Package ‘nopaco’

July 7, 2019

Type Package
Title Non-Parametric Concordance Coefficient
Version 1.0.6
Date 2019-07-04
Description A non-parametric test for multi-observer concordance and differences between concordances in (un)balanced data.
License GPL (>= 3)
Imports methods, Matrix (>= 1.1.5), parallel, stats
Suggests MASS
SystemRequirements C++11
RoxygenNote 6.1.1
Encoding UTF-8
NeedsCompilation yes
Author Rowan Kuiper [cre, aut] (<https://orcid.org/0000-0002-3703-1762>), Remco Hoogenboezem [aut], Sjoerd Huisman [ctb] (<https://orcid.org/0000-0002-4322-8289>), Pieter Sonneveld [ths], Mark van Duin [ths]
Maintainer Rowan Kuiper <r.kuiper.emc@gmail.com>
Repository CRAN
Date/Publication 2019-07-06 22:01:19 UTC

R topics documented:

cof ... 2
concordance.test ... 2
ConcordanceTest-class ... 4
getPsi ... 4
names,ConcordanceTest-method 6
rfromPsi .. 6
scores .. 7
$,ConcordanceTest-method 8
Index

coef

Extract test results from the results of a concordance.test

Description

copc extract the test results from the results of a concordance.test

Usage

S4 method for signature 'ConcordanceTest'
coef(object, ...)

Arguments

object An object of ConcordanceTest-class
... Not used

Value

A matrix

See Also

Other concordance functions: concordance.test, getpsi, rfrompsi

Examples

matRandom <- matrix(rnorm(3*20), 20, 3)
testResult <- concordance.test(matRandom)
getpsi(testResult)
coef(testResult)

concordance.test

Perform a nonparametric concordance test.

Description

concordance.test performs a test for a random concordance (if a single matrix is given) or tests for equal concordance between two matrices.

Usage

concordance.test(x, y = NULL, alternative = NULL, alpha = 0.05, ...)

Arguments

- **x**: a numeric matrix, subjects in the rows, repeated measurements in the columns
- **y**: (optional) a numeric matrix of equal size as argument x
- **alternative**: "less", "greater" or "two.sided". Only used when y is given.
- **alpha**: significance level (default = 0.05)
- **...**: see details

Details

- Testing the deviation from random concordance: if only one matrix is given (i.e. argument x), its concordance will be tested against alternative hypothesis of finding a higher concordance under random sampling conditions. For small matrices (depending on number of replicate measurements) an exact method will be used to determine the p-value. In case of larger matrices where the exact approach is not feasible, either the revised-beta approach (default), a beta approximation or a normal approximation is used. To enforce the use of either one method, the method argument can be used with value "exact", "Rbeta", "beta" or "normal".

- Testing for a difference between concordances: if both arguments x and y have been given, the equality of concordances of both matrices is tested. The default alternative hypothesis is 'two.sided’. Both matrices must be of equal size and have corresponding missing entries (NA values). In case of missing data in one matrix, the same entries in the other matrix will also be set to missing.

Unbalanced data due to randomly missing data or an unequal number of repeated measurements per subject is allowed. In that case, missing or unknown values must be set to NA.

Value

An object of **ConcordanceTest-class**

References

P.Rothery (1979) Biometrika 66(3):629-639

See Also

Other concordance functions: coef, getPsi, rfromPsi

Examples

```r
require(MASS) ##to use mvrnorm function

#Generate a matrix without concordance
matRandom <- matrix(rnorm(3*20),20,3)
concordance.test(matRandom)

#Generate a matrix with strong concordance
sigma<-matrix(0.8,3,3)
diag(sigma)<-1
matConcordant <- mvrnorm(20,mu=rep(0,3),Sigma=sigma)
```
concordance.test(matConcordant)

#Test concordances between matrices
aTest <- concordance.test(matConcordant, matRandom)

getiPsi(aTest)
coef(aTest)

ConcordanceTest-class Class ConcordanceTest

Description

This class stores results obtained from a concordance test.

Details

Class ConcordanceTest stores results from a concordance test.

Slots

 pvalue The pvalue
 psi1 The concordance in matrix x
 psi2 The concordance in matrix y
 method The method used to obtain the pvalue
 alternative The alternative hypothesis
 ci.lower The lower confidence boundary
 ci.upper The upper confidence boundary
 ci.method The method used to obtain the confidence interval
 alpha The significance level
 call The call made to the concordance.test function

getPsi Obtain concordance coefficients.

Description

getPsi returns the concordance coefficient(s) from a matrix or a result obtained by the concordance.test function.
getPsi

Usage

getPsi(x, y, ...)

