Package ‘noisysbmGGM’

March 7, 2024

Title Noisy Stochastic Block Model for GGM Inference
Version 0.1.2.3
Author Valentin Kilian [aut, cre],
 Fanny Villers [aut]
Maintainer Valentin Kilian <valentin.kilian@ens-rennes.fr>
Description Greedy Bayesian algorithm to fit the noisy stochastic block model to an observed sparse graph. Moreover, a graph inference procedure to recover Gaussian Graphical Model (GGM) from real data. This procedure comes with a control of the false discovery rate. The method is described in the article "Enhancing the Power of Gaussian Graphical Model Inference by Modeling the Graph Structure" by Kilian, Rebafka, and Villers (2024) <arXiv:2402.19021>.
License GPL-2
Encoding UTF-8
Imports parallel, ppcor, SILGGM, stats, igraph, huge, Rcpp, RcppArmadillo, MASS, RColorBrewer
RoxygenNote 7.2.3
Depends R (>= 3.1.0)
LazyData true
LinkingTo Rcpp, RcppArmadillo
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-03-07 10:40:02 UTC

R topics documented:

 ARI ... 2
 GGMtest ... 3
 main_noisySBM ... 3
 main_noisySBM_GGM .. 5
Evaluate the adjusted Rand index

Description
Compute the adjusted Rand index to compare two partitions

Usage
ARI(x, y)

Arguments
x vector (of length n) or matrix (with n columns) providing a partition
y vector or matrix providing a partition

Details
the partitions may be provided as n-vectors containing the cluster memberships of n entities, or by Qxn - matrices whose entries are all 0 and 1 where 1 indicates the cluster membership

Value
the value of the adjusted Rand index

Examples
clust1 <- c(1,2,1,2)
clust2 <- c(2,1,2,1)
ARI(clust1, clust2)

clust3 <- matrix(c(1,1,0,0, 0,0,1,1), nrow=2, byrow=TRUE)
clust4 <- matrix(c(1,0,0,0, 0,1,0,0, 0,0,1,1), nrow=3, byrow=TRUE)
ARI(clust3, clust4)
Description

Example of a GGM

Usage

GGMtest

Format

dataMatrix A n-sample of a p Gaussian Vector associated to a GGM G
Z.true True latent clustering
A.true True latent adjacency matrix of the graph G

Examples

main_noisySBM_GGM(GGMtest$dataMatrix,Meth="Ren",NIG=TRUE,Qup=10,nbOfZ=1,nbCores=1)

#Note : These data were created using the following instructions
n=30
p=10
u=0.1
v=0.3
theta=list(pi=c(1/3,2/3),w=0.25*cbind(c(1/6,1/120),c(1/120,1/6)))
Q=2
Z <- sample(1:Q, p, replace=TRUE, prob=theta$pi)
A <- matrix(0, p, p)
for (i in 1:(p-1)){
 A[i,(i+1):p] <- stats::rbinom(p-i, 1, theta$w[Z[i],Z[(i+1):p]])
}
A.true <- A + t(A)
Omega <- A.true*v
diag(Omega) = abs(min(eigen(Omega)$values)) + 0.1 + u
Sigma <- stats::cov2cor(solve(Omega))
X = MASS::mvrnorm(n, rep(0, p), Sigma)
GGMtest=list(dataMatrix=X,Z.true=Z,A.true=A.true)

Description

The main_noisySBM() function is a core component of the noisysbmGGM package, responsible for applying the greedy algorithm to estimate model parameters, perform node clustering, and conduct a multiple testing procedure to infer the underlying graph. This function is versatile, offering various options and providing useful outputs for further analysis.
Usage

`main_noisySBM(X,
 NIG = FALSE,
 threshold = 0.5,
 Nbrepet = 2,
 rho = NULL,
 tau = NULL,
 a = NULL,
 b = NULL,
 c = NULL,
 d = NULL,
 n0 = 1,
 eta0 = 1,
 zeta0 = 1,
 alpha = 0.1,
 Qup = NULL,
 nbCores = parallel::detectCores(),
 nbOfZ = 12,
 sigma0 = 1,
 sigma1 = 1,
 percentageOfPerturbation = 0.3,
 verbatim = TRUE)
)

