Package ‘noisySBM’

October 13, 2022

Type Package

Title Noisy Stochastic Block Mode: Graph Inference by Multiple Testing

Version 0.1.4

Author Tabea Rebafka [aut, cre],
Etienne Roquain [ctb],
Fanny Villers [aut]

Maintainer Tabea Rebafka <tabea.rebafka@sorbonne-universite.fr>

Description Variational Expectation-Maximization algorithm to fit the noisy stochastic block model to an observed dense graph and to perform a node clustering. Moreover, a graph inference procedure to recover the underlying binary graph. This procedure comes with a control of the false discovery rate. The method is described in the article "Powerful graph inference with false discovery rate control" by T. Rebafka, E. Roquain, F. Villers (2020) <arXiv:1907.10176>.

License GPL-2

Encoding UTF-8

LazyData true

Imports parallel, gtools, ggplot2, RColorBrewer

RoxygenNote 7.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

Depends R (>= 2.10)

NeedsCompilation no

Repository CRAN

Date/Publication 2020-12-16 10:40:06 UTC

R topics documented:

 addRowToTau .. 3
 ARI ... 3
R topics documented:
classInd ... 4
convertGroupPair .. 4
convertGroupPairIdentifier 5
convertNodePair .. 5
correctTau .. 6
tauDown .. 28
tauUp ... 29
tauUpdate ... 29
update_newton_gamma 30
VEstep ... 30
emv_gamma .. 6
fitNSBM ... 7
correctTau .. 6
eval ... 10
graphInference .. 11
ICL_Q ... 12
getBestQ .. 9
getRho ... 10
graphInference .. 11
getTauql .. 10
initialPoints ... 13
initialPointsByMerge .. 14
initialPointsBySplit ... 15
initialRho .. 16
initialTau ... 18
initialRho .. 16
initialTau ... 18
J.gamma ... 18
JEvalMstep .. 19
listNodePairs .. 19
lvaluesNSBM .. 20
mainVEM_Q .. 20
mainVEM_Q_par .. 21
modelDensity .. 22
Mstep ... 23
plotGraphs .. 24
plotICL ... 24
qvaluesNSBM ... 25
q_delta_ql .. 25
qvaluesNSBM ... 25
res_exp .. 26
res_gamma ... 26
res_gauss .. 26
rmsbm ... 27
spectralClustering ... 28
tauDown .. 28
update ... 29
update_newton .. 29
ve ... 30
newton .. 30

Index 32
addRowToTau

| addRowToTau | split group q of provided tau randomly into two into |

Description

split group q of provided tau randomly into two into

Usage

```
addRowToTau(tau, q)
```

Arguments

- `tau` : provided tau
- `q` : indice of group to split

Value

new tau

ARI

Evaluate the adjusted Rand index

Description

Compute the adjusted Rand index to compare two partitions

Usage

```
ARI(x, y)
```

Arguments

- `x` : vector (of length n) or matrix (with n columns) providing a partition
- `y` : vector or matrix providing a partition

Details

the partitions may be provided as n-vectors containing the cluster memberships of n entities, or by Qxn - matrices whose entries are all 0 and 1 where 1 indicates the cluster membership

Value

the value of the adjusted Rand index
Examples

```r
clust1 <- c(1,2,1,2)
clust2 <- c(2,1,2,1)
ARI(clust1, clust2)

clust3 <- matrix(c(1,1,0,0, 0,0,1,1), nrow=2, byrow=TRUE)
clust4 <- matrix(c(1,0,0,0, 0,1,0,0, 0,0,1,1), nrow=3, byrow=TRUE)
ARI(clust3, clust4)
```

classInd

convert a clustering into a 0-1-matrix

Description

convert a clustering into a 0-1-matrix

Usage

```r
classInd(cl, nbClusters)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cl</td>
<td>cluster in vector form</td>
</tr>
<tr>
<td>nbClusters</td>
<td>number of clusters</td>
</tr>
</tbody>
</table>

Value

da 0-1-matrix encoding the clustering

convertGroupPair

transform a pair of block identifiers (q,l) into an identifying integer

Description

this is the inverse function of convertGroupPairIdentifier()

Usage

```r
convertGroupPair(q, l, Q, directed)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>indicator of a latent block</td>
</tr>
<tr>
<td>l</td>
<td>indicator of a latent block</td>
</tr>
<tr>
<td>Q</td>
<td>number of latent blocks</td>
</tr>
<tr>
<td>directed</td>
<td>indicates if the graph is directed</td>
</tr>
</tbody>
</table>
convertGroupPairIdentifier

Takes a scalar indice of a group pair \((q,l)\) and returns the values \(q\) and \(l\).

