Package ‘nodeSub’

November 14, 2023

Type Package
Title Simulate DNA Alignments Using Node Substitutions
Version 1.2.8
Author Thijs Janzen
Maintainer Thijs Janzen <thijsjanzen@gmail.com>
Description Simulate DNA sequences for the node substitution model.

In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.

URL https://github.com/thijsjanzen/nodeSub
BugReports https://github.com/thijsjanzen/nodeSub
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
VignetteBuilder knitr
LinkingTo Rcpp
Depends Rcpp, ape
Imports phangorn, tibble, DDD, Rmpfr, pbapply, phylobase, geiger, beautier, beastier, tracerer, rappdirs, testit, stringr, lifecycle
Suggests testthat, TreeSim, dplyr, knitr, rmarkdown, ggplot2, magrittr, tidyR, nLTT, RPANDA
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-11-14 15:40:02 UTC
nodeSub-package

Package providing functions to simulate sequences under different DNA evolution models

Description

Simulate DNA sequences for the node substitution model. In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.

Version History:

- **Version 1.2.7** - Removed beta calculation due to apTreeshape removal from CRAN
- **Version 1.2.3** - Removed summary statistic tests for CRAN
- **Version 1.2.2** - Changed codedov links in README
- **Version 1.2.1** - Expanded dependency on RPANDA
- **Version 1.2** - Release on CRAN

Author(s)

Thijs Janzen Maintainer: Thijs Janzen <t.janzen@rug.nl>
References

Thijs Janzen, Folmer Bokma, Rampal S Etienne, Nucleotide Substitutions during Speciation may Explain Substitution Rate Variation, Systematic Biology, 2021; syab085

Description

Calculate the number of expected hidden nodes in a phylogenetic tree

Usage

calc_expected_hidden_nodes(phy, lambda = NULL, mu = NULL)

Arguments

phy phylogenetic tree
lambda birth rate
mu death rate

Value

expected number of hidden nodes

References

Description

Calculate the expected fraction of substitutions at the nodes, relative to the fraction at the branches

Usage

calc_fraction(phy = NULL, node_time = 0, model = "unlinked")
Arguments

phy phylogenetic tree (optional)
node_time time spent at the node
model node substitution model

Value

expected fraction

calc_required_node_time

Calculate the required node time to obtain a desired fraction of substitutions at the node

Description

calculates the required node time to obtain a desired fraction of substitutions at the node

Usage

calc_required_node_time(phy = NULL, s = 0.5, model = "unlinked")

Arguments

phy phylogenetic tree
s desired fraction
model node substitution model, either "linked" or "unlinked".

Value

expected fraction

calc_sum_stats

calculate summary statistics of a phylogenetic tree, compared with a reference tree. The following statistics are calculated: the beta statistic, gamma statistic, crown age, mean branch length, number of tips, the nLTT statistic and the laplacian difference, given by RPANDA’s JSDtree. Because JSDtree can sometimes cause issues, some additional checks are performed to ensure that is possible to run this function.
Description

calculate summary statistics of a phylogenetic tree, compared with a reference tree. The following statistics are calculated: the beta statistic, gamma statistic, crown age, mean branch length, number of tips, the nLTT statistic and the laplacian difference, given by RPANDA's JSDtree. Because JSDtree can sometimes cause issues, some additional checks are performed to ensure that is possible to run this function.

Usage

```
calc_sum_stats(trees, true_tree, verbose = FALSE)
```

Arguments

- **trees**: a phyloList object containing multiple trees
- **true_tree**: a phylo object containing the reference tree, preferably without extinct lineages. If extinct lineages are found, these are dropped.
- **verbose**: verbose output if true (e.g. progressbars)

Value

list with two tibbles 1) containing the summary statistics of all trees and 2) containing the difference with the true tree

count_hidden

Function to calculate the number of hidden speciation events, e.g. speciation events that have lead to an extinct species. Thus, these hidden speciation events can only be detected in complete trees (as opposed to reconstructed trees).

Description

Function to calculate the number of hidden speciation events, e.g. speciation events that have lead to an extinct species. Thus, these hidden speciation events can only be detected in complete trees (as opposed to reconstructed trees).

