Package ‘nodeSub’

September 15, 2023

Type Package
Title Simulate DNA Alignments Using Node Substitutions
Version 1.2.7
Author Thijs Janzen
Maintainer Thijs Janzen <thijsjanzen@gmail.com>
Description Simulate DNA sequences for the node substitution model. In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.

URL https://github.com/thijsjanzen/nodeSub
BugReports https://github.com/thijsjanzen/nodeSub
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
VignetteBuilder knitr
LinkingTo Rcpp
Depends Rcpp, ape
Imports phangorn, tibble, DDD, Rmpfr, pbapply, phylobase, geiger, babette, beautier, beastier, mauricer, tracerer, rappdirs, testit, stringr, lifecycle
Suggests testthat, TreeSim, dplyr, knitr, rmarkdown, ggplot2, magrittr, tidyr, nLTT, RPANDA
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-09-15 07:50:07 UTC
nodeSub-package

R topics documented:

nodeSub-package ... 2
calc_expected_hidden_nodes ... 3
calc_fraction ... 3
calc_required_node_time ... 4
calc_sum_stats .. 4
count_hidden .. 5
create_balanced_tree ... 6
create_equal_alignment .. 6
create_equal_alignment_explicit 7
create_unbalanced_tree ... 8
estimate_marginal_models ... 9
get_p_matrix ... 9
infer_phylogeny .. 10
reduce_tree ... 11
sim_linked ... 12
sim_normal ... 13
sim_normal_explicit .. 14
sim_unlinked ... 14
sim_unlinked_explicit .. 15
slow_matrix ... 16

Index 18

nodeSub-package Package providing functions to simulate sequences under different DNA evolution models

Description

Simulate DNA sequences for the node substitution model. In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.

Version History:
Version 1.2.7 - Removed beta calculation due to apTreeshape removal from CRAN
Version 1.2.3 - Removed summary statistic tests for CRAN
Version 1.2.2 - Changed cedov links in README
Version 1.2.1 - Expanded dependency on RPANDA
Version 1.2 - Release on CRAN

Author(s)

Thijs Janzen Maintainer: Thijs Janzen <t.janzen@rug.nl>
References

Thijs Janzen, Folmer Bokma, Rampal S Etienne, Nucleotide Substitutions during Speciation may Explain Substitution Rate Variation, Systematic Biology, 2021; syab085

`calc_expected_hidden_nodes`

Calculate the number of expected hidden nodes in a phylogenetic tree

Description

Calculate the number of expected hidden nodes using equation 1 in Manceau et al. 2020

Usage

```
calc_expected_hidden_nodes(phy, lambda = NULL, mu = NULL)
```

Arguments

- `phy`: phylogenetic tree
- `lambda`: birth rate
- `mu`: death rate

Value

expected number of hidden nodes

References

`calc_fraction`

Calculate the expected fraction of substitutions at the nodes, relative to the fraction at the branches

Description

Calculates the relative contribution of substitutions at the nodes

Usage

```
calc_fraction(phy = NULL, node_time = 0, model = "unlinked")
```
Arguments

- **phy** (optional): phylogenetic tree
- **node_time**: time spent at the node
- **model**: node substitution model

Value

- expected fraction

calc_required_node_time

Calculate the required node time to obtain a desired fraction of substitutions at the node

Description

calculates the required node time to obtain a desired fraction of substitutions at the node

Usage

`calc_required_node_time(phy = NULL, s = 0.5, model = "unlinked")`

Arguments

- **phy**: phylogenetic tree
- **s**: desired fraction
- **model**: node substitution model, either "linked" or "unlinked".

Value

- expected fraction

calc_sum_stats

calculate summary statistics of a phylogenetic tree, compared with a reference tree. The following statistics are calculated: the beta statistic, gamma statistic, crown age, mean branch length, number of tips, the nLTT statistic and the laplacian difference, given by RPANDA’s JSDtree. Because JSDtree can sometimes cause issues, some additional checks are performed to ensure that it is possible to run this function.
count_hidden

Description
calculate summary statistics of a phylogenetic tree, compared with a reference tree. The following statistics are calculated: the beta statistic, gamma statistic, crown age, mean branch length, number of tips, the nLTT statistic and the laplacian difference, given by RPANDA’s JSDtree. Because JSDtree can sometimes cause issues, some additional checks are performed to ensure that is possible to run this function.