Description

This is the inverse function of convertGroupPair().

Usage

```r
convertGroupPairIdentifier(ind_ql, Q)
```

Arguments

- `ind_ql`: indicator for a pair of latent blocks
- `Q`: number of latent blocks

convertNodePair

Transform a pair of nodes \((i,j)\) into an identifying integer.

Description

Associates an identifying integer with a pair of nodes \((i,j)\).

Usage

```r
convertNodePair(i, j, n, directed)
```

Arguments

- `i`: scalar or vector
- `j`: scalar or vector, same length as `i`
- `n`: number of vertices
- `directed`: boolean to indicate whether the model is directed or undirected

Details

Returns the row number of the matrix build by `listNodePairs(n)` containing the pair \((i,j)\).
correctTau

Description

corrects values of the variational parameters tau that are too close to the 0 or 1

Usage

correctTau(tau)

Arguments

tau variational parameters

emv_gamma

Description

compute the MLE in the Gamma model using the Newton-Raphson method

Usage

dmv_gamma(L, M, param.old, epsilon = 0.001, nb.iter.max = 10)

Arguments

L weighted mean of log(data)
M weighted mean of the data
param.old parameters of the Gamma distribution
epsilon threshold for the stopping criterion
nb.iter.max maximum number of iterations

Value

updated parameters of the Gamma distribution
Description

fitNSBM() estimates model parameters of the noisy stochastic block model and provides a clustering of the nodes

Usage

```r
fitNSBM(
  dataMatrix, 
  model = "Gauss0", 
  sbmSize = list(Qmin = 1, Qmax = NULL, explor = 1.5), 
  filename = NULL, 
  initParam = list(nbOfTau = NULL, nbOfPointsPerTau = NULL, maxNbOfPasses = NULL, minNbOfPasses = 1), 
  nbCores = parallel::detectCores()
)
```

Arguments

dataMatrix observed dense adjacency matrix

model Implemented models:

- **Gauss** all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
- **Gauss0** compared to Gauss, the mean of the null distribution is set to 0
- **Gauss01** compared to Gauss0, the null distribution is set to N(0,1)
- **GaussEqVar** compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
- **Gauss0EqVar** compared to GaussEqVar, the mean of the null distribution is set to 0
- **Gauss0Var1** compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)
- **Gauss2distr** the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
- **GaussAffil** compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions
- **Exp** the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
ExpGamma the null distribution is an unknown exponential, the alterantive distribution are Gamma distributions with unknown parameters

sbmSize list of parameters determining the size of SBM (the number of latent blocks) to be explored

Qmin minimum number of latent blocks
Qmax maximum number of latent blocks
explor if Qmax is not provided, then Qmax is automatically determined as explor times the number of blocks where the ICL is maximal

filename results are saved in a file with this name (if provided)

initParam list of parameters that fix the number of initializations

nbOfTau number of initial points for the node clustering (i.e. for the variational parameters tau)

nbOfPointsPerTau number of initial points of the latent binary graph

maxNbOfPasses maximum number of passes through the SBM models, that is, passes from Qmin to Qmax or inversely

minNbOfPasses minimum number of passes through the SBM models

Details

FitNSBM() supports different probability distributions for the edges and can estimate the number of node blocks

Value

Returns a list of estimation results for all numbers of latent blocks considered by the algorithm. Every element is a list composed of:

theta estimated parameters of the noisy stochastic block model; a list with the following elements:

