Package ‘nplr’

December 28, 2016

Type Package
Title N-Parameter Logistic Regression
Version 0.1-7
Date 2016-12-25
Maintainer Frederic Commo <fredcommo@gmail.com>
Depends methods
Imports stats, graphics, utils
Suggests RUnit, knitr
VignetteBuilder knitr
Description Performing drug response analyses and IC50 estimations using n-Parameter logistic regression. Can also be applied to proliferation analyses.
License GPL
URL https://github.com/fredcommo/nplr
NeedsCompilation no
Author Frederic Commo [aut, cre],
Brian M. Bot [aut]
Repository CRAN
Date/Publication 2016-12-28 16:38:22

R topics documented:

convertToProp .. 2
getEstimates .. 3
nplr ... 5
nplrAccessors .. 8
overlay ... 8
plot.nplr .. 9
summary.nplr .. 11

Index 12
Function to Convert a Vector Into Proportions.

Description

Convert a vector of values to proportions, given a minimum and a maximum value (optional). See Details and Examples.

Usage

```r
convertToProp(y, T0 = NULL, Ctrl = NULL)
```

Arguments

- `y`: a vector of values (responses to x).
- `T0`: the minimal value to consider. If NULL (default), \(\min(y, \text{na.rm=TRUE}) \) will be used. See Details and Warning.
- `Ctrl`: the maximal value to consider. If NULL (default), \(\max(y, \text{na.rm=TRUE}) \) will be used. See Details and Warning.

Details

In typical cell viability experiments, responses to drug concentrations (inhibition rate) may be estimated with respect to a time zero (\(T0 \)) and an untreated condition values (\(Ctrl \)), as described in [1]:

If none of the \(T0 \) and \(Ctrl \) values are provided, \(\min(y, \text{na.rm=TRUE}) \) and \(\max(y, \text{na.rm=TRUE}) \) will be used, respectively. See Warning.

Value

- a vector of values.

Warning

Note that, for drug response analyses, rescaling the responses between 0 to 1 using to the min and max of \(y \), would lead to estimate a EC50 (the half effect between the maximum and the minimum of the observed effects), rather than a IC50.

Note

The data used as examples come from the NCI-60 Growth Inhibition Data: https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data, except for multicell.tsv which are simulated data.
getEstimates

Author(s)
Frederic Commo, Brian M. Bot

References
1 - https://dtp.nci.nih.gov/branches/btb/ivclsp.html

See Also
nplr

Examples

```r
## Using the MDA-N data
op <- par(no.readonly=TRUE)  # save default parameters

require(nplr)
path <- system.file("extdata", "mdan.txt", package = "nplr")
mdan <- read.delim(path)

# fit a model on the original responses (proportions of control):
conc <- mdan$CONC
y0 <- mdan$GIPROP
model0 <- nplr(conc, y0)

# Adjust the data between 0 to 1, then fit a new model:
y1 <- convertToProp(y0)
model1 <- nplr(conc, y1)

par(mfrow=c(1, 2))
plot(model0, ylim = range(0, 1), main = "Original y values")
plot(model1, ylim = range(0, 1), main = "Rescaled y values")
par(op)
```

Description

This function takes as its first argument a model returned by `nplr()`. By inverting the logistic model, it estimates the x values corresponding to one (or a vector of) y target(s) provided. The standard error of the model, defined as the mean squared error on the fitted values, is used to estimate a confidence interval on the predicted x values, according to the specified `conf.level`. See Details.

Usage

```r
## S4 method for signature 'nplr'
getEstimates(object, targets = seq(.9, .1, by = -.1), B = 1e4, conf.level = .95)
```
Arguments

object : an object of class nplr.
targets : one, of a vector of, numerical value(s) for which the corresponding x has to be estimated. Default are target values from .9 to .1.
b : the length of the y distribution from which the x confidence interval is estimated.
conf.level : the estimated x confidence interval, bounded by (1-conf.level)/2 and 1 - (1-conf.level)/2 (by default .95, which gives x.025 and x.975).

Details

In n-parameter logistic regressions, none of the parameters follow any particular distribution from which confidence intervals can be estimated. To overcome this issue, the standard error is used to generate a normal distribution of the target(s) passed to the function. The quantiles of that distribution are used in order to provide estimated bounds for the corresponding x value, with respect to conf.level. See also Warning.

Value

A data set containing:
y : the target value.
x.05 : the lower bound of the estimated 95% confidence interval (default). If another value is passed to conf.level, x will be labelled as x.(1-conf.level)/2.
x : the estimated value.
x.95 : the upper bound of the estimated 95% confidence interval (default). If another value is passed to conf.level, x will be labelled as x.1-(1-conf.level)/2.

