-data profiles are available as cumulative distribution function (CDF) or in the scaling of relative profile likelihood (minus twice the likelihood ratio statistic compared to the maximum). Using a plot method, the pooled posterior can also be displayed as a density.

Value

An object of class CLIP:profile with items:

- **beta**: The values of the regression coefficient
- **cdf**: The cumulative distribution function of the posterior
- **profile**: The profile of the posterior
- **cdf.matrix**: An imputations x steps matrix with the values of the completed-data CDFs for each beta
- **profile.matrix**: An imputations x steps matrix with the values of the completed-data profiles for each beta
- **call**: The function call
Author(s)
Georg Heinze und Meinhard Ploner

References

Examples

```r
#generate data set with NAs
freq=c(5,2,2,7,5,4)
y<-c(rep(1,freq[1]+freq[2]), rep(0,freq[3]+freq[4]), rep(1,freq[5]), rep(0,freq[6]))
x<-c(rep(1,freq[1]), rep(0,freq[2]), rep(1,freq[3]), rep(0,freq[4]), rep(NA,freq[5]), rep(NA,freq[6]))
toy<-data.frame(x=x, y=y)

# impute data set 5 times
set.seed(169)
toymi<-list()
for(i in 1:5){
  toymi[[i]]<-toy
  y1<-toymi[[i]]$y==1 & is.na(toymi[[i]]$x)
  y0<-toymi[[i]]$y==0 & is.na(toymi[[i]]$x)
  xnew1<-rbinom(sum(y1),1,freq[1]/(freq[1]+freq[2]))
  xnew0<-rbinom(sum(y0),1,freq[3]/(freq[3]+freq[4]))
  toymi[[i]]$x[y1==TRUE]<-xnew1
  toymi[[i]]$x[y0==TRUE]<-xnew0
}

# logistf analyses of each imputed data set
fit.list<-lapply(1:5, function(X) logistf(data=toymi[[X]], y~x, pl=TRUE, dataout=TRUE))

# CLIP profile
xprof<-CLIP.profile(obj=fit.list, variable="x", data =toymi, keep=TRUE)
plot(xprof)

#plot as CDF
plot(xprof, "cdf")

#plot as density
plot(xprof, "density")
```

distance_density_plot

Distance density plots comparing closest to random choices
Description

Distance density plots comparing closest to random choices

Usage

```r
distance_density_plot(threshold_results)
```

Arguments

- `threshold_results`

 See `get_threshold`

Value

The ggplot showing the distances of cases matched to their nearest neighbor vs. a random control

excl_vars

<table>
<thead>
<tr>
<th>Variables excluded from matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>excl_vars</td>
</tr>
</tbody>
</table>

Description

A dataset lists variables that are excluded from matching for each exposure. This dataset is supplied to the `rmvars` argument of the function `make_knn_strata`. The two columns must be named with "exp_var" and "rm_vars".

Usage

```r
excl_vars
```

Format

A data frame with two variables:

- `exp_var` exposures of interest
- `rm_vars` variables to be excluded from matching for a given exposure
finalize_data

Final cleaning of the matched dataset(s)

Description

Ensures that a control retained in a data frame is used once and remove strata without any case or any control. In this process, priority is first given to the smallest strata then smallest distance if a control is matched to multiple cases (i.e., that control exists in multiple strata).

Usage

```
finalize_data(dfs, filter = TRUE, filterdata = NULL)
```

Arguments

- `dfs`: A list of data frames generated by `make_analysis_sets`
- `filter`: Filter statement to apply
- `filterdata`: Extra data to left join to the dfs for filtering

Details

For more information, please refer to the vignette using `browseVignettes("nncc")`.

Value

A list of data frames

fix_df

Fix the strata so they all have at least one case and control

Description

Fix the strata so they all have at least one case and control

Usage

```
fix_df(d)
```

Arguments

- `d`: A stratified dataset
Description

flac implements Firth’s bias-reduced penalized-likelihood logistic regression with added covariate.

Usage

flac(...)

S3 method for class 'formula'
flac(formula, data, model = TRUE, ...)

S3 method for class 'logistf'
flac(lfobject, model = TRUE, ...)

Arguments

... Further arguments passed to the method or logistf-call.

formula A formula object, with the response on the left of the operator, and the model terms on the right. The response must be a vector with 0 and 1 or FALSE and TRUE for the outcome, where the higher value (1 or TRUE) is modeled.

data If using with formula, a data frame containing the variables in the model.

model If TRUE the corresponding components of the fit are returned.

lfobject A fitted logistf object

Details

Flac is a simple modification of Firth’s logistic regression which provides average predicted probabilities equal to the observed proportion of events, while preserving the ability to deal with separation.

The modified score equation to estimate coefficients for Firth’s logistic regression can be interpreted as score equations for ML estimates for an augmented data set. This data set can be created by complementing each original observation i with two pseudo-observations weighted by $h_i/2$ with unchanged covariate values and with response values set to $y = 0$ and $y = 1$ respectively. The basic idea of Flac is to discriminate between original and pseudo-observations in the alternative formulation of Firth’s estimation as an iterative data augmentation procedure. The following generic methods are available for flac’s output object: print, summary, coef, confint, anova, extractAIC, add1, drop1, profile, terms, nobs, predict. Furthermore, forward and backward functions perform convenient variable selection. Note that anova, extractAIC, add1, drop1, forward and backward are based on penalized likelihood ratios.
Value

A flac object with components:

- **coefficients**: The coefficients of the parameter in the fitted model.
- **predict**: A vector with the predicted probability of each observation.
- **linear.predictors**: A vector with the linear predictor of each observation.
- **prob**: The p-values of the specific parameters.
- **ci.lower**: The lower confidence limits of the parameter.
- **ci.upper**: The upper confidence limits of the parameter.
- **call**: The call object.
- **alpha**: The significance level: 0.95.
- **var**: The variance-covariance-matrix of the parameters.
- **loglik**: A vector of the (penalized) log-likelihood of the restricted and the full models.
- **n**: The number of observations.
- **formula**: The formula object.
- **augmented.data**: The augmented dataset used.
- **df**: The number of degrees of freedom in the model.
- **method**: depending on the fitting method 'Penalized ML' or 'Standard ML'.
- **method.ci**: the method in calculating the confidence intervals, i.e. ‘profile likelihood’ or ‘Wald’, depending on the argument pl and plconf.
- **control**: a copy of the control parameters.
- **terms**: the model terms (column names of design matrix).
- **model**: if requested (the default), the model frame used.

Methods (by class)

- **flac(formula)**: With formula and data
- **flac(logistf)**: With logistf object

References

See Also

[logistf()] for Firth’s bias-Reduced penalized-likelihood logistic regression.
Examples

#With formula and data:
data(sex2)
flac(case ~ age + oc + vic + vicl + vis + dia, sex2)

#With a logistf object:
lf <- logistf(formula = case ~ age + oc + vic + vicl + vis + dia, data = sex2)
flac(lf)

flic

FLIC - Firth’s logistic regression with intercept correction

Description

flic implements Firth’s bias-Reduced penalized-likelihood logistic regression with intercept correction.

Usage

flic(...)

S3 method for class 'formula'
flic(formula, data, model = TRUE, ...)

S3 method for class 'logistf'
flic(lfobject, model = TRUE, ...)

Arguments

... Further arguments passed to the method or logistf-call.
formula A formula object, with the response on the left of the operator, and the model terms on the right. The response must be a vector with 0 and 1 or FALSE and TRUE for the outcome, where the higher value (1 or TRUE) is modeled.
data If using with formula, a data frame containing the variables in the model.
model If TRUE the corresponding components of the fit are returned.
lfobject A fitted logistf object

Details

Flic is a simple modification of Firth’s logistic regression which provides average predicted probabilities equal to the observed proportion of events, while preserving the ability to deal with separation.

In general the average predicted probability in FL regression is not equal to the observed proportion of events. Because the determinant of the Fisher-Information matrix is maximized for $\pi_i = \frac{1}{2}$ it is
concluded that Firth’s penalization tends to push the predicted probabilities towards one-half compared with ML-estimation. Flic fits a logistic regression model applying Firth’s correction to the likelihood with a correction of the intercept, such that the predicted probabilities become unbiased while keeping all other coefficients constant. The following generic methods are available for flic’s output object: print, summary, coef, confint, anova, extractAIC, add1, drop1, profile, terms, nobs, predict. Furthermore, forward and backward functions perform convenient variable selection. Note that anova, extractAIC, add1, drop1, forward and backward are based on penalized likelihood ratios.

Value

A flic object with components:

- coefficients: The coefficients of the parameter in the fitted model.
- predict: A vector with the predicted probability of each observation
- linear.predictors: A vector with the linear predictor of each observation.
- var: The variance-covariance-matrix of the parameters.
- prob: The p-values of the specific parameters.
- ci.lower: The lower confidence limits of the parameter.
- ci.upper: The upper confidence limits of the parameter.
- call: The call object.
- alpha: The significance level: 0.95
- method: depending on the fitting method ‘Penalized ML’ or ‘Standard ML’.
- method.ci: the method in calculating the confidence intervals, i.e. ‘profile likelihood’ or ‘Wald’, depending on the argument pl and plconf.
- df: The number of degrees of freedom in the model.
- loglik: A vector of the (penalized) log-likelihood of the restricted and the full models.
- n: The number of observations.
- formula: The formula object.
- control: a copy of the control parameters.
- terms: the model terms (column names of design matrix).
- model: if requested (the default), the model frame used.

Methods (by class)

- flic(formula): With formula and data
- flic(logistf): With logistf object

References

get_paf

See Also

logistf for Firth’s bias-Reduced penalized-likelihood logistic regression.

Examples

#With formula and data:
data(sex2)
flic(case ~ age + oc + vic + vicl + vis + dia, sex2)

#With a logistf object:
lf <- logistf(formula = case ~ age + oc + vic + vicl + vis + dia, data = sex2)
flic(lf)

get_paf
Calculate population attributable fraction using odds ratio

Description

Calculate population attributable fraction using odds ratio

Usage

get_paf(df_or, which_or, exp_var, exp_level, df_matched)

Arguments

df_or
A data frame that stores odds ratios for all exposure of interest

which_or
An unquoted name of the name of the column that stores odds ratio, or its lower or upper confidence limit in df_or.

exp_var
An unquoted name of the column that stores the name of exposures in df_or

exp_level
An unquoted name of the column that stores the level of the exposure variable in df_or

df_matched
The list of data frames used to calculate odds ratios

Details

Use odds ratio, its upper confidence limit, and its lower confidence limit to calculate population attributable fraction, its upper confidence limit, and its lower confidence limit, respectively.

For more information, please refer to the vignette using browseVignettes("nncc").

Value

A data frame.
get_threshold

Identify the right threshold

Description

To find a threshold for distance to define controls that are qualified to be matched with a case.

