Package ‘noisySBM’

December 16, 2020

Type Package
Title Noisy Stochastic Block Model: Graph Inference by Multiple Testing
Version 0.1.4
Author Tabea Rebafka [aut, cre],
Etienne Roquain [ctb],
Fanny Villers [aut]
Maintainer Tabea Rebafka <tabea.rebafka@sorbonne-universite.fr>
Description Variational Expectation-Maximization algorithm to fit the noisy stochastic block model to an observed dense graph and to perform a node clustering. Moreover, a graph inference procedure to recover the underlying binary graph. This procedure comes with a control of the false discovery rate. The method is described in the article "Powerful graph inference with false discovery rate control" by T. Rebafka, E. Roquain, F. Villers (2020) <arXiv:1907.10176>.
License GPL-2
Encoding UTF-8
LazyData true
Imports parallel, gtools, ggplot2, RColorBrewer
RoxygenNote 7.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
Depends R (>= 2.10)
NeedsCompilation no
Repository CRAN
Date/Publication 2020-12-16 10:40:06 UTC

R topics documented:

addRowToTau .. 3
ARI .. 3
topics documented:

classInd ... 4
convertGroupPair .. 4
convertGroupPairIdentifier 5
convertNodePair .. 5
correctTau .. 6
eqv_gamma .. 6
fitNSBM .. 7
getBestQ ... 9
getRho ... 10
getTauql ... 10
graphInference .. 11
ICL_Q ... 12
initialPoints .. 13
initialPointsByMerge .. 14
initialPointsBySplit .. 15
initialRho ... 16
initialTau ... 18
J.gamma ... 18
JEvalMstep .. 19
listNodePairs ... 19
lvaluesNSBM ... 20
mainVEM_Q .. 20
mainVEM_Q_par ... 21
modelDensity ... 22
Mstep ... 23
plotGraphs .. 24
plotICL ... 24
qvaluesNSBM ... 25
q_delta_ql .. 25
res_exp .. 26
res_gamma ... 26
res_gauss .. 27
rnsbm .. 27
spectralClustering .. 28
tauDown .. 28
tauUp ... 29
tauUpdate .. 29
update_newton_gamma .. 30
VEstep ... 30

Index .. 32
addRowToTau

Description
split group q of provided tau randomly into two into

Usage
addRowToTau(tau, q)

Arguments
- tau: provided tau
- q: indice of group to split

Value
new tau

ARI
Evaluate the adjusted Rand index

Description
Compute the adjusted Rand index to compare two partitions

Usage
ARI(x, y)

Arguments
- x: vector (of length n) or matrix (with n columns) providing a partition
- y: vector or matrix providing a partition

Details
the partitions may be provided as n-vectors containing the cluster memberships of n entities, or by Qxn - matrices whose entries are all 0 and 1 where 1 indicates the cluster membership

Value
the value of the adjusted Rand index
Examples

```r
clust1 <- c(1,2,1,2)
clust2 <- c(2,1,2,1)
ARI(clust1, clust2)

clust3 <- matrix(c(1,1,0,0, 0,0,1,1), nrow=2, byrow=TRUE)
clust4 <- matrix(c(1,0,0,0, 0,1,0,0, 0,0,1,1), nrow=3, byrow=TRUE)
ARI(clust3, clust4)
```

classInd

convert a clustering into a 0-1-matrix

Description

convert a clustering into a 0-1-matrix

Usage

```r
classInd(cl, nbClusters)
```

Arguments

- **cl**: cluster in vector form
- **nbClusters**: number of clusters

Value

a 0-1-matrix encoding the clustering

convertGroupPair

transform a pair of block identifiers (q,l) into an identifying integer

Description

this is the inverse function of convertGroupPairIdentifier()

Usage

```r
convertGroupPair(q, l, Q, directed)
```

Arguments

- **q**: indicator of a latent block
- **l**: indicator of a latent block
- **Q**: number of latent blocks
- **directed**: indicates if the graph is directed
convertGroupPairIdentifier

takes a scalar indice of a group pair (q, l) and returns the values q and l

Description

this is the inverse function of convertGroupPair()

Usage

customGroupPairIdentifier(ind_ql, Q)

Arguments

ind_ql indicator for a pair of latent blocks
Q number of latent blocks

convertNodePair transform a pair of nodes (i, j) into an identifying integer

Description

Associates an identifying integer with a pair of nodes (i, j)

Usage

customNodePair(i, j, n, directed)

Arguments

i scalar or vector
j scalar or vector, same length as i
n number of vertices
directed boolean to indicate whether the model is directed or undirected

Details

returns the row number of the matrix build by listNodePairs(n) containing the pair (i, j)
correctTau

Corrects values of the variational parameters tau that are too close to the 0 or 1.

