Package ‘nomogramFormula’

October 13, 2022

Type Package

Title Calculate Total Points and Probabilities for Nomogram

Version 1.2.0.0

Description A nomogram, which can be carried out in 'rms' package, provides a graphical explanation of a prediction process. However, it is not very easy to draw straight lines, read points and probabilities accurately. Even, it is hard for users to calculate total points and probabilities for all subjects. This package provides formula_rd() and formula_lp() functions to fit the formula of total points with raw data and linear predictors respectively by polynomial regression. Function points_cal() will help you calculate the total points. prob_cal() can be used to calculate the probabilities after lrm(), cph() or psm() regression. For more complex condition, interaction or restricted cubic spine, TotalPoints.rms() can be used.

Author Jing Zhang, Zhi Jin

Maintainer Jing Zhang<zj391120@163.com>

License GPL-3

Encoding UTF-8

LazyData true

Imports rms, do, Hmisc

RoxygenNote 6.1.1

URL https://github.com/yikeshu0611/nomogramFormula

BugReports https://github.com/yikeshu0611/nomogramFormula/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2020-01-28 13:10:02 UTC
R topics documented:

formula_lp .. 2
formula_rd .. 3
points_cal ... 4
prob_cal ... 5
TotalPoints.rms ... 6

Description

Explore the formula of total points and linear predictors by the best power.

Usage

formula_lp(nomogram, power, digits = 6)

Arguments

nomogram results of nomogram() function in 'rms' package
power power can be automatically selected based on all R2 equal 1
digits default is 6

Value

formula is the formula of total points and linear predictors. test is the R2 and RMSE which are used to test the fitted points. diff is difference between nomogram points and fitted points

Examples

library(rms) # needed for nomogram
set.seed(2018)
n <- 2019
age <- rnorm(n, 60, 20)
sex <- factor(sample(c("female", "male"), n, TRUE))
sex <- as.numeric(sex)
weight <- sample(50:100, n, replace = TRUE)
time <- sample(50:800, n, replace = TRUE)
units(time) = "day"
death <- sample(c(1, 0, 0), n, replace = TRUE)
df <- data.frame(time, death, age, sex, weight)
ddist <- datadist(df)
oldoption <- options(datadist = 'ddist')
f <- cph(formula(Surv(time, death) ~ sex + age + weight), data = df,
x = TRUE, y = TRUE, surv = TRUE, time.inc = 3)
surv <- Survival(f)
nomo <- nomogram(f,
 lp=TRUE,
 fun=list(function(x) surv(365,x),
 function(x) surv(365*2,x)),
 funlabel=c("1-Year Survival Prob",
 "2-Year Survival Prob"))

options(oldoption)
formula_lp(nomogram = nomo)
formula_lp(nomogram = nomo, power = 1)
formula_lp(nomogram = nomo, power = 3, digits=6)

formula_rd

Explore the Formula of Total Points and Raw Data

Description

Explore the formula of total points and raw data by the best power.

Usage

formula_rd(nomogram, power, digits = 6)

Arguments

- `nomogram`: results of nomogram() function in 'rms' package
- `power`: power can be automatically selected based on all R2 equal 1
- `digits`: default is 6

Value

formula is the formula of total points and raw data. test is the R2 and RMSE which are used to test the fitted points. diff is difference between nomogram points and fitted points

Examples

library(rms) # needed for nomogram
set.seed(2018)
n <- 2019
age <- rnorm(n, 60, 20)
sex <- factor(sample(c('female', 'male'), n, TRUE))
sex <- as.numeric(sex)
weight <- sample(50:100, n, replace = TRUE)
time <- sample(50:800, n, replace = TRUE)
units(time)="day"
death <- sample(c(1,0,0), n, replace = TRUE)
df <- data.frame(time, death, age, sex, weight)
ddist <- datadist(df)
oldoption <- options(datadist='ddist')
```r
f <- cph(formula(Surv(time,death)~sex+age+weight),data=df, 
  x=TRUE,y=TRUE,surv=TRUE,time.inc=3)
surv <- Survival(f)
nomo <- nomogram(f, 
  lp=TRUE, 
  fun=list(function(x) surv(365,x), 
  function(x) surv(365*2,x)), 
  funlabel=c("1-Year Survival Prob", 
  "2-Year Survival Prob"))
options(oldoption)
formula_rd(nomogram = nomo)
formula_rd(nomogram = nomo, power = 1)
formula_rd(nomogram = nomo, power = 3,digits=6)
```

points_cal

Calculate Total Points

Description

Calculate total points.