\- \(\pi \) parameter estimate of \(\pi \)
\- \(w \) parameter estimate of \(w \)
\- \(\nu_0 \) parameter estimate of \(\nu_0 \)
\- \(\nu \) parameter estimate of \(\nu \)

clustering node clustering obtained by the noisy stochastic block model, more precisely, a hard clustering given by the maximum aposteriori estimate of the variational parameters \(\text{sbmParam}\$\text{edgeProba} \)

sbmParam further results concerning the latent binary stochastic block model. A list with the following elements:

\- \(Q \) number of latent blocks in the noisy stochastic block model

clusterProba soft clustering given by the conditional probabilities of a node to belong to a given latent block. In other words, these are the variational parameters \(\tau \); \((Q \times n)\)-matrix

edgeProba conditional probabilities \(\rho \) of edges given the node memberships of the interacting nodes; \((N \times Q \times N)\)-matrix

ICL value of the ICL criterion at the end of the algorithm
getBestQ

convergence a list of convergence indicators:

- \(J \) value of the lower bound of the log-likelihood function at the end of the algorithm
- complLogLik value of the complete log-likelihood function at the end of the algorithm
- converged indicates if algorithm has converged
- nbIter number of iterations performed

Examples

\[n <- 10 \]
\[\theta <- \text{list}(\pi = c(0.5, 0.5), \nu_0 = c(0, 1), \nu = \text{matrix}(c(-2, 10, -2, 1, 1, 1), 3, 2), w = c(0.5, 0.9, 0.3)) \]
\[\text{obs} <- \text{rnsbm}(n, \theta, \text{modelFamily} = \text{'Gauss'}) \]
\[\text{res} <- \text{fitNSBM}(\text{obs$dataMatrix}, \text{sbmSize} = \text{list}(Qmax = 3), \text{initParam} = \text{list(nbOfTau = 1, nbOfPointsPerTau = 1), nbCores = 1}) \]

\[\text{getBestQ} \]

\[\text{optimal number of SBM blocks} \]

Description

returns the number of SBM blocks that maximizes the ICL

Usage

\[\text{getBestQ(bestSolutionAtQ)} \]

Arguments

- bestSolutionAtQ
 - output of \text{fitNSBM()}, i.e. a list of estimation results for varying number of latent blocks

Value

a list the maximal value of the ICL criterion among the provided solutions along with the best number of latent blocks

Examples

\[\# \text{res.gauss is the output of a call of fitNSBM()} \]
\[\text{getBestQ(res.gauss)} \]
getRho

Description
compute rho associated with given values of \(w, \nu_0 \) and \(\nu \)

Usage
```
getRho(Q, w, nu0, nu, data, modelFamily)
```

Arguments
- \(Q \): number of latent blocks in the noisy stochastic block model
- \(w \): weight parameter in the noisy stochastic block model
- \(\nu_0 \): null parameter in the noisy stochastic block model
- \(\nu \): alternative parameter in the noisy stochastic block model
- \(data \): data vector in the undirected model, data matrix in the directed model
- \(modelFamily \): probability distribution for the edges. Possible values: Gauss, Gamma

Value
a matrix of conditional probabilities of an edge given the node memberships of the interacting nodes

getTaul

Description
Evaluate \(\tau_q \tau_l \) in the noisy stochastic block model

Usage
```
getTaul(q, l, tau, n, directed)
```

Arguments
- \(q \): indicator of a latent block
- \(l \): indicator of a latent block
- \(tau \): variational parameters
- \(n \): number of vertices
- \(directed \): boolean to indicate whether the model is directed or undirected
Description
new graph inference procedure

Usage
graphInference(
 dataMatrix,
 nodeClustering,
 theta,
 alpha = 0.05,
 modelFamily = "Gauss"
)

Arguments
dataMatrix observed adjacency matrix, nxn matrix
nodeClustering n-vector of hard node Clustering
theta parameter of the noisy stochastic block model
alpha confidence level
modelFamily probability distribution for the edges. Possible values: Gauss and Gamma

Details
graph inference procedure based on conditional q-values in the noisy stochastic block model. It works in the Gaussian model, and also in the Gamma model, but only if the shape parameters of the Gamma distributions under the null and the alternatives are identical (e.g. when all distributions are exponentials).