Usage

`correctTau(tau)`

Arguments

- `tau`: Variational parameters.

emv_gamma

Compute the MLE in the Gamma model using the Newton-Raphson method.

Description

Compute the MLE in the Gamma model using the Newton-Raphson method.

Usage

`emv_gamma(L, M, param.old, epsilon = 0.001, nb.iter.max = 10)`

Arguments

- `L`: Weighted mean of log(data).
- `M`: Weighted mean of the data.
- `param.old`: Parameters of the Gamma distribution.
- `epsilon`: Threshold for the stopping criterion.
- `nb.iter.max`: Maximum number of iterations.

Value

Updated parameters of the Gamma distribution.
Description

`fitNSBM()` estimates model parameters of the noisy stochastic block model and provides a clustering of the nodes.

Usage

```r
fitNSBM(
  dataMatrix,
  model = "Gauss0",
  sbmSize = list(Qmin = 1, Qmax = NULL, explor = 1.5),
  filename = NULL,
  initParam = list(nbOfTau = NULL, nbOfPointsPerTau = NULL, maxNbOfPasses = NULL,
                   minNbOfPasses = 1),
  nbCores = parallel::detectCores()
)
```

Arguments

- `dataMatrix`: observed dense adjacency matrix
- `model`: Implemented models:
 - `Gauss`: all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
 - `Gauss0`: compared to Gauss, the mean of the null distribution is set to 0
 - `Gauss01`: compared to Gauss, the mean of the null distribution is set to N(0,1)
 - `GaussEqVar`: compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
 - `Gauss0EqVar`: compared to GaussEqVar, the mean of the null distribution is set to 0
 - `Gauss0Var1`: compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)
 - `Gauss2distr`: the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
 - `GaussAffil`: compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions
 - `Exp`: the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
ExpGamma the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters

sbmSize

list of parameters determining the size of SBM (the number of latent blocks) to be explored

Qmin minimum number of latent blocks

Qmax maximum number of latent blocks

explore if Qmax is not provided, then Qmax is automatically determined as explore times the number of blocks where the ICL is maximal

filename results are saved in a file with this name (if provided)

initParam list of parameters that fix the number of initializations

nbOfTau number of initial points for the node clustering (i.e. for the variational parameters \(\tau \))

nbOfPointsPerTau number of initial points of the latent binary graph

maxNbOfPasses maximum number of passes through the SBM models, that is, passes from Qmin to Qmax or inversely

minNbOfPasses minimum number of passes through the SBM models

nbCores number of cores used for parallelization

Details

-fitNSBM() supports different probability distributions for the edges and can estimate the number of node blocks

Value

Returns a list of estimation results for all numbers of latent blocks considered by the algorithm. Every element is a list composed of:

theta estimated parameters of the noisy stochastic block model; a list with the following elements:

- \(\pi \) parameter estimate of \(\pi \)
- \(w \) parameter estimate of \(w \)
- \(\nu_0 \) parameter estimate of \(\nu_0 \)
- \(\nu \) parameter estimate of \(\nu \)

clustering node clustering obtained by the noisy stochastic block model, more precisely, a hard clustering given by the maximum a posteriori estimates of the variational parameters \(\text{sbmParam}.$edgeProba \)

sbmParam further results concerning the latent binary stochastic block model. A list with the following elements:

- \(Q \) number of latent blocks in the noisy stochastic block model
- \(\text{clusterProba} \) soft clustering given by the conditional probabilities of a node to belong to a given latent block. In other words, these are the variational parameters \(\tau \); \((Q \times n) \)-matrix
- \(\text{edgeProba} \) conditional probabilities \(\rho \) of an edges given the node memberships of the interacting nodes; \((N,Q \times N) \)-matrix
- **ICL** value of the ICL criterion at the end of the algorithm
getBestQ

convergence a list of convergence indicators:
- \(J \) value of the lower bound of the log-likelihood function at the end of the algorithm
- \(\text{complLogLik} \) value of the complete log-likelihood function at the end of the algorithm
- \(\text{converged} \) indicates if algorithm has converged
- \(\text{nbIter} \) number of iterations performed