Usage

`points_cal(formula, rd, lp, digits = 6)`

Arguments

- `formula` the formula of total points with raw data or linear predictors
- `rd` raw data, which cannot have missing values
- `lp` linear predictors
- `digits` default is 6

Value

total Points

Examples

```r
library(rms) # needed for nomogram
set.seed(2018)
n <- 2019
age <- rnorm(n,60,20)
sex <- factor(sample(c('female','male'),n,TRUE))
sex <- as.numeric(sex)
weight <- sample(50:100,n,replace = TRUE)
time <- sample(50:800,n,replace = TRUE)
units(time)="day"
death <- sample(c(1,0,0),n,replace = TRUE)
df <- data.frame(time,death,age,sex,weight)
```
prob_cal <- datadist(df)
oldoption <- options(datadist='ddist')
f <- cph(formula(Surv(time,death)~sex+age+weight),data=df,
x=TRUE,y=TRUE,surv=TRUE,time.inc=3)
surv <- Survival(f)
nomo <- nomogram(f,
lp=TRUE,
fun=list(function(x) surv(365,x),
function(x) surv(365*2,x)),
funlabel=c("1-Year Survival Prob",
"2-Year Survival Prob"))
options(oldoption)
get the formula by the best power using formula_lp
results <- formula_lp(nomo)
points_cal(formula = results$formula,lp=f$linear.predictors)

get the formula by the best power using formula_rd
results <- formula_rd(nomogram = nomo)
points_cal(formula = results$formula,rd=df)

prob_cal
Calculate Probabilities

Description

Use `Survival()` function from 'rms' package to calculate probabilities after `lrm()`, `cph()` or `psm()` regression. If you want to calculate `lrm()` probabilities, please leave `linear.predictors` be `TRUE` and `times` be missing. If you want to calculate `cph()` probabilities, please leave both `linear.predictors` and `surv` be `TRUE`.

Usage

`prob_cal(reg, times, q, lp)`

Arguments

- `reg`
 regression results after `lrm()`, `cph()` or `psm()` in 'rms' package.
- `times`
 if you want to calculate probabilities for `lrm()` function, please left `times` missing.
- `q`
 quantile, for example 0.5
- `lp`
 linear predictors

Value

linear predictors and probabilities as a dataframe
Examples

```r
set.seed(2018)
n <- 2019
age <- rnorm(n, 60, 20)
sex <- factor(sample(c('female', 'male'), n, TRUE))
sex <- as.numeric(sex)
weight <- sample(50:100, n, replace = TRUE)
time <- sample(50:800, n, replace = TRUE)
units(time) = 'day'
death <- sample(c(1, 0, 0), n, replace = TRUE)
df <- data.frame(time, death, age, sex, weight)

library(rms) # needed for lrm(), cph() and psm()
ddist <- datadist(df)
oldoption <- options(datadist = 'ddist')

# lrm() function
f <- lrm(death ~ sex + age + weight, data = df,
         linear.predictors = TRUE)
head(prob_cal(reg = f))

# cph() function
f <- cph(Surv(time, death) ~ sex + age + weight, data = df,
         linear.predictors = TRUE, surv = TRUE)
head(prob_cal(reg = f, times = c(365, 365 * 2)))

# psm() function
f <- psm(Surv(time, death) ~ sex + age + weight, data = df)
head(prob_cal(reg = f, times = c(365, 365 * 2)))
```

Description

Compared with points_cal() command, TotalPoints.rms() is suited for more complexed condition. Since this command is based on formula from 'rms' package, it may be also more accurate. However, formula for each variable can not be calculated.

Usage

```
TotalPoints.rms(rd, fit, nom, kint = NULL)
```

Arguments

- `rd`: raw data
- `fit`: regression result in 'rma' package
- `nom`: nomoram() command result
- `kint`: number of intercept. Default is to use fit$interceptRef if it exists, or 1.
Value

A dataframe contains rawdata and total points.

Examples

```r
library(rms)
n <- 1000
set.seed(17)
d <- data.frame(age = rnorm(n, 50, 10),
                 blood.pressure = rnorm(n, 120, 15),
                 cholesterol = rnorm(n, 200, 25),
                 sex = factor(sample(c('female', 'male'), n, TRUE)))

d <- upData(d,
            L = .4*(sex=='male') + .045*(age-50) +
            (log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male')),
            y = ifelse(runif(n) < plogis(L), 1, 0))

ddist <- datadist(d); options(datadist='ddist')

f <- lrm(y ~ lsp(age,50) + sex * rcs(cholesterol, 4) + blood.pressure,
          data=d)
nom <- nomogram(f)
TotalPoints.rms(rd = d, fit = f, nom = nom)
```
Index

formula_lp, 2
formula_rd, 3
points_cal, 4
prob_cal, 5
TotalPoints.rms, 6