Usage

get_threshold(data, vars, case_var = "case", p_threshold = 0.5, seed = 1600)

Arguments

data
vars
case_var
p_threshold
seed

The dataset
The variables to use for calculating distance
The name of the case identifier variable
The probability that the closest matching approach produces the closer matching relative to the random matching approach. The greater p_threshold, the smaller the threshold.
A random seed.

Details

This function uses logistic regression to predict by the distance whether a control is the closest (unique) match for each case vs. a random selection and by default returns the 50

For more information, please refer to the vignette using browseVignettes("nncc").

Value

A list with items:

threshold
modeldata
strata
model

The numeric threshold chosen
The data used to fit the logistic regression model
The strata made by make_knn_strata
The fit logistic regression model
Description

Is specnum

Usage

isspecnum(x, a)

Arguments

x A Numerical vector
a A constant

logistf

Firth’s Bias-Reduced Logistic Regression

Description

Implements Firth’s bias-Reduced penalized-likelihood logistic regression.

Usage

logistf(
 formula,
 data,
 pl = TRUE,
 alpha = 0.05,
 control,
 plcontrol,
 firth = TRUE,
 init,
 weights,
 plconf = NULL,
 flic = FALSE,
 model = TRUE,
 ...
)

...
Arguments

formula A formula object, with the response on the left of the operator, and the model terms on the right. The response must be a vector with 0 and 1 or FALSE and TRUE for the outcome, where the higher value (1 or TRUE) is modeled. It is possible to include contrasts, interactions, nested effects, cubic or polynomial splines and all S features as well, e.g. Y ~ X1*X2 + ns(X3, df=4).
data A data frame where the variables named in the formula can be found, i.e. the variables containing the binary response and the covariates.
pl Specifies if confidence intervals and tests should be based on the profile penalized log likelihood (pl=TRUE, the default) or on the Wald method (pl=FALSE).
alpha The significance level (1-α the confidence level, 0.05 as default).
control Controls Newton-Raphson iteration. Default is control= logistf.control(maxstep,maxit, maxhs, lconv, gconv, xconv)
plcontrol Controls Newton-Raphson iteration for the estimation of the profile likelihood confidence intervals. Default is plcontrol= logistpl.control(maxstep, maxit,maxhs, lconv, xconv, ortho, pr)
firth Use of Firth’s penalized maximum likelihood (firth=TRUE, default) or the standard maximum likelihood method (firth=FALSE) for the logistic regression. Note that by specifying pl=TRUE and firth=FALSE (and probably a lower number of iterations) one obtains profile likelihood confidence intervals for maximum likelihood logistic regression parameters.
init Specifies the initial values of the coefficients for the fitting algorithm
weights specifies case weights. Each line of the input data set is multiplied by the corresponding element of weights
plconf specifies the variables (as vector of their indices) for which profile likelihood confidence intervals should be computed. Default is to compute for all variables
flic If TRUE, intercept is altered such that the predicted probabilities become unbiased while keeping all other coefficients constant
model If TRUE the corresponding components of the fit are returned.

Details

logistf is the main function of the package. It fits a logistic regression model applying Firth’s correction to the likelihood. The following generic methods are available for logistf’s output object: print, summary, coef, vcov, confint, anova, extractAIC, add1, drop1, profile, terms, nobs, predict. Furthermore, forward and backward functions perform convenient variable selection. Note that anova, extractAIC, add1, drop1, forward and backward are based on penalized likelihood ratios.

Value

The object returned is of the class logistf and has the following attributes:

coefficients the coefficients of the parameter in the fitted model.
alpha
the significance level (1 - the confidence level) as specified in the input.
terms
the column names of the design matrix
var
the variance-covariance-matrix of the parameters.
df
the number of degrees of freedom in the model.
loglik
a vector of the (penalized) log-likelihood of the restricted and the full models.
iter
the number of iterations needed in the fitting process.
n
the number of observations.
y
the response-vector, i.e. 1 for successes (events) and 0 for failures.
formula
the formula object.
call
the call object.
terms
the model terms (column names of design matrix).
linear.predictors
a vector with the linear predictor of each observation.
predict
a vector with the predicted probability of each observation.
hat.diag
a vector with the diagonal elements of the Hat Matrix.
conv
the convergence status at last iteration: a vector of length 3 with elements:
last change in log likelihood, max(abs(score vector)), max change in beta at last
iteration.
method
depending on the fitting method ‘Penalized ML’ or ‘Standard ML’.
method.ci
the method in calculating the confidence intervals, i.e. ‘profile likelihood’ or
‘Wald’, depending on the argument pl and plconf.
ci.lower
the lower confidence limits of the parameter.
ci.upper
the upper confidence limits of the parameter.
prob
the p-values of the specific parameters.
pl.iter
only if pl==TRUE: the number of iterations needed for each confidence limit.
betahist
only if pl==TRUE: the complete history of beta estimates for each confidence
limit.
pl.conv
only if pl==TRUE: the convergence status (deviation of log likelihood from tar-
get value, last maximum change in beta) for each confidence limit.
control
a copy of the control parameters.
flic
logical, is TRUE if intercept was altered such that the predicted probabilities
become unbiased while keeping all other coefficients constant. According to
input of logistf.
model
if requested (the default), the model frame used.