Value
a list with:
A resulting binary adjacency matrix
qvalues vector with conditional q-values in the noisy stochastic block model

Examples
set.seed(1)
theta <- list(pi=c(.5,.5), w=c(.8,.1,.2), nu0=c(0,1), nu=matrix(c(-1,5,10, 1,1,1), ncol=2))
obs <- rnsbm(n=30, theta)
res_gauss <- fitNSBM(obs$dataMatrix, nbCores=1)
resGraph <- graphInference(obs$dataMatrix, res_gauss[[2]]$clustering, theta, alpha=0.05)
sum((resGraph$A))/2 # nb of derived edges
sum(obs$latentAdj)/2 # correct nb of edges
ICL_Q

computation of the Integrated Classification Likelihood criterion

Description

computation of the Integrated Classification Likelihood criterion for a result provided by mainVEM_Q()

Usage

ICL_Q(solutionThisRun, model)

Arguments

solutionThisRun
result provided by mainVEM_Q()

model
Implemented models:

Gauss all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters

Gauss∅ compared to Gauss, the mean of the null distribution is set to 0

Gauss∅1 compared to Gauss, the null distribution is set to N(0,1)

GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown

Gauss∅EqVar compared to GaussEqVar, the mean of the null distribution is set to 0

Gauss∅Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)

Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution

GaussAffil compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions

Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters

ExpGamma the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters

Value

value of the ICL criterion
Initial Points 13

Description
compute a list of initial points of \(\tau \) and \(\rho \) for the VEM algorithm for a given number of blocks; returns \(\text{nbOfTau} \times \text{nbOfPointsPerTau} \) initial points

Usage
initialPoints(
 Q,
 dataMatrix,
 nbOfTau,
 nbOfPointsPerTau,
 modelFamily,
 model,
 directed
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>number of latent blocks in the noisy stochastic block model</td>
</tr>
<tr>
<td>dataMatrix</td>
<td>observed dense adjacency matrix</td>
</tr>
<tr>
<td>nbOfTau</td>
<td>number of initializations for the latent block memberships</td>
</tr>
<tr>
<td>nbOfPointsPerTau</td>
<td>number of initializations of the latent binary graph associated with each initial latent block memberships</td>
</tr>
<tr>
<td>modelFamily</td>
<td>probability distribution for the edges. Possible values: Gauss, Gamma</td>
</tr>
<tr>
<td>model</td>
<td>Implemented models:</td>
</tr>
<tr>
<td></td>
<td>Gauss all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters</td>
</tr>
<tr>
<td></td>
<td>Gauss0 compared to Gauss, the mean of the null distribution is set to 0</td>
</tr>
<tr>
<td></td>
<td>Gauss01 compared to Gauss, the null distribution is set to (N(0,1))</td>
</tr>
<tr>
<td></td>
<td>GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown</td>
</tr>
<tr>
<td></td>
<td>Gauss0EqVar compared to GaussEqVar, the mean of the null distribution is set to 0</td>
</tr>
<tr>
<td></td>
<td>Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to (N(0,1))</td>
</tr>
<tr>
<td></td>
<td>Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution</td>
</tr>
</tbody>
</table>
GaussAffil compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions

Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters

ExpGamma the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters

directed boolean to indicate whether the model is directed or undirected

Value

list of initial points of tau and rho of length nbOfTau*nbOfPointsPerTau

initialPointsByMerge Construct initial values with Q groups by merging groups of a solution obtained with Q+1 groups

Description

Construct initial values with Q groups by merging groups of a solution obtained with Q+1 groups

Usage

initialPointsByMerge(
 tau_Qp1,
 nbOfTau,
 nbOfPointsPerTau,
 data,
 modelFamily,
 model,
 directed
)

Arguments

tau_Qp1 tau for a model with Q+1 latent blocks
nbOfTau number of initializations for the latent block memberships
nbOfPointsPerTau number of initializations of the latent binary graph associated with each initial latent block memberships
data data vector in the undirected model, data matrix in the directed model
modelFamily probability distribution for the edges. Possible values: Gauss, Gamma
model Implemented models:
Gauss all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
initialPointsBySplit