Examples

```r
n <- 10
theta <- list(pi = c(0.5, 0.5), nu0 = c(0, 1),
               nu = matrix(c(-2, 10, -2, 1, 1, 1), 3, 2),
               w = c(.5, .9, .3))
obs <- rnsbm(n, theta, modelFamily = ’Gauss’)
res <- fitNSBM(obs$dataMatrix, sbmSize = list(Qmax = 3),
               initParam = list(nbOfTau = 1, nbOfPointsPerTau = 1), nbCores = 1)
```

getBestQ *optimal number of SBM blocks*

Description

returns the number of SBM blocks that maximizes the ICL

Usage

`getBestQ(bestSolutionAtQ)`

Arguments

- `bestSolutionAtQ` output of `fitNSBM()`, i.e. a list of estimation results for varying number of latent blocks

Value

a list the maximal value of the ICL criterion among the provided solutions along with the best number of latent blocks

Examples

```r
# res_gauss is the output of a call of fitNSBM()
getBestQ(res_gauss)
```
getRho

compute rho associated with given values of w, ν_0 and ν

Description

compute rho associated with given values of w, ν_0 and ν

Usage

getRho(Q, w, \nu_0, \nu, data, modelFamily)

Arguments

- Q: number of latent blocks in the noisy stochastic block model
- w: weight parameter in the noisy stochastic block model
- ν_0: null parameter in the noisy stochastic block model
- ν: alternative parameter in the noisy stochastic block model
- data: data vector in the undirected model, data matrix in the directed model
- modelFamily: probability distribution for the edges. Possible values: Gauss, Gamma

Value

A matrix of conditional probabilities of an edge given the node memberships of the interacting nodes

getTauql

Evaluate $\tau_q \tau_l$ in the noisy stochastic block model

Description

Evaluate $\tau_q \tau_l$ in the noisy stochastic block model

Usage

getTauql(q, l, tau, n, directed)

Arguments

- q: indicator of a latent block
- l: indicator of a latent block
- τ: variational parameters
- n: number of vertices
- directed: boolean to indicate whether the model is directed or undirected
Description
new graph inference procedure

Usage

```r
graphInference(
    dataMatrix,  
    nodeClustering, 
    theta, 
    alpha = 0.05, 
    modelFamily = "Gauss"
)
```

Arguments

- `dataMatrix`: observed adjacency matrix, nxn matrix
- `nodeClustering`: n-vector of hard node Clustering
- `theta`: parameter of the noisy stochastic block model
- `alpha`: confidence level
- `modelFamily`: probability distribution for the edges. Possible values: Gauss and Gamma

Details

graph inference procedure based on conditional q-values in the noisy stochastic block model. It works in the Gaussian model, and also in the Gamma model, but only if the shape parameters of the Gamma distributions under the null and the alternatives are identical (e.g. when all distributions are exponentials).

Value

a list with:

- `A`: resulting binary adjacency matrix
- `qvalues`: vector with conditional q-values in the noisy stochastic block model

Examples

```r
set.seed(1)
theta <- list(pi=c(.5,.5), w=c(.8,.1,.2), nu0=c(0,1), nu=matrix(c(-1,5,10, 1,1,1), ncol=2))
obs <- rnsbm(n=30, theta)
# res_gauss <- fitNSBM(obs$dataMatrix, nbCores=1)
resGraph <- graphInference(obs$dataMatrix, res_gauss[[2]]$clustering, theta, alpha=0.05)
sum((resGraph$A)/2) # nb of derived edges
sum(obs$latentAdj)/2 # correct nb of edges
```
Description

computation of the Integrated Classification Likelihood criterion for a result provided by mainVEM_Q()

Usage

ICL_Q(solutionThisRun, model)