Author(s)
Georg Heinze and Meinhard Ploner
References

See Also

[add1.logistf, drop1.logistf, anova.logistf]

Examples

data(sex2)
fit<-logistf(case ~ age+oc+vic+vicl+vis+dia, data=sex2)
summary(fit)
nobs(fit)
drop1(fit)
plot(profile(fit,variable="dia"))
extraAIC(fit)

fit1<-update(fit, case ~ age+oc+vic+vicl+vis)
extraAIC(fit1)
anova(fit,fit1)

data(sexagg)
fit2<-logistf(case ~ age+oc+vic+vicl+vis+dia, data=sexagg, weights=COUNT)
summary(fit2)

simulated SNP example
set.seed(72341)
snpdata<-rbind(
 matrix(rbinom(2000,2,runif(2000)*0.3),100,20),
 matrix(rbinom(2000,2,runif(2000)*0.5),100,20))
colnames(snpdata)<-paste("SNP",1:20,"_",sep="")
snpdata<-as.data.frame(snpdata)
for(i in 1:20) snpdata[,i]<-as.factor(snpdata[,i])
snpdata$case<-c(rep(0,100),rep(1,100))

fitsnp<-logistf(data=snpdata, formula=case~1, pl=FALSE)
add1(fitsnp, scope=paste("SNP",1:20,"_",sep=""))
fitf<-forward(fitsnp, scope = paste("SNP",1:20,"_",sep=""))
fitf

logistf.control Control Parameters for logistf

Description

Sets parameters for Newton-Raphson iteration in Firth’s penalized-likelihood logistic regression.

Usage

logistf.control(
 maxit = 25,
 maxhs = 5,
 maxstep = 5,
 lconv = 1e-05,
 gconv = 1e-05,
 xconv = 1e-05,
 collapse = TRUE
)

logistf.control(
 maxit = 25,
 maxhs = 5,
 maxstep = 5,
 lconv = 1e-05,
 gconv = 1e-05,
 xconv = 1e-05,
 collapse = TRUE
)

Arguments

maxit Max iterations
maxhs Maxhs
maxstep Max steps
lconv lconv
gconv gconv
xconv xconv
collapse collapse

Details

logistf.control() is used by logistf and logistftest to set control parameters to default values. Different values can be specified, e.g., by logistf(..., control= logistf.control(maxstep=1)).
logistf.fit

Value

maxit The maximum number of iterations
maxhs The maximum number of step-halvings in one iteration. The increment of the beta vector within one iteration is divided by 2 if the new beta leads to a decrease in log likelihood.
maxstep Specifies the maximum step size in the beta vector within one iteration.
lconv Specifies the convergence criterion for the log likelihood.
gconv Specifies the convergence criterion for the first derivative of the log likelihood (the score vector).
xconv Specifies the convergence criterion for the parameter estimates.
collapse If TRUE, evaluates all unique combinations of x and y and collapses data set.

Author(s)

Georg Heinze

Examples

data(sexagg)
fit2<-logistf(case ~ age+oc+vic+vicl+vis+dia, data=sexagg, weights=COUNT, control=logistf.control(maxstep=1))
summary(fit2)

logistf.fit Fit a Firth logistic regression model

Description

Fit a Firth logistic regression model

Usage

logistf.fit(
 x,
 y,
 weight = NULL,
 offset = NULL,
 firth = TRUE,
 col.fit = NULL,
 init = NULL,
 control
)

Arguments

- **x**: A model matrix returned by `model.matrix`
- **y**: The response of a model frame returned by `model.response`
- **weight**: An optional weighting variable for each observation
- **offset**: An optional offset variable
- **firth**: Use of Firth's penalized maximum likelihood (firth=TRUE, default) or the standard maximum likelihood method (firth=FALSE)
- **col.fit**: Numerical vector containing the positions of the variables to fit, if not specified: all variables are taken
- **init**: Specifies the initial values of the coefficients for the fitting algorithm
- **control**: Controls Newton-Raphson iteration. Default is `control = logistf.control(maxstep, maxit, maxhs, lconv, gconv, xconv)`

Description

Please cite the original function [CLIP.confint](https://CRAN.R-project.org/package=logistf/index.html) for publication.

Usage

```r
logistf.pdf(x, y, pos, firth = TRUE, weight, control, plcontrol, offset = NULL, b, beta = NULL, loglik = NULL, fit = NULL, old = FALSE)
```

Arguments

- **x**: A model matrix returned by `model.matrix`
- **y**: The response of a model frame returned by `model.response`
Description

This function performs a penalized likelihood ratio test on some (or all) selected factors. The resulting object is of the class logistftest and includes the information printed by the proper print method.

Usage

```r
logistftest(
  object,
  test,
  values,
  firth = TRUE,
  beta0,
  weights,
  control,
  col.fit.object = NULL,
  ...
)
```
Arguments

object A fitted logistf object
test righthand formula of parameters to test (e.g. \(B + D - 1 \)). As default all parameter apart from the intercept are tested. If the formula includes \(-1\), the intercept is omitted from testing. As alternative to the formula one can give the indexes of the ordered effects to test (a vector of integers). To test only the intercept specify test = \(~ \cdot \cdot\) or test = 1.
values Null hypothesis values, default values are 0. For testing the specific hypothesis \(B_1=1, B_4=2, B_5=0 \) we specify test = \(~B_1+B_4+B_5-1\) and values = c(1, 2, 0).
firth Use of Firth’s (1993) penalized maximum likelihood (firth=TRUE, default) or the standard maximum likelihood method (firth=FALSE) for the logistic regression. Note that by specifying pl=TRUE and firth=FALSE (and probably lower number of iterations) one obtains profile likelihood confidence intervals for maximum likelihood logistic regression parameters.

beta0 Specifies the initial values of the coefficients for the fitting algorithm
weights Case weights
control Controls parameters for iterative fitting
col.fit.object Numerical vector containing the positions of the variables to fit, if not specified: all variables are taken
... further arguments passed to logistf.fit

Details

This function performs a penalized likelihood ratio test on some (or all) selected factors. The resulting object is of the class logistftest and includes the information printed by the proper print method. Further documentation can be found in Heinze & Ploner (2004). In most cases, the functionality of the logistftest function is replaced by anova.logistf, which is a more standard way to perform likelihood ratio tests. However, as shown in the example below, logistftest provides some specials such as testing against non-zero values. (By the way, anova.logistf calls logistftest.