- Gauss0: compared to Gauss, the mean of the null distribution is set to 0
- Gauss01: compared to Gauss, the null distribution is set to \(N(0,1) \)
- GaussEqVar: compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
- Gauss0EqVar: compared to GaussEqVar, the mean of the null distribution is set to 0
- Gauss0Var1: compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to \(N(0,1) \)
- Gauss2dist: the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
- GaussAffil: compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions
- Exp: the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
- ExpGamma: the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters

directed boolean to indicate whether the model is directed or undirected

Value

- list of initial points of tau and rho of length \(\text{nbOfTau} \times \text{nbOfPointsPerTau} \)

initialPointsBySplit *Construct initial values with Q groups by splitting groups of a solution obtained with Q-1 groups*

Description

Construct initial values with Q groups by splitting groups of a solution obtained with Q-1 groups

Usage

```r
initialPointsBySplit(
  tau_Qm1,
  nbOfTau,
  nbOfPointsPerTau,
  data,
  modelFamily,
  model,
  directed
)
```
Arguments

- **tau_Qm1**: tau for a model with Q-1 latent blocks
- **nbOfTau**: number of initializations for the latent block memberships
- **nbOfPointsPerTau**: number of initializations of the latent binary graph associated with each initial latent block memberships
- **data**: data vector in the undirected model, data matrix in the directed model
- **modelFamily**: probability distribution for the edges. Possible values: Gauss, Gamma
- **model**: Implemented models:
 - Gauss: all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
 - Gauss0: compared to Gauss, the mean of the null distribution is set to 0
 - Gauss01: compared to Gauss, the null distribution is set to N(0,1)
 - GaussEqVar: compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
 - Gauss0EqVar: compared to GaussEqVar, the mean of the null distribution is set to 0
 - Gauss0Var1: compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)
 - Gauss2distr: the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
 - GaussAffil: compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions
 - Exp: the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
 - ExpGamma: the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters
- **directed**: boolean to indicate whether the model is directed or undirected

Value

- list of initial points of tau and rho of length nbOfTau*nbOfPointsPerTau

initialRho

compute initial values of rho

Description

for every provided initial point of tau nbOfPointsPerTau initial values of rho are computed in the Gamma model also initial values of nu are computed
Usage

initialRho(listOfTau, nbOfPointsPerTau, data, modelFamily, model, directed)

Arguments

- **listOfTau**: output of initialTau()
- **nbOfPointsPerTau**: number of initializations of the latent binary graph associated with each initial latent block memberships
- **data**: data vector in the undirected model, data matrix in the directed model
- **modelFamily**: probability distribution for the edges. Possible values: Gauss, Gamma
- **model**: Implemented models:
 - Gauss: all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
 - Gauss0: compared to Gauss, the mean of the null distribution is set to 0
 - Gauss01: compared to Gauss, the null distribution is set to N(0,1)
 - GaussEqVar: compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
 - Gauss0EqVar: compared to GaussEqVar, the mean of the null distribution is set to 0
 - Gauss0Var1: compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)
 - Gauss2distr: the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
 - GaussAffil: compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions
 - Exp: the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
 - ExpGamma: the null distribution is an unknown exponential, the alterantive distribution are Gamma distributions with unknown parameters
- **directed**: boolean to indicate whether the model is directed or undirected

Value

list of initial points of tau and rho
initialTau

compute initial values for tau

Description
returns a list of length nbOfTau of initial points for tau using spectral clustering with absolute values, kmeans and random perturbations of these points

Usage

```r
initialTau(Q, dataMatrix, nbOfTau, percentageOfPerturbation, directed)
```

Arguments

- `Q`: number of latent blocks in the noisy stochastic block model
- `dataMatrix`: observed dense adjacency matrix
- `nbOfTau`: number of initializations for the latent block memberships
- `percentageOfPerturbation`: percentage of node labels that are perturbed to obtain further initial points
- `directed`: boolean to indicate whether the model is directed or undirected

Value
a list of length nbOfTau of initial points for tau

J.gamma

evaluate the objective in the Gamma model

Description
evaluate the objective in the Gamma model

Usage

```r
J.gamma(param, L, M)
```

Arguments

- `param`: parameters of the Gamma distribution
- `L`: weighted mean of log(data)
- `M`: weighted mean of the data