Usage

```
count_hidden(tree)
```

Arguments

- **tree**: phylo object

Value

number of hidden speciation events
create_balanced_tree
create a balanced tree out of branching times

Description

create a balanced tree out of branching times

Usage

create_balanced_tree(brts)

Arguments

brts vector of branching times

Value

phylo phylo object

create_equal_alignment

function create an alignment with identical information content

Description

function create an alignment with identical information content

Usage

create_equal_alignment(
 input_tree,
 sub_rate,
 alignment_result,
 sim_function = NULL,
 verbose = FALSE,
 node_time = NULL,
 input_alignment_type = "nodesub"
)
create_equal_alignment_explicit

function create an alignment with identical information content, using the explicit method to simulate substitutions

Description

function create an alignment with identical information content, using the explicit method to simulate substitutions

Usage

create_equal_alignment_explicit(
 input_tree,
 sub_rate,
 alignment_result,
 verbose = FALSE
)
create_unbalanced_tree

create an unbalanced tree out of branching times

Description

create an unbalanced tree out of branching times

Usage

create_unbalanced_tree(brts)

Arguments

brts vector of branching times

Value

phylo phylo object
estimate_marginal_models

estimate the marginal likelihood of the relaxed and strict clock model for a provided alignment

Description

estimate_marginal_models estimates the marginal likelihood of both the strict and the relaxed clock model, given the JC69 substitution model, using the NS package in BEAST, made available via the babette R package. The NS package performs nested sampling, and uses an MCMC approach to estimate the marginal likelihood. Sampling is performed until convergence of the MCMC chain. Unfortunately, currently the babette package is unavailable on CRAN, requiring installation through GitHub to enjoy the full functionality of this function.

Usage

```r
estimate_marginal_models(
  fasta_filename,  
  use_yule_prior = FALSE, 
  rng_seed = 42, 
  sub_rate = 1, 
  verbose = FALSE 
)
```

Arguments

- `fasta_filename` file name of fasta file holding alignment for which the marginal likelihood is to be estimated
- `use_yule_prior` by default, a birth-death prior is used as tree prior, but if use_yule_prior is set to TRUE, a pure-birth prior will be used.
- `rng_seed` seed of pseudo-random number generator
- `sub_rate` substitution rate
- `verbose` boolean indicating if verbose intermediate output is to be generated

Value

data frame with marginal likelihoods and relative weights per clock model.
get_p_matrix

Description

calculates the p matrix

Usage

get_p_matrix(branch_length, eig = phangorn::edQt(), rate = 1)

Arguments

- `branch_length` branch length
- `eig` eigen object
- `rate` rate

Value

p matrix

infer_phylogeny

Description

infer the time calibrated phylogeny associated with the provided alignment. This function uses the R package babette to infer the phylogeny using BEAST2.

Usage

infer_phylogeny(
 alignment,
 treatment_name,
 tree_prior = beautier::create_bd_tree_prior(),
 clock_prior = beautier::create_strict_clock_model(),
 mcmc_seed = NULL,
 chain_length = 1e+07,
 sample_interval = 5000,
 burnin = 0.1,
 working_dir = NULL,
 sub_rate = 1
)
reduce_tree

Arguments

alignment	Phydat object containing the focal alignment
treatment_name | string to be appended to BEAST files
tree_prior | tree prior used, default = birth-death prior
clock_prior | clock prior used, default = strict clock
cmcseed | seed of the mcmc chain, default is the system time
chain_length | length of the mcmc chain, default is 1e7.
sample_interval | interval of sampling, default is 5000
burnin | burnin of posterior distribution
working_dir | beast2 working dir
sub_rate | substitution rate used to generate the original alignment (if available), default is 1

Value

list with all trees, and the consensus tree

reduce_tree

Function to remove speciation events occurring after an extinction event. Extinct species are pruned randomly, such that only a single extinct species per branching event (if any extinct species) remains.

Description

Function to remove speciation events occurring after an extinction event. Extinct species are pruned randomly, such that only a single extinct species per branching event (if any extinct species) remains.

Usage

reduce_tree(tree)

Arguments

tree | phylo object

Value

pruned tree
sim_linked

simulate a sequence assuming conditional substitutions on the node.

Description

simulate a sequence assuming conditional substitutions on the node.

Usage

```r
sim_linked(
  phy, 
  Q = rep(1, 6), 
  rate = 0.1, 
  node_mut_rate_double = 1e-09, 
  l = 1000, 
  bf = rep(0.25, 4), 
  rootseq = NULL, 
  node_time = 0.01
)
```

Arguments

- `phy`: tree for which to simulate sequences
- `Q`: substitution matrix along the branches, default = JC
- `rate`: mutation rate, default = 1
- `node_mut_rate_double`: mutation rate on the node, default = 1e-9
- `l`: number of base pairs to simulate
- `bf`: base frequencies, default = c(0.25, 0.25, 0.25, 0.25)
- `rootseq`: sequence at the root, simulated by default
- `node_time`: time spent at the node

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. `rootseq` the rootsequence used
3. `total_branch_substitutions` total number of substitutions accumulated on the branches
4. `total_node_substitutions` total number of substitutions accumulated at the nodes
Simulate sequences for a given evolutionary tree, using a standard model of sequence evolution along the branches. Code for this function was heavily inspired by the function simSeq from the phangorn package.