Arguments

- `solutionThisRun`: result provided by mainVEM_Q()
- `model`: Implemented models:
 - **Gauss**: all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
 - **Gauss0**: compared to Gauss, the mean of the null distribution is set to 0
 - **Gauss01**: compared to Gauss, the null distribution is set to N(0,1)
 - **GaussEqVar**: compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
 - **Gauss0EqVar**: compared to GaussEqVar, the mean of the null distribution is set to 0
 - **Gauss0Var1**: compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)
 - **Gauss2distr**: the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
 - **GaussAffil**: compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions
 - **Exp**: the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
 - **ExpGamma**: the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters

Value

value of the ICL criterion
initialPoints

compute a list of initial points for the VEM algorithm

Description

compute a list of initial points of tau and rho for the VEM algorithm for a given number of blocks; returns nbOfTau*nbOfPointsPerTau initial points

Usage

initialPoints(
 Q,
 dataMatrix,
 nbOfTau,
 nbOfPointsPerTau,
 modelFamily,
 model,
 directed
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>number of latent blocks in the noisy stochastic block model</td>
</tr>
<tr>
<td>dataMatrix</td>
<td>observed dense adjacency matrix</td>
</tr>
<tr>
<td>nbOfTau</td>
<td>number of initializations for the latent block memberships</td>
</tr>
<tr>
<td>nbOfPointsPerTau</td>
<td>number of initializations of the latent binary graph associated with each initial latent block memberships</td>
</tr>
<tr>
<td>modelFamily</td>
<td>probability distribution for the edges. Possible values: Gauss, Gamma</td>
</tr>
<tr>
<td>model</td>
<td>Implemented models:</td>
</tr>
<tr>
<td>Gauss</td>
<td>all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters</td>
</tr>
<tr>
<td>Gauss0</td>
<td>compared to Gauss, the mean of the null distribution is set to 0</td>
</tr>
<tr>
<td>Gauss01</td>
<td>compared to Gauss, the null distribution is set to N(0,1)</td>
</tr>
<tr>
<td>GaussEqVar</td>
<td>compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown</td>
</tr>
<tr>
<td>Gauss0EqVar</td>
<td>compared to GaussEqVar, the mean of the null distribution is set to 0</td>
</tr>
<tr>
<td>Gauss0Var1</td>
<td>compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)</td>
</tr>
<tr>
<td>Gauss2distr</td>
<td>the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution</td>
</tr>
</tbody>
</table>
GaussAffil compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions

Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters

ExpGamma the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters

directed boolean to indicate whether the model is directed or undirected

Value

list of initial points of tau and rho of length nbOfTau*nbOfPointsPerTau

initialPointsByMerge

Construct initial values with Q groups by merging groups of a solution obtained with Q+1 groups

Description

Construct initial values with Q groups by merging groups of a solution obtained with Q+1 groups

Usage

initialPointsByMerge(
 tau_Qp1,
 nbOfTau,
 nbOfPointsPerTau,
 data,
 modelFamily,
 model,
 directed
)

Arguments

tau_Qp1 tau for a model with Q+1 latent blocks

nbOfTau number of initializations for the latent block memberships

nbOfPointsPerTau number of initializations of the latent binary graph associated with each initial latent block memberships

data data vector in the undirected model, data matrix in the directed model

modelFamily probability distribution for the edges. Possible values: Gauss, Gamma

model Implemented models:

 Gauss all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
Gauss0 compared to Gauss, the mean of the null distribution is set to 0
Gauss01 compared to Gauss, the null distribution is set to N(0,1)
GaussEqVar compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
Gauss0EqVar compared to GaussEqVar, the mean of the null distribution is set to 0
Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)
Gauss2distr the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
GaussAffil compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions
Exp the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
ExpGamma the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters
directed boolean to indicate whether the model is directed or undirected

Value
list of initial points of tau and rho of length nbOfTau*nbOfPointsPerTau

Usage
initialPointsBySplit(tau_Qm1, nbOfTau, nbOfPointsPerTau, data, modelFamily, model, directed)
Arguments

