Package 'nonlinearICP'

Type Package

Title Invariant Causal Prediction for Nonlinear Models

Version 0.1.2.1

Date 2017-07-31

Author Christina Heinze-Deml <heinzedeml@stat.math.ethz.ch>, Jonas Peters <jonas.peters@math.ku.dk>

Depends R (>= 3.1.0)

Maintainer Christina Heinze-Deml <heinzedeml@stat.math.ethz.ch>

License GPL

LazyData TRUE

Imports methods, CondIndTests, data.tree, caTools, randomForest

Suggests testthat

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2017-07-31 13:42:46 UTC
nonlinearICP

R topics documented:

- nonlinearICP .. 2
- simData .. 4
- summary.nonlinICP.class 5
- varSelectionRF ... 5

nonlinearICP
Nonlinear Invariant Causal Prediction

Description

Nonlinear Invariant Causal Prediction

Usage

```r
nonlinearICP(X, Y, environment,  
condIndTest = InvariantResidualDistributionTest, argsCondIndTest = NULL,  
alpha = 0.05, varPreSelectionFunc = NULL,  
argsVarPreSelectionFunc = NULL, maxSizeSets = ncol(X),  
condIndTestNames = NULL, speedUp = FALSE, subsampleSize = c(0.1, 0.25, 0.5, 0.75, 1), retrieveDefiningsSets = TRUE, seed = 1,  
stopIfEmpty = TRUE, testAdditionalSet = NULL, verbose = FALSE)
```

Arguments

- `X`
 A (nxp)-dimensional matrix (or data frame) with n observations of p variables.

- `Y`
 A (nx1)-dimensional response vector.

- `environment`
 Environment variable(s) in an (n x k)-dimensional matrix or dataframe. Note that not all nonlinear conditional independence tests may support more than one environmental variable.

- `condIndTest`
 Function implementing a conditional independence test (see below for the required interface). Defaults to `InvariantResidualDistributionTest` from the package `CondIndTests`.

- `argsCondIndTest`
 Arguments of `condIndTest`. Defaults to `NULL`.

- `alpha`
 Significance level to be used. Defaults to `0.05`.

- `varPreSelectionFunc`
 Variable selection function that is applied to pre-select a set of variables before running the ICP procedure on the resulting subset. Should be used with care as causal parents might be excluded in this step. Defaults to `NULL`.

- `argsVarPreSelectionFunc`
 Arguments of `varPreSelectionFunc`. Defaults to `NULL`.

- `maxSizeSets`
 Maximal size of sets considered as causal parents. Defaults to `ncol(X)`.

condIndTestNames Name of conditional independence test, used for printing. Defaults to NULL.

speedUp Use subsamples of sizes specified in subsampleSize to speed up the test for sets where the null hypothesis can already be rejected based on a small number of samples (a larger sample size would potentially further decrease the p-value but would not change the decision, i.e. the set is rejected in any case). Applies Bonferroni multiple testing correction. Defaults to FALSE.

subsampleSize Size of subsamples used in speedUp procedure as fraction of total sample size. Defaults to c(0.1, 0.25, 0.5, 0.75, 1).

retrieveDefiningsSets Boolean variable to indicate whether defining sets should be retrieved. Defaults to TRUE.

seed Random seed.

stopIfEmpty Stop ICP procedure if retrieved set is empty. If retrieveDefiningsSets is TRUE, setting stopIfEmpty to TRUE results in testing further sets to retrieve the defining sets. However, setting stopIfEmpty to TRUE in this case will still speedup the procedure as some sets will not be tested (namely those where accepting/rejecting would not affect the defining sets). Setting stopIfEmpty to FALSE means that all possible subsets of the predictors are tested.

testAdditionalSet If a particular set should be tested, the corresponding indices can be provided via this argument.

verbose Boolean variable to indicate whether messages should be printed.

Details

The function provided as condIndTest needs to take the following arguments in the given order: Y, environment, X, alpha, verbose. Additional arguments can then be provided via argsCondIndTest.