Value

The object returned is of the class logistf and has the following attributes:

testcov A vector of the fixed values of each covariate; NA stands for a parameter which is not tested.
loglik A vector of the (penalized) log-likelihood of the full and the restricted models. If the argument beta0 not missing, the full model isn’t evaluated
df The number of degrees of freedom in the model
prob The p-value of the test
call The call object
method Depending on the fitting method ‘Penalized ML’ or ‘Standard ML’
beta The coefficients of the restricted solution
Author(s)

Georg Heinze

References

Examples

data(sex2)
fit<-logistf(case ~ age+oc+vic+vicl+vis+dia, data=sex2)
logistftest(fit, test = ~ vic + vicl - 1, values = c(2, 0))

logistpl.control

Default logistpl control

Description

Sets parameters for modified Newton-Raphson iteration for finding profile likelihood confidence intervals in Firth’s penalized likelihood logistic regression

Usage

logistpl.control(
 maxit = 100,
 maxhs = 5,
 maxstep = 5,
 lconv = 1e-05,
 xconv = 1e-05,
 ortho = FALSE,
 pr = FALSE
)

colonialism.rock.N0
Arguments

maxit The maximum number of iterations
maxhs The maximum number of step-halfings in one iteration. The increment of the beta vector within one iteration is divided by 2 if the new beta leads to a decrease in log likelihood.
maxstep Specifies the maximum step size in the beta vector within one iteration.
lconv Specifies the convergence criterion for the log likelihood.
xconver Specifies the convergence criterion for the parameter estimates.
ortho Requests orthogonalization of variable for which confidence intervals are computed with respect to other covariates
pr Request rotation of the matrix spanned by the covariates

Details

logistpl.control() is used by logistf to set control parameters to default values when computing profile likelihood confidence intervals. Different values can be specified, e. g., by logistf(., control= logistf.control(maxstep=1)).

Value

maxit The maximum number of iterations
maxhs The maximum number of step-halfings in one iteration. The increment of the beta vector within one iteration is divided by 2 if the new beta leads to a decrease in log likelihood.
maxstep Specifies the maximum step size in the beta vector within one iteration.
lconver Specifies the convergence criterion for the log likelihood.
xconver Specifies the convergence criterion for the parameter estimates.
ortho Specifies if orthogonalization is requested.
pr specifies if rotation is requested

Author(s)

Georg Heinze

Examples

data(sexagg)
fit2<-logistf(case ~ age+oc+vic+vicl+vis+dia, data=sexagg, weights=COUNT,
 plcontrol=logistpl.control(maxstep=1))
summary(fit2)
make_analysis_set

Make analysis set

Description

Set a maximum number of controls that are allowed to be matched to a case; ensure that matched case-control pairs have a distance closer than the predefined threshold; merge strata sharing same controls.

Usage

```r
make_analysis_set(
  var, 
  stratified_data, 
  data, 
  maxdist = 0, 
  maxcontrols = 20, 
  silent = FALSE
)
```

Arguments

- `var` Character of current exposure variable in `make_analysis_sets`
- `stratified_data` Stratified dataset, see `make_knn_strata`
- `data` Original case control data
- `maxdist` Reject any controls more than maxdist from their case
- `maxcontrols` Maximum number of controls to keep per strata
- `silent` Suppress exposure info useful for *apply/loop implementations

Details

For more information, please refer to the vignette using `browseVignettes("nncc")`.

Value

A list of data frames with the length of number of exposures.
make_analysis_sets
Make analysis datasets

Description
This helper function facilitates the implement the make_analysis_set() to each exposure.

Usage

```r
make_analysis_sets(stratified_data, expvars, data, threshold)
```

Arguments
- `stratified_data`: List of stratified data sets, see `make_knn_strata`
- `expvars`: Character vector of exposure variable for each set in stratified_data
- `data`: Original case control data
- `threshold`: Maximum distance threshold for cases and controls created by `get_threshold`

Details
For more information, please refer to the vignette using `browseVignettes("nncc")`.

Value
A list of data frames with the length of number of exposures

make_knn_strata
Make case-control strata using k nearest neighbors (knn)

Description
Select a pre-defined number of controls for each case based on calculated distances between cases and controls.

Usage

```r
make_knn_strata(
  expvar, 
  matchvars, 
  df, 
  rmvars = data.frame(exp_var = character(), rm_vars = character(), stringsAsFactors = FALSE),
  casevar = "case", 
  ncntls = 250, 
  metric = "gower", 
  silent = FALSE
)
```
Arguments

- **expvar**: A character - the name of the exposure variable in `df`.
- **matchvars**: Character vector - what are the variables to match on. Note that the function automatically excludes the the exposure variable.
- **df**: A dataframe that contains the case-control data.
- **rmvars**: A data frame that lists variables to be excluded from matching for each exposure. For details, please see the vignette of this package.
- **casevar**: A character - what is the name of the variable indicating case status (1 = case, 0 = control)
- **ncntls**: An integer to specify number of controls to find for each case (k in knn).
- **metric**: A character to specify a metric for measuring distance between a case and a control. See `daisy`.
- **silent**: Suppress exposure info useful for *apply/loop implementations?