- `tau_Qm1`: tau for a model with Q-1 latent blocks
- `nbOfTau`: number of initializations for the latent block memberships
- `nbOfPointsPerTau`: number of initializations of the latent binary graph associated with each initial latent block memberships
- `data`: data vector in the undirected model, data matrix in the directed model
- `modelFamily`: probability distribution for the edges. Possible values: Gauss, Gamma
- `model`: Implemented models:
 - Gauss: all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
 - Gauss0: compared to Gauss, the mean of the null distribution is set to 0
 - Gauss01: compared to Gauss, the null distribution is set to N(0,1)
 - GaussEqVar: compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
 - Gauss0EqVar: compared to GaussEqVar, the mean of the null distribution is set to 0
 - Gauss0Var1: compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)
 - Gauss2distr: the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
 - GaussAffil: compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions
 - Exp: the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
 - ExpGamma: the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters
- `directed`: boolean to indicate whether the model is directed or undirected

Value

- list of initial points of tau and rho of length `nbOfTau*nbOfPointsPerTau`

initialRho

compute initial values of rho

Description

for every provided initial point of tau `nbOfPointsPerTau` initial values of rho are computed in the Gamma model also initial values of nu are computed
Usage

```
initialRho(listOfTau, nbOfPointsPerTau, data, modelFamily, model, directed)
```

Arguments

- `listOfTau`: output of `initialTau()`
- `nbOfPointsPerTau`: number of initializations of the latent binary graph associated with each initial latent block memberships
- `data`: data vector in the undirected model, data matrix in the directed model
- `modelFamily`: probability distribution for the edges. Possible values: Gauss, Gamma
- `model`:Implemented models:
 - Gauss: all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
 - Gauss0: compared to Gauss, the mean of the null distribution is set to 0
 - Gauss01: compared to Gauss, the null distribution is set to N(0,1)
 - GaussEqVar: compared to Gauss, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
 - Gauss0EqVar: compared to GaussEqVar, the mean of the null distribution is set to 0
 - Gauss0Var1: compared to Gauss, all Gaussian variances are set to 1 and the null distribution is set to N(0,1)
 - Gauss2distr: the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
 - GaussAffil: compared to Gauss, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions
 - Exp: the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
 - ExpGamma: the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters
- `directed`: boolean to indicate whether the model is directed or undirected

Value

list of initial points of tau and rho
initialTau

compute initial values for tau

Description

returns a list of length nbOfTau of initial points for tau using spectral clustering with absolute values, kmeans and random perturbations of these points

Usage

`initialTau(Q, dataMatrix, nbOfTau, percentageOfPerturbation, directed)`

Arguments

- `Q`: number of latent blocks in the noisy stochastic block model
- `dataMatrix`: observed dense adjacency matrix
- `nbOfTau`: number of initializations for the latent block memberships
- `percentageOfPerturbation`: percentage of node labels that are perturbed to obtain further initial points
- `directed`: boolean to indicate whether the model is directed or undirected

Value

a list of length nbOfTau of initial points for tau

J.gamma

evaluate the objective in the Gamma model

Description

evaluate the objective in the Gamma model

Usage

`J.gamma(param, L, M)`

Arguments

- `param`: parameters of the Gamma distribution
- `L`: weighted mean of log(data)
- `M`: weighted mean of the data

Value

value of the lower bound of the log-likelihood function
JEvalMstep

evaluation of the objective in the Gauss model

Description

evaluation of the objective in the Gauss model

Usage

```r
JEvalMstep(VE, mstep, data, modelFamily, directed)
```

Arguments

- **VE**
 - list with variational parameters tau and rho

- **mstep**
 - list with current model parameters and additional auxiliary terms

- **data**
 - data vector in the undirected model, data matrix in the directed model

- **modelFamily**
 - probability distribution for the edges. Possible values: Gauss, Gamma

- **directed**
 - boolean to indicate whether the model is directed or undirected

Value

value of the ELBO and the complete log likelihood function

listNodePairs

returns a list of all possible node pairs (i,j)

Description

returns a list of all possible node pairs (i,j)

Usage

```r
listNodePairs(n, directed = FALSE)
```

Arguments

- **n**
 - number of nodes

- **directed**
 - indicates if the graph is directed

Value

a 2-column matrix with all possible node pairs (i,j)
Description

compute conditional l-values in the noisy stochastic block model

Usage

lvaluesNSBM(dataVec, Z, theta, directed = FALSE, modelFamily = "Gauss")

Arguments

dataVec data vector
Z a node clustering
theta list of parameters for a noisy stochastic block model
directed indicates if the graph is directed
modelFamily probability distribution for the edges. Possible values: Gauss and Gamma