Arguments

- **X**: A p-square matrix containing the data
- **NIG**: A Boolean. If FALSE (by default), the variance under the alternative hypothesis is assumed to be known. If TRUE, the variances under the alternatives are unknown and estimated with the NIG method
- **threshold**: Threshold use when updating the latent graphs structure from l-values (by default threshold=0.5)
- **Nbrepet**: Number of times the algorithm is repeated (by default Nbrepet=2)
- **rho**: Hyperparameter of the non-NIG method (by default rho=1)
- **tau**: Hyperparameter of the non-NIG method (by default tau=1)
- **a**: Hyperparameter of the NIG method (by default a=0)
- **b**: Hyperparameter of the NIG method (by default b=1)
- **c**: Hyperparameter of the NIG method (by default c=1)
- **d**: Hyperparameter of the NIG method (by default d=1)
- **n0**: Hyperparameter (by default n0=1)
- **eta0**: Hyperparameter (by default eta0=1)
- **zeta0**: Hyperparameter (by default zeta0=1)
- **alpha**: Level of significance of the multiple testing procedure (by default alpha=0.1)
main_noisySBM_GGM

Qup Maximal number of cluster (by default Qup =10)
nbCores Nb of cores to be used during calculations (by default nbCores=parallel::detectCores())
nbOfZ Nb of initialization (by default nbOfZ=12)
sigma0 standard deviation under the null hypothesis (by default sigma0=1)
sigma1 standard deviation under the alternative hypothesis in the non-NIG method (by default sigma1=1)
percentageOfPerturbation perturbation during initialization (by default percentageOfPerturbation=0.3)
verbatim print information messages

Value

A the adjacency matrix of the inferred graph
Z the inferred clustering
theta the parameters of the noisySBM at the end
Q the number of clusters at the end

Examples

main_noisySBM(NSBMtest$dataMatrix,NIG=TRUE,Qup=10,nbOfZ=1,nbCores=1)

GGM Inference from Noisy Data by Multiple Testing using SILGGM and Drton test statistics

Description

The main_noisySBM_GGM() function is a key feature of the noisySbmGGM package, dedicated to Gaussian Graphical Model (GGM) inference. This function takes an n-sample of a Gaussian vector of dimension p and provides the GGM associated with the partial correlation structure of the vector. GGM inference is essential in capturing the underlying relationships between the vector’s coefficients, helping users uncover meaningful interactions while controlling the number of false discoveries.

Usage

main_noisySBM_GGM(
 x,
 Meth = "Ren",
 NIG = NULL,
 threshold = 0.5,
 Nbrepet = 2,
 rho = NULL,
 tau = NULL,
 a = NULL,
b = NULL,
c = NULL,
d = NULL,
n0 = 1,
et0 = 1,
zeta0 = 1,
alpha = 0.1,
Qup = NULL,
nbCores = parallel::detectCores(),
nbOfZ = 12,
sigma0 = 1,
sigma1 = 1,
percentageOfPerturbation = 0.3,
verbatim = TRUE
)

Arguments

X
A n by p matrix containing a n-sample of a p-vector

Meth
Choice of test statistics between "Ren", "Jankova_NW", "Jankova_GL", "Liu_SL", "Liu_L", and "zTransform" (warning "zTransform" only work if n>p)

NIG
A Boolean (automatically chosen according to the selected method : NIG=FALSE except for "Liu_SL" and "Liu_L" test statistics as input). If FALSE, the variance under the alternative hypothesis in assumed to be known. If TRUE, the variances under the alternatives are unknown and estimated with the NIG method.

threshold
Threshold use when updating the latent graphs structure from l-values (by default threshold=0.5)

Nbrepet
Number of times the algorithm is repeated (by default Nbrepet=2)

rho
Hyperparameter of the non-NIG method (by default rho=1)

tau
Hyperparameter of the non-NIG method (by default tau=1)

a
Hyperparameter of the NIG method (by default a=0)

b
Hyperparameter of the NIG method (by default b=1)

c
Hyperparameter of the NIG method (by default c=1)

d
Hyperparameter of the NIG method (by default d=1)

n0
Hyperparameter (by default n0=1)

eta0
Hyperparameter (by default eta0=1)

zeta0
Hyperparameter (by default zeta0=1)

alpha
Level of significance of the multiple testing procedure (by default alpha=0.1)