Value
value of the lower bound of the log-likelihood function
JEvalMstep

evaluation of the objective in the Gauss model

Description

evaluation of the objective in the Gauss model

Usage

`JEvalMstep(VE, mstep, data, modelFamily, directed)`

Arguments

- **VE**: list with variational parameters tau and rho
- **mstep**: list with current model parameters and additional auxiliary terms
- **data**: data vector in the undirected model, data matrix in the directed model
- **modelFamily**: probability distribution for the edges. Possible values: Gauss, Gamma
- **directed**: boolean to indicate whether the model is directed or undirected

Value

value of the ELBO and the complete log likelihood function

listNodePairs

returns a list of all possible node pairs (i,j)

Description

returns a list of all possible node pairs (i,j)

Usage

`listNodePairs(n, directed = FALSE)`

Arguments

- **n**: number of nodes
- **directed**: indicates if the graph is directed

Value

a 2-column matrix with all possible node pairs (i,j)
lvaluesNSBM
compute conditional l-values in the noisy stochastic block model

Description

compute conditional l-values in the noisy stochastic block model

Usage

`lvaluesNSBM(dataVec, Z, theta, directed = FALSE, modelFamily = "Gauss")`

Arguments

- `dataVec`: data vector
- `Z`: a node clustering
- `theta`: list of parameters for a noisy stochastic block model
- `directed`: indicates if the graph is directed
- `modelFamily`: probability distribution for the edges. Possible values: Gauss and Gamma

Value

conditional l-values in the noisy stochastic block model

mainVEM_Q
main function of VEM algorithm with fixed number of SBM blocks

Description

main function of VEM algorithm with fixed number of SBM blocks

Usage

`mainVEM_Q(init, modelFamily, model, data, directed)`

Arguments

- `init`: list of initial points for the algorithm
- `modelFamily`: probability distribution for the edges. Possible values: Gauss, Gamma
- `model`: Implemented models:
 - Gauss: all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
 - Gauss0: compared to Gauss, the mean of the null distribution is set to 0
Gauss0 compared to Gauss, the null distribution is set to N(0,1)
GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
Gauss0EqVar compared to GaussEqVar, the mean of the null distribution is set to 0
Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)

Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution

GaussAffil compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions

Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters

ExpGamma the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters

data data vector in the undirected model, data matrix in the directed model
directed boolean to indicate whether the model is directed or undirected

Value
list of estimated model parameters and a node clustering; like the output of fitNSBM()

Description
runs the VEM algorithm the provided initial point

Usage
mainVEM_Q_par(s,ListOfTauRho,modelFamily,model,data,directed)

Arguments
- s indice of initial point in ListOfTauRho to be used for this run
- ListOfTauRho a list of initial points
- modelFamily probability distribution for the edges. Possible values: Gauss, Gamma
- model Implemented models:
Gauss all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
Gauss0 compared to Gauss, the mean of the null distribution is set to 0
Gauss01 compared to Gauss, the null distribution is set to N(0,1)
GaussEqVar compared to Gauss, all Gaussian variances (of both the null and
the alternative) are supposed to be equal, but unknown
Gauss0EqVar compared to GaussEqVar, the mean of the null distribution is set
to 0
Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null
distribution is set to N(0,1)
Gauss2distr the alternative distribution is a single Gaussian distribution, i.e.
the block memberships of the nodes do not influence on the alternative dis-
tribution
GaussAffil compared to Gauss, for the alternative distribution, there's a dis-
tribution for inter-group and another for intra-group interactions
Exp the null and the alternatives are all exponential distributions (i.e. Gamma
distributions with shape parameter equal to one) with unknown scale pa-
rameters
ExpGamma the null distribution is an unknown exponential, the alterantive dis-
tribution are Gamma distributions with unknown parameters
data data vector in the undirected model, data matrix in the directed model
directed boolean to indicate whether the model is directed or undirected

Value
list of estimated model parameters and a node clustering; like the output of fitNSBM()

modelDensity evaluate the density in the current model

Description
evaluate the density in the current model

Usage
modelDensity(x, nu, modelFamily = "Gauss")

Arguments
x vector with points where to evaluate the density
nu distribution parameter
modelFamily probability distribution for the edges. Possible values: Gauss, Gamma, Poisson
Mstep