Value

A list with the following elements:

- retrievedCausalVars Indices of variables in \(\hat{S} \)
- acceptedSets List of accepted sets.
- definingSets List of defining sets.
- acceptedModels List of accepted models if specified in argsCondIndTest.
- pvalues.accepted P-values of accepted sets.
- rejectedSets List of rejected sets.
- pvalues.rejected P-values of rejected sets.
- settings Settings provided to nonlinearICP.

References

See Also

The function `CondIndTest` from the package `CondIndTests` is a wrapper for a variety of nonlinear conditional independence tests that can be used in `condIndTest`.

Examples

Example 1
require(CondIndTests)
data("simData")
targetVar <- 2
choose environments where we did not intervene on var
useEnvs <- which(simData$interventionVar[,targetVar] == 0)
ind <- is.element(simData$environment, useEnvs)
X <- simData$X[ind,-targetVar]
Y <- simData$X[ind,targetVar]
E <- as.factor(simData$environment[ind])
result <- nonlinearICP(X = X, Y = Y, environment = E)
cat(paste("Variable",result$retrievedCausalVars, "was retrieved as the causal parent of target variable", targetVar))

Example 2
E <- rep(c(1,2), each = 500)
X1 <- E + 0.1*rnorm(1000)
X1 <- rnorm(1000)
X2 <- X1 + E^2 + 0.1*rnorm(1000)
Y <- X1 + X2 + 0.1*rnorm(1000)
resultnonlinICP <- nonlinearICP(cbind(X1,X2), Y, as.factor(E))
summary(resultnonlinICP)

simData

Example dataset for tests

Description

Example dataset for tests

Usage

`data("simData")`

Format

A list with the following entries

- `X` Dataframe with 500 observations and three variables.
- `environment` A vector of length 500, indicating which environment the observations belong to.
• **interventionVar** A matrix of dimension 6 (no. of environments) x 3 (no. of variables), where entry i,j indicates whether variable j was intervened on in environment i.

Description

Summary functions for 'nonlinICP.class' objects.

Usage

```r
## S3 method for class 'nonlinICP.class'
summary(object, ...)
```

Arguments

- **object** object of class 'nonlinICP.class'.
- **...** Additional inputs to generic summary function (not used).

Author(s)

Christina Heinze-Deml and Jonas Peters

varSelectionRF

Variable selection function that can be provided to nonlinearICP - it is then applied to pre-select a set of variables before running the ICP procedure on this subset. Here, the variable selection is based on random forest variable importance measures.

Description

Variable selection function that can be provided to nonlinearICP - it is then applied to pre-select a set of variables before running the ICP procedure on this subset. Here, the variable selection is based on random forest variable importance measures.

Usage

```r
varSelectionRF(X, Y, env, verbose, nSelect = sqrt(ncol(X)),
              useMtry = sqrt(ncol(X)), ntree = 100)
```
varSelectionRF

Arguments

- **X**: A (nxp)-dimensional matrix (or data frame) with n observations of p variables.
- **Y**: Response vector (n x 1)
- **env**: Indicator of the experiment or the intervention type an observation belongs to. A numeric vector of length n. Has to contain at least two different unique values.
- **verbose**: If FALSE, most messages are suppressed.
- **nSelect**: Number of variables to select. Defaults to $\sqrt{\text{ncol}(X)}$.
- **useMtry**: Random forest parameter mtry. Defaults to $\sqrt{\text{ncol}(X)}$.
- **ntree**: Random forest parameter ntree. Defaults to 100.

Value

A vector containing the indices of the selected variables.

Examples

```r
# Example 1
require(CondIndTests)
data("simData")
targetVar <- 2
# choose environments where we did not intervene on var
useEnvs <- which(simData$interventionVar[,targetVar] == 0)
ind <- is.element(simData$environment, useEnvs)
X <- simData$X[ind,-targetVar]
Y <- simData$X[ind,targetVar]
E <- as.factor(simData$environment[ind])
chosenIdx <- varSelectionRF(X = X, Y = Y, env = E, verbose = TRUE)
cat(paste("Variable(s)", paste(chosenIdx, collapse=" ", "was/were chosen."))
```
Index

* datasets
 simData.4
 CondIndTest.4
 nonlinearICP.2
 simData.4
 summary.nonlinICP.class.5
 varSelectionRF.5