Details

For more information, please refer to the vignette using `browseVignettes("nncc")`.

Value

A list of data frames with a `length` of number of exposures of interest.

nncc

nncc: nearest-neighbors matching for case-control data

Description

The `nncc` package implements an approach to match cases with their nearest controls defined by Gower distance. This approach may achieve better confounding control than conventional analytic approaches such as (conditional) logistic regression when you have a relatively large number of exposures of interest. To learn more about `nncc`, start with the vignettes: `browseVignettes("nncc")`.

Authors(s)

Lead Author: Beau B. Bruce <lue7@cdc.gov>
Coauthor: Zhaohui Cui

Functions

- `get_threshold`
- `distance_density_plot`
- `threshold_model_plot`
- `original_compare_plot`
• make_knn_strata
• make_analysis_sets
• finalize_data
• test_mh
• get_paf
• CLIP.confint.difflevel

original_compare_plot Compare the original strata’s distances to the knn version

Description

Compare the original strata’s distances to the knn version

Usage

original_compare_plot(data, casevar, stratavar, threshold_results)

Arguments

data The original data
casevar The variable that defines cases vs. controls
stratavar The variable that defines the strata
threshold_results See get_threshold

Value

An list with items:

plot_density The ggplot displayed
prop_distance_gt_threshold A table showing proportion of pairs exceeding numeric threshold chosen
plot.logistf.profile plot Method for logistf Likelihood Profiles

Description

Provides the plot method for objects created by profile.logistf or CLIP.profile

Usage

```r
## S3 method for class 'logistf.profile'
plot(
  x,
  type = "profile",
  max1 = TRUE,
  colmain = "black",
  colimp = "gray",
  plotmain = TRUE,
  ylim = NULL,
  ...
)
```

Arguments

- `x` : A profile.logistf object
- `type` : Type of plot: one of c("profile", "cdf", "density")
- `max1` : If type="density", normalizes density to maximum 1
- `colmain` : Color for main profile line
- `colimp` : color for completed-data profile lines (for logistf.profile objects that also carry the CLIP.profile class attribute)
- `plotmain` : if FALSE, suppresses the main profile line (for logistf.profile objects that also carry the CLIP.profile class attribute)
- `ylim` : Limits for the y-axis
- `...` : Further arguments to be passed to `plot()`.

Details

The plot method provides three types of plots (profile, CDF, and density representation of a profile likelihood). For objects generated by CLIP.profile, it also allows to show the completed-data profiles along with the pooled profile.

Value

The function is called for its side effects
Author(s)

Georg Heinze und Meinhard Ploner

References

Examples

data(sex2)
fit<-logistf(case ~ age+oc+vic+vicl+vis+dia, data=sex2)
plot(profile(fit,variable="dia"))
plot(profile(fit,variable="dia"), "cdf")
plot(profile(fit,variable="dia"), "density")

#generate data set with NAs
freq=c(5,2,2,7,5,4)
y<-c(rep(1,freq[1]+freq[2]), rep(0,freq[3]+freq[4]), rep(1,freq[5]), rep(0,freq[6]))
x<-c(rep(1,freq[1]), rep(0,freq[2]), rep(1,freq[3]), rep(0,freq[4]), rep(NA,freq[5]), rep(NA,freq[6]))
toy<-data.frame(x=x, y=y)

impute data set 5 times
set.seed(169)
toymi<-list(0)
for(i in 1:5){
toymi[[i]]<-toy
 y1<-toymi[[i]]$y==1 & is.na(toymi[[i]]$x)
y0<-toymi[[i]]$y==0 & is.na(toymi[[i]]$x)
xnew1<-rbinom(sum(y1), 1, freq[1]/(freq[1]+freq[2]))
xnew0<-rbinom(sum(y0), 1, freq[3]/(freq[3]+freq[4]))
toymi[[i]]$x[y1==TRUE]<-xnew1
 toymi[[i]]$x[y0==TRUE]<-xnew0
}

logistf analyses of each imputed data set
fit.list<-lapply(1:5, function(X) logistf(data=toymi[[X]], y~x, pl=TRUE, dataout=TRUE))

CLIP profile
xprof<-CLIP.profile(obj=fit.list, variable="x", data=toymi, keep=TRUE)
plot(xprof)

#plot as CDF
plot(xprof, "cdf")

#plot as density
plot(xprof, "density")
plot_results

Description

Plot the OR results

Usage

```r
plot_results(csvfilename, filter = TRUE)
```

Arguments

- `csvfilename`: CSV results file, see `write_strata_or_output`
- `filter`: How to filter the results

Details

For more information, please refer to the vignette using `browseVignettes("nncc")`.

Value

Returns `csvfilename` to allow chaining

predict.flac

Description

Obtains predictions from a fitted `flac` object.

Usage

```r
## S3 method for class 'flac'
predict(object, newdata, type = c("link", "response"), ...)
```

Arguments

- `object`: A fitted object of class `flac`
- `newdata`: Optionally, a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used.
- `type`: The type of prediction required. The default is on the scale of the linear predictors. The alternative `response` gives the predicted probabilities.
- `...`: further arguments passed to or from other methods.
predict.flic

Details

If `newdata` is omitted the predictions are based on the data used for the fit.

Value

A vector or matrix of predictions.

predict.flic Predict Method for flic Fits

Description

Obtains predictions from a fitted flic object.