M-step

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>performs one M-step, that is, update of pi, w, nu, nu0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Mstep(VE, mstep, model, data, modelFamily, directed)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>VE</td>
</tr>
<tr>
<td>mstep</td>
</tr>
<tr>
<td>model</td>
</tr>
<tr>
<td>Gauss</td>
</tr>
<tr>
<td>Gauss0</td>
</tr>
<tr>
<td>Gauss01</td>
</tr>
<tr>
<td>GaussEqVar</td>
</tr>
<tr>
<td>Gauss0EqVar</td>
</tr>
<tr>
<td>Gauss0Var1</td>
</tr>
<tr>
<td>Gauss2distr</td>
</tr>
<tr>
<td>GaussAffil</td>
</tr>
<tr>
<td>Exp</td>
</tr>
<tr>
<td>ExpGamma</td>
</tr>
<tr>
<td>data</td>
</tr>
<tr>
<td>modelFamily</td>
</tr>
<tr>
<td>directed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>updated list <code>mstep</code> with current model parameters and additional auxiliary terms</td>
</tr>
</tbody>
</table>
plotGraphs

Description
plot the data matrix, the inferred graph and/or the true binary graph

Usage
plotGraphs(dataMatrix = NULL, inferredGraph = NULL, binaryTruth = NULL)

Arguments
- dataMatrix: observed data matrix
- inferredGraph: graph inferred by the multiple testing procedure via graphInference()
- binaryTruth: true binary graph

Value
a list of FDR and TDR values, if possible

plotICL

Description
plot ICL curve

Usage
plotICL(res)

Arguments
- res: output of fitNSBM()

Value
figure of ICL curve

Examples
res_gauss is the output of a call of fitNSBM()
plotICL(res_gauss)
compute q-values in the noisy stochastic block model

Usage

qvaluesNSBM(
 dataVec,
 Z,
 theta,
 lvalues,
 modelFamily = "Gauss",
 directed = FALSE
)

Arguments

dataVec data vector
Z a node clustering
theta list of parameters for a noisy stochastic block model
lvalues conditional l-values in the noisy stochastic block model
modelFamily probability distribution for the edges. Possible values: Gauss and Gamma
directed indicates if the graph is directed

Value

q-values in the noisy stochastic block model

q_delta ql

auxiliary function for the computation of q-values

Description

auxiliary function for the computation of q-values

Usage

q_delta ql(theta, ind, t, modelFamily = "Gauss")
Arguments

- **theta**: list of parameters for a noisy stochastic block model
- **ind**: indicator for a pair of latent blocks
- **t**: l-values
- **modelFamily**: probability distribution for the edges. Possible values: Gauss and Gamma

res_exp

Output of fitNSBM() on a dataset applied in the exponential NSBM

Description

Parameter estimates fitted on a dataset given in the vignette

Usage

`res_exp`

Format

List with estimation results for different number of SBM blocks. Output of fitNSBM()

resGamma

Output of fitNSBM() on a dataset applied in the Gamma NSBM

Description

Parameter estimates fitted on a dataset given in the vignette

Usage

`resGamma`

Format

List with estimation results for different number of SBM blocks. Output of fitNSBM()
Description
Parameter estimates fitted on a dataset given in the vignette

Usage
res_gauss

Format
List with estimation results for different number of SBM blocks. Output of fitNSBM()
Examples

```r
n <- 10
Q <- 2
theta <- list(pi= rep(1/Q,Q), nu0=c(0,1))
theta$nu <- matrix(c(-2,10,-2, 1,1,1),nrow=Q*(Q+1)/2,ncol=2)
theta$w <- c(.5, .9, .3)
obs <- rnsbm(n, theta, modelFamily='Gauss')
```

spectralClustering
spectral clustering with absolute values

Description

performs absolute spectral clustering of an adjacency matrix

Usage

```r
spectralClustering(A, K)
```

Arguments

- **A**: adjacency matrix
- **K**: number of desired clusters

Value

a vector containing a node clustering into K groups

tauDown

Create new initial values by merging pairs of groups of provided tau

Description

Create nbOfMerges new initial values by merging nbOfMerges (or all possible) pairs of groups of provided tau