Usage

```r
sim_normal(x, l = 1000, Q = NULL, bf = NULL, rootseq = NULL, rate = 1)
```

Arguments

- `x`: a phylogenetic tree tree, i.e. an object of class phylo
- `l`: length of the sequence to simulate.
- `Q`: the rate matrix.
- `bf`: base frequencies.
- `rootseq`: a vector of length l containing the root sequence, other root sequence is randomly generated.
- `rate`: mutation rate

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes

Author(s)

Klaus Schliep <klaus.schliep@gmail.com>
Description

simulate a sequence assuming substitutions are only accumulated along the branches, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Usage

```r
sim_normal_explicit(x, l = 1000, Q = NULL, bf = NULL, rootseq = NULL, rate = 1)
```

Arguments

- `x` a phylogenetic tree tree, i.e. an object of class `phylo` or and object of class `pml`.
- `l` length of the sequence to simulate.
- `Q` the rate matrix.
- `bf` base frequencies.
- `rootseq` a vector of length `l` containing the root sequence, other root sequence is randomly generated.
- `rate` mutation rate or scaler for the edge length, a numerical value greater than zero.

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes

Description

Simulate a sequence assuming node substitutions are not shared amongst offspring, given two substitution matrices: one for substitutions occurring on the nodes, and one for substitutions occurring along the branches.

Usage

```r
sim_unlinked(x, l = 1000, Q_node = NULL, Q_branch = NULL, rootseq = NULL, rate = 1)
```

Arguments

- `x` a phylogenetic tree tree, i.e. an object of class `phylo` or and object of class `pml`.
- `Q_node` the rate matrix for substitutions on nodes.
- `Q_branch` the rate matrix for substitutions along branches.
- `rootseq` a vector of length `l` containing the root sequence, other root sequence is randomly generated.
- `rate` mutation rate or scaler for the edge length, a numerical value greater than zero.

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes

sim_normal_explicit

simulate a sequence assuming substitutions are only accumulated along the branches, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

sim_unlinked

Simulate a sequence assuming node substitutions are not shared amongst offspring, given two substitution matrices: one for substitutions occurring on the nodes, and one for substitutions occurring along the branches.
Usage

sim_unlinked_explicit

phy,
Q1 = rep(1, 6),
Q2 = rep(1, 6),
rate1 = 0.1,
rate2 = 0.1,
l = 1000,
bf = rep(0.25, 4),
rootseq = NULL,
node_time = 0.001

Arguments

phy tree for which to simulate sequences
Q1 substitution matrix along the branches, default = JC
Q2 substitution matrix on the nodes, default = JC
rate1 mutation rate along the branch, default = 0.1
rate2 mutation rate on the node, default = 0.1
l number of base pairs to simulate
bf base frequencies, default = c(0.25, 0.25, 0.25, 0.25)
rootseq sequence at the root, simulated by default
node_time amount of time spent at the nodes

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes

Description

Simulate a sequence assuming node substitutions are not shared amongst offspring, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)
Usage

```r
sim_unlinked_explicit(
  phy,
  Q1 = rep(1, 6),
  Q2 = rep(1, 6),
  rate1 = 0.1,
  rate2 = 0.1,
  l = 1000,
  bf = rep(0.25, 4),
  rootseq = NULL,
  node_time = 0.001
)
```

Arguments

- **phy**: phylogenetic tree for which to simulate sequences
- **Q1**: substitution matrix along the branches, default = JC
- **Q2**: substitution matrix on the nodes, default = JC
- **rate1**: mutation rate along the branch, default = 0.1
- **rate2**: mutation rate on the node, default = 0.1
- **l**: number of base pairs to simulate
- **bf**: base frequencies, default = c(0.25, 0.25, 0.25, 0.25)
- **rootseq**: sequence at the root, simulated by default
- **node_time**: amount of time spent at the nodes

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes

Description

this function calculates the p matrix within R this is slower than the C++ implementation in `get_p_matrix` but provides a way to debug and verify
slow_matrix

Usage
slow_matrix(eig, branch_length, rate)

Arguments

eig eigen object
branch_length branch length
rate substitution rate

Value
p matrix
Index

calc_expected_hidden_nodes, 3
calc_fraction, 3
calc_required_node_time, 4
calc_sum_stats, 4
count_hidden, 5
create_balanced_tree, 6
create_equal_alignment, 6
create_equal_alignment_explicit, 7
create_unbalanced_tree, 8
estimate_marginal_models, 9
get_p_matrix, 10
infer_phylogeny, 10
nodeSub (nodeSub-package), 2
nodeSub-package, 2
reduce_tree, 11
sim_linked, 12
sim_normal, 13
sim_normal_explicit, 14
sim_unlinked, 14
sim_unlinked_explicit, 15
slow_matrix, 16