Qup
Maximal number of cluster (by default Qup =10)

nbCores
Nb of cores to be used during calculations (by default nbCores=parallel::detectCores())

nbOfZ
Nb of initialization (by default nbOfZ=12)

sigma0
standard deviation under the null hypothesis (by default sigma0=1)
matrixToVec

Usage

matrixToVec(X)

Arguments

X a SYMETRIC matrix

Value

a vector contenting the coefficient of the upper triangle of the matrix X from left to right and from top to bottom.

Description

matrixToVec

See Also

main_noisySBM
NSBMtest

NoisySBM for test

Description

Example of NoisySBM data

Usage

NSBMtest

Format

dataMatrix A square matrix containing the observation of the graph
theta True NSBM parameters
latentZ True latent clustering
latentAdj True latent adjacency matrix

Examples

main_noisySBM(NSBMtest$dataMatrix,NIG=TRUE,Qup=10,nbOfZ=1,nbCores=1)

#Note : These data were created using the following instructions
p=50
Q=6
pi=c(1/6,1/6,1/6,1/6,1/6)
w=c(0.811,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,
0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001)
theta=list(pi=pi,w=w,nu0=c(0,1))
theta$nu <- array(0, dim = c(Q*(Q+1)/2, 2))
theta$nu[,1] <- rep(2,21)
theta$nu[,2] <- rep(2,21)
NSBMtest=rnsbm(p,theta)

plotGraphs

plot the data matrix, the inferred graph and/or the true binary graph

Description

plot the data matrix, the inferred graph and/or the true binary graph

Usage

plotGraphs(dataMatrix = NULL, inferredGraph = NULL, binaryTruth = NULL)
\textbf{rnsbm}

\textbf{Arguments}

- dataMatrix: observed data matrix
- inferredGraph: graph inferred by the multiple testing procedure via graphInference()
- binaryTruth: true binary graph

\textbf{Value}

- a list of FDR and TDR values, if possible

\textbf{Description}

return a random NSBM

\textbf{Usage}

\texttt{rnsbm(p, theta, modelFamily = "Gauss")}

\textbf{Arguments}

- \texttt{p}: (integer) number of node in the network
- \texttt{theta}: \((\pi; w; \nu_0; \nu) \) parameter of the model
- \texttt{modelFamily}: the distribution family of the noise under the null hypothesis, which can be "Gauss" (Gaussian), "Gamma", or "Poisson", by default it's 'Gauss'

\textbf{Value}

- \texttt{X}: the noisy matrix
- \texttt{theta}
- \texttt{latentZ}: the latent clustering
- \texttt{latentA}: the latent adjacency matrix

Latent variables we strat by sampling the latent variable \(Z \) which is the vector containing the family of each nodes adjacency matrix. Then we sample the adjacency matrix, conditionally to \(Z \) the coordinate of \(A \) follow a binomial of a parameter contain in \texttt{theta}w.

Noisy observations under the null we create a matrix \((n,n)\) \(X \) and we initialize all its entry (half of them is undirected) with a sampling of the law under the null then for each entry where \(A \) is none zero we sample it according to the law under the alternative.
vecToMatrix

Description
vecToMatrix

Usage
vecToMatrix(X, p)

Arguments
X a vector
p (integer) the dimension of the square matrix returned by the function be careful
 the length of the vector X must be equal to p(p+1)/2

Value
a p by p symmetric matrix whose upper triangle coefficients from left to right and from top to bottom
are the entries of the vector X
Index

* datasets
 GGMtest, 3
 NSBMtest, 8

ARI, 2

GGMtest, 3

main_noisySBM, 3
main_noisySBM_GGM, 5
matrixToVec, 7

NSBMtest, 8

plotGraphs, 8

rnsbm, 9

vecToMatrix, 10