Value

conditional l-values in the noisy stochastic block model

mainVEM_Q main function of VEM algorithm with fixed number of SBM blocks

Description

main function of VEM algorithm with fixed number of SBM blocks

Usage

mainVEM_Q(init, modelFamily, model, data, directed)

Arguments

init list of initial points for the algorithm
modelFamily probability distribution for the edges. Possible values: Gauss, Gamma
model Implemented models:
Gauss all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
Gauss0 compared to Gauss, the mean of the null distribution is set to 0
Gauss01 compared to Gauss, the null distribution is set to N(0,1)
GaussEqVar compared to Gauss, all Gaussian variances (of both the null and
the alternative) are supposed to be equal, but unknown
Gauss0EqVar compared to GaussEqVar, the mean of the null distribution is set
to 0
Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null
distribution is set to N(0,1)
Gauss2distr the alternative distribution is a single Gaussian distribution, i.e.
the block memberships of the nodes do not influence on the alternative dis-
tribution
GaussAffil compared to Gauss, for the alternative distribution, there’s a dis-
tribution for inter-group and another for intra-group interactions
Exp the null and the alternatives are all exponential distributions (i.e. Gamma
distributions with shape parameter equal to one) with unknown scale pa-
rameters
ExpGamma the null distribution is an unknown exponential, the alternative dis-
tribution are Gamma distributions with unknown parameters

data data vector in the undirected model, data matrix in the directed model
directed boolean to indicate whether the model is directed or undirected

Value
list of estimated model parameters and a node clustering; like the output of fitNSBM()

mainVEM_Q_par

main function of VEM algorithm for fixed number of latent blocks in
parallel computing

Description
runs the VEM algorithm the provided initial point

Usage
mainVEM_Q_par(s, ListOfTauRho, modelFamily, model, data, directed)

Arguments
s indice of initial point in ListOfTauRho to be used for this run
ListOfTauRho a list of initial points
modelFamily probability distribution for the edges. Possible values: Gauss, Gamma
model
Implemented models:
Gauss all Gaussian parameters of the null and the alternative distributions are
unknown; this is the Gaussian model with maximum number of unknown
parameters
Gauss0 compared to Gauss, the mean of the null distribution is set to 0
Gauss01 compared to Gauss, the null distribution is set to N(0,1)
GaussEqVar compared to Gauss, all Gaussian variances (of both the null and
the alternative) are supposed to be equal, but unknown
Gauss0EqVar compared to GaussEqVar, the mean of the null distribution is set
to 0
Gauss0Var1 compared to Gauss, all Gaussian variances are set to 1 and the null
distribution is set to N(0,1)
Gauss2distr the alternative distribution is a single Gaussian distribution, i.e.
the block memberships of the nodes do not influence on the alternative dis-
tribution
GaussAffil compared to Gauss, for the alternative distribution, there’s a dis-
tribution for inter-group and another for intra-group interactions
Exp the null and the alternatives are all exponential distributions (i.e. Gamma
distributions with shape parameter equal to one) with unknown scale pa-
rameters
ExpGamma the null distribution is an unknown exponential, the alterantive dis-
tribution are Gamma distributions with unknown parameters

data data vector in the undirected model, data matrix in the directed model
directed boolean to indicate whether the model is directed or undirected

Value

list of estimated model parameters and a node clustering; like the output of fitNSBM()

Description
evaluate the density in the current model

Usage

modelDensity(x, nu, modelFamily = "Gauss")

Arguments

x vector with points where to evaluate the density
nu distribution parameter
modelFamily probability distribution for the edges. Possible values: Gauss, Gamma, Poisson
Description