Usage

```r
tauDown(tau, nbOfMerges)
```

Arguments

- **tau**: soft node clustering
- **nbOfMerges**: number of required merges of blocks
tauUp

Value

a list of length nbOfMerges (at most) of initial points for tau

Create new values of tau by splitting groups of provided tau

Usage

`tauUp(tau, nbOfSplits = 1)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tau</td>
<td>soft node clustering</td>
</tr>
<tr>
<td>nbOfSplits</td>
<td>number of required splits of blocks</td>
</tr>
</tbody>
</table>

Value

a list of length nbOfSplits (at most) of initial points for tau

tauUpdate

Compute one iteration to solve the fixed point equation in the VE-step

Description

Compute one iteration to solve the fixed point equation in the VE-step

Usage

`tauUpdate(tau, log.w, log.1mw, data, VE, mstep, modelFamily, directed)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tau</td>
<td>current value of tau</td>
</tr>
<tr>
<td>log.w</td>
<td>value of log(w)</td>
</tr>
<tr>
<td>log.1mw</td>
<td>value of log(1-w)</td>
</tr>
<tr>
<td>data</td>
<td>data vector in the undirected model, data matrix in the directed model</td>
</tr>
<tr>
<td>VE</td>
<td>list with variational parameters tau and rho</td>
</tr>
<tr>
<td>mstep</td>
<td>list with current model parameters and additional auxiliary terms</td>
</tr>
<tr>
<td>modelFamily</td>
<td>probability distribution for the edges. Possible values: Gauss, Gamma</td>
</tr>
<tr>
<td>directed</td>
<td>boolean to indicate whether the model is directed or undirected</td>
</tr>
</tbody>
</table>
Value
updated value of tau

update_newton_gamma *Perform one iteration of the Newton-Raphson to compute the MLE of the parameters of the Gamma distribution*

Description
Perform one iteration of the Newton-Raphson to compute the MLE of the parameters of the Gamma distribution

Usage
update_newton_gamma(param, L, M)

Arguments
- **param** current parameters of the Gamma distribution
- **L** weighted mean of log(data)
- **M** weighted mean of the data

Value
updated parameters of the Gamma distribution

VEstep *VE-step*

Description
performs one VE-step, that is, update of tau and rho

Usage
VEstep(VE, mstep, data, modelFamily, directed, fix.iter = 5)

Arguments
- **VE** list with variational parameters tau and rho
- **mstep** list with current model parameters and additional auxiliary terms
- **data** data vector in the undirected model, data matrix in the directed model
- **modelFamily** probability distribution for the edges. Possible values: Gauss, Gamma
- **directed** boolean to indicate whether the model is directed or undirected
- **fix.iter** maximal number of iterations for fixed point equation
VEstep

Value

updated list VE with variational parameters tau and rho
Index

* datasets
 - res_exp, 26
 - res_gamma, 26
 - res_gauss, 27

 - addRowToTau, 3
 - ARI, 3
 - classInd, 4
 - convertGroupPair, 4
 - convertGroupPairIdentifier, 5
 - convertNodePair, 5
 - correctTau, 6
 - emv.gamma, 6
 - fitNSBM, 7
 - getBestQ, 9
 - getRho, 10
 - getTauql, 10
 - graphInference, 11

 - ICL.Q, 12
 - initialPoints, 13
 - initialPointsByMerge, 14
 - initialPointsBySplit, 15
 - initialRho, 16
 - initialTau, 18

 - J.gamma, 18
 - JEvalMstep, 19

 - listNodePairs, 19
 - lvaluesNSBM, 20

 - mainVEM.Q, 20
 - mainVEM.Q.par, 21
 - modelDensity, 22
 - Mstep, 23

 - plotGraphs, 24
 - plotICL, 24
 - q.delta_ql, 25
 - qvaluesNSBM, 25

 - res_exp, 26
 - res.gamma, 26
 - res.gauss, 27
 - rnsbm, 27

 - spectralClustering, 28
 - tauDown, 28
 - tauUp, 29
 - tauUpdate, 29

 - update_newtonGamma, 30
 - VEstep, 30