Usage
calc_sum_stats(trees, true_tree, verbose = FALSE)

Arguments
trees a phyloList object containing multiple trees
tree true a phylo object containing the reference tree, preferably without extinct lineages. If extinct lineages are found, these are dropped.
verbose verbose output if true (e.g. progressbars)

Value
list with two tibbles 1) containing the summary statistics of all trees and 2) containing the difference with the true tree

count_hidden

Function to calculate the number of hidden speciation events, e.g. speciation events that have lead to an extinct species. Thus, these hidden speciation events can only be detected in complete trees (as opposed to reconstructed trees).

Description
Function to calculate the number of hidden speciation events, e.g. speciation events that have lead to an extinct species. Thus, these hidden speciation events can only be detected in complete trees (as opposed to reconstructed trees).

Usage
count_hidden(tree)

Arguments
tree phylo object

Value
number of hidden speciation events
create_balanced_tree create a balanced tree out of branching times

Description
create a balanced tree out of branching times

Usage
create_balanced_tree(brts)

Arguments
brts vector of branching times

Value
phylo phylo object

create_equal_alignment

description create an alignment with identical information content

Description
function create an alignment with identical information content

Usage
create_equal_alignment(
 input_tree,
 sub_rate,
 alignment_result,
 sim_function = NULL,
 verbose = FALSE,
 node_time = NULL,
 input_alignment_type = "nodesub"
)
create_equal_alignment_explicit

function create an alignment with identical information content, using
the explicit method to simulate substitutions

Description

function create an alignment with identical information content, using the explicit method to simulate substitutions

Usage

create_equal_alignment_explicit(
 input_tree,
 sub_rate,
 alignment_result,
 verbose = FALSE
)
Arguments

- `input_tree` phylogeny for which to generate alignment
- `sub_rate` substitution rate used in the original phylogeny
- `alignment_result` result of sim_normal, sim_linked or sim_unlinked
- `verbose` provide intermediate output

Value

List with four properties: 1) alignment: the alignment itself, 2) adjusted rate: the substitution rate used to obtain identical information content 3) total_accumulated_substitutions: the total number of substitutions accumulated. 4) total_node_substitutions: total number of substitutions accumulated on the nodes 5) total_branch_substitutions: total number of substitutions accumulated on the branches.

create_unbalanced_tree

`create_unbalanced_tree(out_balanced_tree)`

create an unbalanced tree out of branching times

Description

Create an unbalanced tree out of branching times

Usage

`create_unbalanced_tree(brts)`

Arguments

- `brts` vector of branching times

Value

phylo phylo object
estimate_marginal_models

estimate the marginal likelihood of the relaxed and strict clock model for a provided alignment

Description

estimate_marginal_models estimates the marginal likelihood of both the strict and the relaxed clock model, given the JC69 substitution model, using the NS package in BEAST, made available via the babette R package. The NS package performs nested sampling, and uses an MCMC approach to estimate the marginal likelihood. Sampling is performed until convergence of the MCMC chain.

Usage

```r
estimate_marginal_models(
  fasta_filename,
  use_yule_prior = FALSE,
  rng_seed = 42,
  sub_rate = 1,
  verbose = FALSE
)
```

Arguments

- `fasta_filename`: file name of fasta file holding alignment for which the marginal likelihood is to be estimated
- `use_yule_prior`: by default, a birth-death prior is used as tree prior, but if use_yule_prior is set to TRUE, a pure-birth prior will be used.
- `rng_seed`: seed of pseudo-random number generator
- `sub_rate`: substitution rate
- `verbose`: boolean indicating if verbose intermediate output is to be generated

Value

data frame with marginal likelihoods and relative weights per clock model.

get_p_matrix

calculate p matrix

Description

calculates the p matrix
Usage

get_p_matrix(branch_length, eig = phangorn::edQt(), rate = 1)

Arguments

branch_length

eig

rate

Value

p matrix

infer_phylogeny

infer the time calibrated phylogeny associated with the provided alignment. This function uses the R package babette to infer the phylogeny using BEAST2.