performs one M-step, that is, update of π, w, ν, ν_0

Usage

```r
Mstep(VE, mstep, model, data, modelFamily, directed)
```

Arguments

- `VE` list with variational parameters τ and ρ
- `mstep` list with current model parameters and additional auxiliary terms
- `model` Implemented models:
 - `Gauss` all Gaussian parameters of the null and the alternative distributions are unknown; this is the Gaussian model with maximum number of unknown parameters
 - `Gauss0` compared to `Gauss`, the mean of the null distribution is set to 0
 - `Gauss01` compared to `Gauss`, the null distribution is set to $N(0,1)$
 - `GaussEqVar` compared to `Gauss`, all Gaussian variances (of both the null and the alternative) are supposed to be equal, but unknown
 - `Gauss0EqVar` compared to `GaussEqVar`, the mean of the null distribution is set to 0
 - `Gauss0Var1` compared to `Gauss`, all Gaussian variances are set to 1 and the null distribution is set to $N(0,1)$
 - `Gauss2distr` the alternative distribution is a single Gaussian distribution, i.e. the block memberships of the nodes do not influence on the alternative distribution
 - `GaussAffil` compared to `Gauss`, for the alternative distribution, there’s a distribution for inter-group and another for intra-group interactions
 - `Exp` the null and the alternatives are all exponential distributions (i.e. Gamma distributions with shape parameter equal to one) with unknown scale parameters
 - `ExpGamma` the null distribution is an unknown exponential, the alternative distribution are Gamma distributions with unknown parameters
- `data` data vector in the undirected model, data matrix in the directed model
- `modelFamily` probability distribution for the edges. Possible values: `Gauss`, `Gamma`
- `directed` boolean to indicate whether the model is directed or undirected

Value

updated list `mstep` with current model parameters and additional auxiliary terms
plotGraphs

plot the data matrix, the inferred graph and/or the true binary graph

Description

plot the data matrix, the inferred graph and/or the true binary graph

Usage

plotGraphs(dataMatrix = NULL, inferredGraph = NULL, binaryTruth = NULL)

Arguments

dataMatrix observed data matrix
inferredGraph graph inferred by the multiple testing procedure via graphInference()
binaryTruth true binary graph

Value

a list of FDR and TDR values, if possible

plotICL

plot ICL curve

Description

plot ICL curve

Usage

plotICL(res)

Arguments

res output of fitNSBM()

Value

figure of ICL curve

Examples

res_gauss is the output of a call of fitNSBM()
plotICL(res_gauss)
Description

compute q-values in the noisy stochastic block model

Usage

```r
qvaluesNSBM(
  dataVec, Z, theta, lvalues,
  modelFamily = "Gauss",
  directed = FALSE
)
```

Arguments

- `dataVec`: data vector
- `Z`: a node clustering
- `theta`: list of parameters for a noisy stochastic block model
- `lvalues`: conditional l-values in the noisy stochastic block model
- `modelFamily`: probability distribution for the edges. Possible values: Gauss and Gamma
- `directed`: indicates if the graph is directed

Value

q-values in the noisy stochastic block model

q_delta_ql

 auxiliary function for the computation of q-values

Description

auxiliary function for the computation of q-values

Usage

```r
q_delta_ql(theta, ind, t, modelFamily = "Gauss")
```
Arguments

- `theta`: list of parameters for a noisy stochastic block model
- `ind`: indicator for a pair of latent blocks
- `t`: l-values
- `modelFamily`: probability distribution for the edges. Possible values: Gauss and Gamma

res_exp

Output of fitNSBM() on a dataset applied in the exponential NSBM

Description

Parameter estimates fitted on a dataset given in the vignette

Usage

`res_exp`

Format

List with estimation results for different number of SBM blocks. Output of fitNSBM()

res_gamma

Output of fitNSBM() on a dataset applied in the Gamma NSBM

Description

Parameter estimates fitted on a dataset given in the vignette

Usage

`res_gamma`

Format

List with estimation results for different number of SBM blocks. Output of fitNSBM()
res_gauss

Output of fitNSBM() on a dataset applied in the Gaussian NSBM

Description
Parameter estimates fitted on a dataset given in the vignette

Usage
res_gauss

Format
List with estimation results for different number of SBM blocks. Output of fitNSBM()

rnsbm

simulation of a graph according the noisy stochastic block model

Description
simulation of a graph according the noisy stochastic block model

Usage
rnsbm(n, theta, modelFamily = "Gauss", directed = FALSE)

Arguments
n number of nodes
theta model parameters of the noisy stochastic block model
 pi latent block proportions, Q-vector
 w connectivity parameters, N_Q-vector
 nu0 parameters of the null distribution
 nu parameters of the alternative distribution
modelFamily probability distribution for the edges. Possible values: Gauss, Gamma, Poisson
directed indicates if the graph is directed (boolean)