Usage

```r
## S3 method for class 'flic'
predict(object, newdata, type = c("link", "response"), ...)
```

Arguments

- `object`
 A fitted object of class `flic`.

- `newdata`
 Optionally, a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used.

- `type`
 The type of prediction required. The default is on the scale of the linear predictors. The alternative `response` gives the predicted probabilities.

- `...`
 Further arguments passed to or from other methods.

Details

If `newdata` is omitted the predictions are based on the data used for the fit.

Value

A vector or matrix of predictions
predict.logistf
Predict Method for logistf Fits

Description

Obtains predictions from a fitted logistf object.

Usage

```r
## S3 method for class 'logistf'
predict(object, newdata, type = c("link", "response"), flic = FALSE, ...)
```

Arguments

- **object**: A fitted object of class logistf.
- **newdata**: Optionally, a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used.
- **type**: The type of prediction required. The default is on the scale of the linear predictors. The alternative response gives the predicted probabilities.
- **flic**: If TRUE (default = FALSE), predictions are computed with intercept correction.
- **...**: further arguments passed to or from other methods.

Details

If newdata is omitted the predictions are based on the data used for the fit.

Value

A vector or matrix of predictions.

profile.logistf
Compute Profile Penalized Likelihood

Description

Evaluates the profile penalized likelihood of a variable based on a logistf model fit.
Usage

```r
## S3 method for class 'logistf'
profile(
  fitted,
  which,
  variable,
  steps = 100,
  pitch = 0.05,
  limits,
  alpha = 0.05,
  firth = TRUE,
  legends = TRUE,
  control,
  plcontrol,
  plot = FALSE,
  ...
)
```

Arguments

- `fitted`: An object fitted by `logistf`.
- `which`: A righthand formula to specify the variable for which the profile should be evaluated, e.g., `which=~X`.
- `variable`: Alternatively to `which`, a variable name can be given, e.g., `variable="X"`.
- `steps`: Number of steps in evaluating the profile likelihood.
- `pitch`: Alternatively to `steps`, one may specify the step width in multiples of standard errors.
- `limits`: Lower and upper limits of parameter values at which profile likelihood is to be evaluated.
- `alpha`: The significance level (1-α the confidence level, 0.05 as default).
- `firth`: Use of Firth’s penalized maximum likelihood (`firth=TRUE`, default) or the standard maximum likelihood method (`firth=FALSE`) for the logistic regression.
- `legends`: Legends to be included in the optional plot.
- `control`: Controls Newton-Raphson iteration. Default is `control= logistf.control(maxstep,maxit, maxhs, lconv, gconv, xconv)`.
- `plcontrol`: Controls Newton-Raphson iteration for the estimation of the profile likelihood confidence intervals. Default is `plcontrol= logistpl.control(maxstep, maxit, maxhs, lconv, xconv, ortho, pr)`.
- `plot`: If `TRUE`, profile likelihood is plotted. This parameter becomes obsolete as a generic plot function is now provided.
- `...`: Further arguments to be passed.
Value

An object of class logistf.profile with the following items:

- **beta**: Parameter values at which likelihood was evaluated
- **stdbeta**: Parameter values divided by standard error
- **profile**: profile likelihood, standardized to 0 at maximum of likelihood. The values in profile are given as minus χ^2
- **loglik**: Unstandardized profile likelihood
- **signed.root**: signed root (z) of χ^2 values (negative for values below the maximum likelihood estimate, positive for values above the maximum likelihood estimate)
- **cdf**: profile likelihood expressed as cumulative distribution function, obtained as $\Phi(z)$, where Φ denotes the standard normal distribution function.

Author(s)

Georg Heinze and Meinhard Ploner

Examples

data(sex2)
fit<-logistf(case ~ age+oc+vic+vicl+vis+dia, data=sex2)
plot(profile(fit,variable="dia"))
plot(profile(fit,variable="dia"), "cdf")
plot(profile(fit,variable="dia"), "density")

PVR.confint

Pseudo Variance Modification of Rubin’s Rule

Description

The pseudo-variance modification proposed by Heinze, Ploner and Beyea (2013) provides a quick way to adapt Rubin’s rules to situations of a non-normal distribution of a regression coefficient. However, the approximation is less accurate than that of the CLIP method.

Usage

PVR.confint(obj, variable, skewbeta = FALSE)

Arguments

- **obj**: A fitted logistf object
- **variable**: The variable(s) to compute the PVR confidence intervals, either provided as names or as numbers
- **skewbeta**: If TRUE, incorporates information on the skewness of the parameter estimates across the imputed data sets.
Details

The pseudo-variance modification computes a lower and an upper pseudo-variance, which are based on the distance between profile likelihood limits and the parameter estimates. These are then plugged into the usual Rubin's rules method of variance combination.