Description

infer the time calibrated phylogeny associated with the provided alignment. This function uses the R package babette to infer the phylogeny using BEAST2.

Usage

infer_phylogeny(
 alignment,
 treatment_name,
 tree_prior = beautier::create_bd_tree_prior(),
 clock_prior = beautier::create_strict_clock_model(),
 mcmc_seed = NULL,
 chain_length = 1e+07,
 sample_interval = 5000,
 burnin = 0.1,
 working_dir = NULL,
 sub_rate = 1
)

Arguments

alignment

treatment_name

tree_prior

clock_prior

mcmc_seed

Phydat object containing the focal alignment

string to be appended to BEAST files

tree prior used, default = birth-death prior

clock prior used, default = strict clock

seed of the mcmc chain, default is the system time
reduce_tree

Function to remove speciation events occurring after an extinction event. Extinct species are pruned randomly, such that only a single extinct species per branching event (if any extinct species) remains.

Description

Function to remove speciation events occurring after an extinction event. Extinct species are pruned randomly, such that only a single extinct species per branching event (if any extinct species) remains.

Usage

reduce_tree(tree)

Arguments

tree phylo object

Value

pruned tree

chain_length
length of the mcmc chain, default is 1e7.
sample_interval
interval of sampling, default is 5000
burnin
burnin of posterior distribution
working_dir
beast2 working dir
sub_rate
substitution rate used to generate the original alignment (if available), default is 1

Value

list with all trees, and the consensus tree
sim_linked

simulate a sequence assuming conditional substitutions on the node.

Description

simulate a sequence assuming conditional substitutions on the node.

Usage

```r
sim_linked(
phy,
Q = rep(1, 6),
rate = 0.1,
node_mut_rate_double = 1e-09,
l = 1000,
bf = rep(0.25, 4),
rootseq = NULL,
node_time = 0.01
)
```

Arguments

- `phy`
 tree for which to simulate sequences
- `Q`
 substitution matrix along the branches, default = JC
- `rate`
 mutation rate, default = 1
- `node_mut_rate_double`
 mutation rate on the node, default = 1e-9
- `l`
 number of base pairs to simulate
- `bf`
 base frequencies, default = c(0.25, 0.25, 0.25, 0.25)
- `rootseq`
 sequence at the root, simulated by default
- `node_time`
 time spent at the node

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes
Simulate sequences for a given evolutionary tree, using a standard model of sequence evolution along the branches. Code for this function was heavily inspired by the function simSeq from the phangorn package.

Usage

sim_normal(x, l = 1000, Q = NULL, bf = NULL, rootseq = NULL, rate = 1)

Arguments

- **x**: a phylogenetic tree, i.e. an object of class phylo
- **l**: length of the sequence to simulate.
- **Q**: the rate matrix.
- **bf**: base frequencies.
- **rootseq**: a vector of length l containing the root sequence, other root sequence is randomly generated.
- **rate**: mutation rate

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes

Author(s)

Klaus Schliep <klaus.schliep@gmail.com>
sim_normal_explicit

simulate a sequence assuming substitutions are only accumulated along the branches, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Description

simulate a sequence assuming substitutions are only accumulated along the branches, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Usage

```r
sim_normal_explicit(x, l = 1000, Q = NULL, bf = NULL, rootseq = NULL, rate = 1)
```

Arguments

- `x`: a phylogenetic tree tree, i.e. an object of class phylo or and object of class pml.
- `l`: length of the sequence to simulate.
- `Q`: the rate matrix.
- `bf`: base frequencies.
- `rootseq`: a vector of length l containing the root sequence, other root sequence is randomly generated.
- `rate`: mutation rate or scaler for the edge length, a numerical value greater than zero.