Value
a list with:
 dataMatrix simulated matrix from the noisy stochastic block model
 theta model parameters of the noisy stochastic block model
 latentZ underlying latent node memberships
 latentAdj underlying latent binary graph
Examples

```r
n <- 10
Q <- 2
theta <- list(pi = rep(1/Q, Q), nu0 = c(0, 1))
theta$nu <- matrix(c(-2, 10, -2, 1, 1, 1), nrow = Q*(Q+1)/2, ncol = 2)
theta$w <- c(.5, .9, .3)
obs <- rnsbm(n, theta, modelFamily = 'Gauss')
obs
```

spectralClustering

spectral clustering with absolute values

Description

performs absolute spectral clustering of an adjacency matrix

Usage

`spectralClustering(A, K)`

Arguments

- `A` adjacency matrix
- `K` number of desired clusters

Value

a vector containing a node clustering into K groups

tauDown

Create new initial values by merging pairs of groups of provided tau

Description

Create `nbOfMerges` new initial values by merging `nbOfMerges` (or all possible) pairs of groups of provided tau

Usage

`tauDown(tau, nbOfMerges)`

Arguments

- `tau` soft node clustering
- `nbOfMerges` number of required merges of blocks
tauUp

Value

a list of length nbOfMerges (at most) of initial points for tau

tauUpdate

Create new values of tau by splitting groups of provided tau

Description

Create nbOfSplits (or all) new values of tau by splitting nbOfSplits (or all) groups of provided tau

Usage

```r
tauUpdate(tau, log.w, log.1mw, data, VE, mstep, modelFamily, directed)
```

Arguments

- **tau**: current value of tau
- **log.w**: value of log(w)
- **log.1mw**: value of log(1-w)
- **data**: data vector in the undirected model, data matrix in the directed model
- **VE**: list with variational parameters tau and rho
- **mstep**: list with current model parameters and additional auxiliary terms
- **modelFamily**: probability distribution for the edges. Possible values: Gauss, Gamma
- **directed**: boolean to indicate whether the model is directed or undirected
Value
updated value of tau

update_newton_gamma
Perform one iteration of the Newton-Raphson to compute the MLE of the parameters of the Gamma distribution

Description
Perform one iteration of the Newton-Raphson to compute the MLE of the parameters of the Gamma distribution

Usage
```r
update_newton_gamma(param, L, M)
```

Arguments
- `param`: current parameters of the Gamma distribution
- `L`: weighted mean of log(data)
- `M`: weighted mean of the data

Value
updated parameters of the Gamma distribution

VEstep
VE-step

Description
performs one VE-step, that is, update of tau and rho

Usage
```r
VEstep(VE, mstep, data, modelFamily, directed, fix.iter = 5)
```

Arguments
- `VE`: list with variational parameters tau and rho
- `mstep`: list with current model parameters and additional auxiliary terms
- `data`: data vector in the undirected model, data matrix in the directed model
- `modelFamily`: probability distribution for the edges. Possible values: Gauss, Gamma
- `directed`: boolean to indicate whether the model is directed or undirected
- `fix.iter`: maximal number of iterations for fixed point equation
Value
updated list VE with variational parameters tau and rho
Index

* datasets
 res_exp, 26
 res_gamma, 26
 res_gauss, 27
 addRowToTau, 3
 ARI, 3
 classInd, 4
 convertGroupPair, 4
 convertGroupPairIdentifier, 5
 convertNodePair, 5
 correctTau, 6
 emv_gamma, 6
 fitNSBM, 7
 getBestQ, 9
 getRho, 10
 getTaul, 10
 graphInference, 11
 ICL_Q, 12
 initialPoints, 13
 initialPointsByMerge, 14
 initialPointsBySplit, 15
 initialRho, 16
 initialTau, 18
 J.gamma, 18
 JEvalMstep, 19
 lvaluesNSBM, 20
 mainVEM_Q, 20
 mainVEM_Q_par, 21
 modelDensity, 22
 Mstep, 23
 plotGraphs, 24
 plotICL, 24
 q_delta_q1, 25
 qvaluesNSBM, 25
 res_exp, 26
 res_gamma, 26
 res_gauss, 27
 rnsbm, 27
 spectralClustering, 28
 tauDown, 28
 tauUp, 29
 tauUpdate, 29
 update_newton_gamma, 30
 VEstep, 30