Value

An object of class `PVR.confint` with items:

- `estimate`: the pooled parameter estimate(s) (the average across completed-data estimates)
- `ci`: the confidence intervals based on the PVR method
- `lower.var`: the lower pseudo-variance(s)
- `upper.var`: the upper pseudo-variance(s)
- `conflev`: the confidence level: this is determined by the confidence level (1-alpha) used in the input fit objects
- `call`: the function call
- `variable`: the variable(s) for which confidence intervals were computed

Author(s)

Georg Heinze

References

Examples

```r
#generate data set with NAs
freq=c(5,2,2,7,5,4)
y<-c(rep(1,freq[1]+freq[2]), rep(0,freq[3]+freq[4]), rep(1,freq[5]), rep(0,freq[6]))
x<-c(rep(1,freq[1]), rep(0,freq[2]), rep(1,freq[3]), rep(0,freq[4]), rep(NA,freq[5]), rep(NA,freq[6]))
toy<-data.frame(x=x,y=y)

# impute data set 5 times
set.seed(169)
toymi<-list(0)
for(i in 1:5){
  toymi[[i]]<-toy
  y1<-toymi[[i]]$y==1 & is.na(toymi[[i]]$x)
  y0<-toymi[[i]]$y==0 & is.na(toymi[[i]]$x)
  xnew1<-rbinom(sum(y1),1,freq[1]/(freq[1]+freq[2]))
  xnew0<-rbinom(sum(y0),1,freq[3]/(freq[3]+freq[4]))
  toymi[[i]]$x[y1==TRUE]<-xnew1
  toymi[[i]]$x[y0==TRUE]<-xnew0
}
```
logistf analyses of each imputed data set
fit.list<-lapply(1:5, function(X) logistf(data=toymi[[X]], y~x, pl=TRUE, dataout=TRUE))

CLIP confidence limits
PVR.confint(obj=fit.list)

sex2

Urinary Tract Infection in American College Students

Description

This data set deals with urinary tract infection in sexually active college women, along with covariate information on age and contraceptive use. The variables are all binary and coded in 1 (condition is present) and 0 (condition is absent).

Usage

sex2

Format

sex2: a data.frame containing 239 observations

- **case** urinary tract infection, the study outcome variable
- **age** >= 24 years
- **dia** use of diaphragm
- **oc** use of oral contraceptive
- **vic** use of condom
- **vicl** use of lubricated condom
- **vis** use of spermicide

Source

<https://www.cytel.com/>

References

Description

This data set deals with urinary tract infection in sexually active college women, along with covariate information on age and contraceptive use. The variables are all binary and coded in 1 (condition is present) and 0 (condition is absent): case (urinary tract infection, the study outcome variable), age (>= 24 years), dia (use of diaphragm), oc (use of oral contraceptive), vic (use of condom), vicl (use of lubricated condom), and vis (use of spermicide).

Usage

sexagg

Format

sexagg: an aggregated data.frame containing 31 observations with case weights (COUNT).

case urinary tract infection, the study outcome variable
age >= 24 years
dia use of diaphragm
oc use of oral contraceptive
vic use of condom
vicl use of lubricated condom
vis use of spermicide

Source

<https://www.cytel.com/>

References

test_mh

Calculate odds ratios

Description

Calculate odds ratios using the M-H method when the matched dataset has more than 1 stratum, and using the Fisher’s exact test when the matched dataset has only one stratum.

Usage

```r
test_mh(case, exp, strata)
```

Arguments

- **case**: The case statuses
- **exp**: The exposure statuses
- **strata**: The strata identifiers

Details

For more information, please refer to the vignette using `browseVignettes("nncc")`.

Value

The list of statistical results

threshold_model_plot

Show the prediction of the logistic regression model

Description

Show the prediction of the logistic regression model

Usage

```r
threshold_model_plot(threshold_results, p_threshold = 0.5)
```

Arguments

- **threshold_results**: See `get_threshold`
- **p_threshold**: The probability that the closest matching approach produces the closer matching relative to the random matching approach. The greater `p_threshold`, the smaller the threshold.

Value

The ggplot showing the threshold logistic regression model
unique_controls

Ensures controls are unique to avoid possible pseudoreplication issues

Description

Ensures controls are unique to avoid possible pseudoreplication issues

Usage

unique_controls(stratifieddata)

Arguments

stratifieddata See make_knn_strata and make_analysis_set.

Value

A tibble after it has been examined and filtered for duplicate controls

write_strata_or_output

Format strata output into CSV

Description

Format strata output into CSV

Usage

write_strata_or_output(results, varnames, filename)

Arguments

results Output of test_mh
varnames Vector of exposure variable names
filename String of the filename to output to

Value

Returns the filename to allow chaining
Index

* datasets
 - anifood, 6
 - excl_vars, 19
 - sex2, 50
 - sexagg, 51
* models
 - logistf-package, 3
* regression
 - logistf-package, 3

add1.logistf, 5
anifood, 6
anova.logistf, 7
backward, 8
cacheit, 11
calc_strata_or, 11
case_control (nncc), 40
CLIP.confint, 12
CLIP.confint.difflevel, 14, 41
CLIP.profile, 16
daisy, 40
distance_density_plot, 18, 40
excl_vars, 19
finalize_data, 20, 41
fix_df, 20
flac, 21
flic, 23
forward (backward), 8
get_paf, 25, 41
get_threshold, 19, 26, 39–41, 52
isspecnum, 27
logistf, 21, 23, 25, 27
logistf-package, 3
logistf.control, 31
logistf.fit, 32
logistf.pdf, 33
logistftest, 34
logistpl.control, 36
make_analysis_set, 38, 53
make_analysis_sets, 20, 38, 39, 41
make_knn_strata, 19, 38, 39, 39, 41, 53
matching (nncc), 40
mice, 4
model.matrix, 33
model.response, 33
nearest_neighbors (nncc), 40
nncc, 40
original_compare_plot, 40, 41
plot.logistf.profile, 42
plot_results, 44
predict.flac, 44
predict.flic, 45
predict.logistf, 46
profile.logistf, 46
PVR.confint, 48
sex2, 50
sexagg, 51
test_mh, 41, 52, 53
threshold_model_plot, 40, 52
unique_controls, 53
write_strata_or_output, 44, 53