S4 method for signature 'ConcordanceTest,missing'
getPsi(x)

S4 method for signature 'matrix,missing'
getPsi(x, y, ...)

S4 method for signature 'data.frame,missing'
getPsi(x, y, ...)

S4 method for signature 'data.frame,data.frame'
getPsi(x, y, ...)

S4 method for signature 'matrix,NULL'
getPsi(x, y, ...)

S4 method for signature 'matrix,matrix'
getPsi(x, y, ...)

Arguments

- **x**: A numeric matrix or an object of class `ConcordanceTest-class`
- **y**: A numeric matrix (optional)
- **...**: Not used

Value

A numeric vector with coefficient(s)

References

P.Rothery (1979) Biometrika 66(3):629-639

See Also

Other concordance functions: `coef`, `concordance.test`, `rfromPsi`

Examples

```r
matRandom <- matrix(rnorm(30),10,3)
testResult <- concordance.test(matRandom)
getPsi(testResult)
getPsi(matRandom)
```
names, ConcordanceTest-method

Extract argument names from a ConcordanceTest object

Description

names extracts argument names from a ConcordanceTest-class object

Usage

```r
## S4 method for signature 'ConcordanceTest'
names(x)
```

Arguments

- `x` An object of ConcordanceTest-class

Value

A character vector

Examples

```r
matRandom <- matrix(rnorm(3*20),20,3)
testResult <- concordance.test(matRandom)
names(testResult)
```

rfromPsi

Conversion between Pearson correlation and the non parametric concordance coefficient

Description

Conversion between Pearson correlation and the non parametric concordance coefficient

Usage

```r
rfromPsi(psi)
psifromR(r)
```

Arguments

- `psi` a (vector of) non parametric concordance coefficient(s)
- `r` a (vector of) Pearson correlation coefficient(s)
Details

The conversion is performed following the relationship described by Rothery (1979). $2 \cdot \cos(\pi \cdot (1 - \psi)) - 1$

Value

A (vector of) corresponding Pearson correlation coefficient(s).

References

See Also

Other concordance functions: coef, concordance.test, getPsi

Examples

```r
# Generate a matrix without concordance
matRandom <- matrix(rnorm(30), 10, 3)
result <- concordance.test(matRandom)
getPsi(result) # concordance coefficient
result$ci # 95% confidence interval

# Corresponding Pearson correlation
rfromPsi(getPsi(result))

rfromPsi(result$ci)

# Plot the relation between Pearson correlation and the nonparametric concordance coefficient.
r <- -seq(-1, 1, 0.01)
psi <- psifromR(r)
plot(r, psi, type='l', xlab="Pearson correlation", ylab="nonparametric concordance")
```

scores

Hypothetical data of outcomes for two risk models

Description

This data is generated as explained in the nopaco vignette. It represents the outcomes of the risk models (model A and model B). Both models were applied to gene expression profiles 100 subjects, each run in duplo.

Usage

data(scores)
Format

A list with two elements named 'modelA' and 'modelB' both containing a dataframe with outcome scores for 100 subjects in the rows each having two replicate measurements in the columns.

Source

vignette("nopaco", package = "nopaco")

Examples

data(scores)
str(scores)
plot(scores[['modelA']])
plot(scores[['modelB']])

Description

Extracts argument values from a `ConcordanceTest-class` object

Usage

```r
## S4 method for signature 'ConcordanceTest'
x$name
```

Arguments

- `x` An object of `ConcordanceTest-class`
- `name` The argument to get the value of

Value

The value of the requested argument

Examples

```r
matRandom <- matrix(rnorm(3*20),20,3)
testResult <- concordance.test(matRandom)
names(testResult)
testResult$psi
```
Index

*Topic datasets
scores, 7
$,ConcordanceTest-method, 8
coef, 2, 3, 5, 7
coef,ConcordanceTest-method (coef), 2
concordance.test, 2, 2, 4, 5, 7
ConcordanceTest-class, 4

cget,ConcordanceTest-method
($)ConcordanceTest-method, 8
getPsi, 2, 3, 4, 7
getPsi,ConcordanceTest,missing-method
(getPsi), 4
getPsi,data.frame,data.frame-method
(getPsi), 4
getPsi,data.frame,missing-method
(getPsi), 4
getPsi,matrix,matrix-method(getPsi), 4
getPsi,matrix,missing-method(getPsi), 4
getPsi,matrix,NULL-method (getPsi), 4

names,ConcordanceTest-method, 6
nopaco (concordance.test), 2

psifromR (rfromPsi), 6
rfromPsi, 2, 3, 5, 6

scores, 7