Value

list with four items

1. alignment Phydat object with the resulting alignment
2. rootseq the rootsequence used
3. total_branch_substitutions total number of substitutions accumulated on the branches
4. total_node_substitutions total number of substitutions accumulated at the nodes

sim_unlinked

Simulate a sequence assuming node substitutions are not shared amongst offspring, given two substitution matrices: one for substitutions occuring on the nodes, and one for substitutions occuring along the branches.

Description

Simulate a sequence assuming node substitutions are not shared amongst offspring, given two substitution matrices: one for substitutions occuring on the nodes, and one for substitutions occuring along the branches.
Usage

```r
sim_unlinked_explicit(  
  phy,  
  Q1 = rep(1, 6),  
  Q2 = rep(1, 6),  
  rate1 = 0.1,  
  rate2 = 0.1,  
  l = 1000,  
  bf = rep(0.25, 4),  
  rootseq = NULL,  
  node_time = 0.001  
)
```

Arguments

- **phy**: tree for which to simulate sequences
- **Q1**: substitution matrix along the branches, default = JC
- **Q2**: substitution matrix on the nodes, default = JC
- **rate1**: mutation rate along the branch, default = 0.1
- **rate2**: mutation rate on the node, default = 0.1
- **l**: number of base pairs to simulate
- **bf**: base frequencies, default = c(0.25, 0.25, 0.25, 0.25)
- **rootseq**: sequence at the root, simulated by default
- **node_time**: amount of time spent at the nodes

Value

- list with four items
 1. alignment Phydat object with the resulting alignment
 2. rootseq the rootsequence used
 3. total_branch_substitutions total number of substitutions accumulated on the branches
 4. total_node_substitutions total number of substitutions accumulated at the nodes

sim_unlinked_explicit
Simulate a sequence assuming node substitutions are not shared amongst offspring, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Description

Simulate a sequence assuming node substitutions are not shared amongst offspring, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)
Usage

```
sim_unlinked_explicit(
  phy,
  Q1 = rep(1, 6),
  Q2 = rep(1, 6),
  rate1 = 0.1,
  rate2 = 0.1,
  l = 1000,
  bf = rep(0.25, 4),
  rootseq = NULL,
  node_time = 0.001
)
```

Arguments

- **phy**: phylogenetic tree for which to simulate sequences
- **Q1**: substitution matrix along the branches, default = JC
- **Q2**: substitution matrix on the nodes, default = JC
- **rate1**: mutation rate along the branch, default = 0.1
- **rate2**: mutation rate on the node, default = 0.1
- **l**: number of base pairs to simulate
- **bf**: base frequencies, default = c(0.25, 0.25, 0.25, 0.25)
- **rootseq**: sequence at the root, simulated by default
- **node_time**: amount of time spent at the nodes

Value

- list with four items
 - 1. alignment Phydat object with the resulting alignment
 - 2. rootseq the rootsequence used
 - 3. total_branch_substitutions total number of substitutions accumulated on the branches
 - 4. total_node_substitutions total number of substitutions accumulated at the nodes

slow_matrix

this function calculates the p matrix within R this is slower than the C++ implementation in get_p_matrix but provides a way to debug and verify

Description

this function calculates the p matrix within R this is slower than the C++ implementation in get_p_matrix but provides a way to debug and verify
slow_matrix

Usage

slow_matrix(eig, branch_length, rate)

Arguments

- **eig**: eigen object
- **branch_length**: branch length
- **rate**: substitution rate

Value

- p matrix
Index

calc_expected_hidden_nodes, 3
calc_fraction, 3
calc_required_node_time, 4
calc_sum_stats, 4
count_hidden, 5
create_balanced_tree, 6
create_equal_alignment, 6
create_equal_alignment_explicit, 7
create_unbalanced_tree, 8
estimate_marginal_models, 9
get_p_matrix, 9
infer_phylogeny, 10
nodeSub (nodeSub-package), 2
nodeSub-package, 2
reduce_tree, 11
sim_linked, 12
sim_normal, 13
sim_normal_explicit, 14
sim_unlinked, 14
sim_unlinked_explicit, 15
slow_matrix, 16