Warning

Notice that, if any target <= B or target >= T, in other words outside the 2 asymptotes, the maximal (or minimal) possible value the model can estimates is returned.

Note

The data used in the examples are samples from the NCI-60 Growth Inhibition Data: https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data, except for multicell.tsv which are simulated data.

Author(s)

Frederic Commo, Brian M. Bot

See Also

nplr, plot.nplr, nplrAccessors
Examples

```r
# Using the PC-3 data
require(nplr)
path <- system.file("extdata", "pc3.txt", package="nplr")
pc3 <- read.delim(path)
model <- nplr(x = pc3$CONC, y = pc3$GIPROP)
getestimates(model)
getestimates(model, c(.3, .6), conf.level = .9)
```

nplr

Function to Fit n-Parameter Logistic Regressions.

Description

This function computes a weighted n-parameters logistic regression, given x (typically compound concentrations) and y values (responses: optic densities, fluorescence, cell counts,...). See Details.

Usage

```r
nplr(x, y, useLog = TRUE, LPweight = 0.25, npars = "all",
     method = c("res", "sdw", "gw"), silent = FALSE)
```

Arguments

- `x`: a vector of numeric values, e.g. a vector of drug concentrations.
- `y`: a vector of numeric values, e.g. a vector of responses, typically provided as proportions of control.
- `useLog`: Logical. Should x-values be Log10-transformed. Default to TRUE, set to FALSE if x is already in Log10.
- `LPweight`: a coefficient to adjust the weights. `LPweight = 0` will compute a non-weighted np-logistic regression.
- `npars`: a numeric value (or "all") to specify the number of parameters to use in the model. If "all" the logistic model will be tested with 2 to 5 parameters, and the best option will be returned. See Details
- `method`: a character string to specify what weight method to use. Options are "res" (Default), "sdw", "gw". See Details
- `silent`: Logical. Specify whether warnings ad/or messages has to be silenced. Default to FALSE.

Details

The 5-parameter logistic regression is of the form:

\[y = B + (T - B) / [1 + 10^{b \ast (xmid - x)}]^{s} \]
where B and T are the bottom and top asymptotes, respectively, b and xmid are the Hill slope and the x-coordinate at the inflexion point, respectively, and s is an asymmetric coefficient. This equation is sometimes referred to as the Richards’ equation [1,2].

When specifying npars = 4, the s parameter is forced to be 1, and the corresponding model is a 4-parameter logistic regression, symmetrical around its inflexion point. When specifying npars = 3 or npars = 2, add 2 more constraints and force B and T to be 0 and 1, respectively.

Weight methods:
The model parameters are optimized, simultaneously, using nlm, given a sum of squared errors function, sse(Y), to minimize:

\[sse(Y) = \sum [W.(Yobs - Yfit)^2] \]

where Yobs, Yfit and W are the vectors of observed values, fitted values and weights, respectively. In order to reduce the effect of possible outliers, the weights can be computed in different ways, specified in nplr:

- residual weights, "res":
 \[W = (1/residuals)^{LPweight} \]
 where residuals and LPweight are the squared error between the observed and fitted values, and a tuning parameter, respectively. Best results are generally obtained by setting LPweight = 0.25 (default value), while setting LPweight = 0 results in computing a non-weighted sum of squared errors.

- standard weights, "sdw":
 \[W = 1/Var(Yobs_r) \]
 where Var(Yobs_r) is the vector of the within-replicates variances.

- general weights, "gw":
 \[W = 1/Yfit^{LPweight} \]
 where Yfit are the fitted values. As for the residuals-weights method, setting LPweight = 0 results in computing a non-weighted sum of squared errors.

The standard weights and general weights methods are describes in [3].

Value
An object of class nplr.

slots
- x : the x values as they are used in the model. It can be Log10(x) if useLog was set to TRUE.
- y : the y values.
- useLog : logical.
- npars : the best number of parameters if npars="all", the specified number of parameters, otherwise.
- LPweight : the weights tuning parameter.
- yFit : the y fitted values.
nplr

- xCurve: the x values generated to draw the curve. 200 points between the min and max of x.
- yCurve: the fitted values used to draw the curve. the fitted values corresponding to xCurve.
- inflPoint: the inflexion point x and y coordinates.
- goodness: the goodness-of-fit. The correlation between the fitted and the observed y values
- stdErr: the mean squared error between the fitted and the observed y values
- pars: the model parameters.
- AUC: the area under the curve estimated using both the trapezoid method and the Simpson’s rule.

Note

The data used in the examples are samples from the NCI-60 Growth Inhibition Data: https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data, except for multicell.tsv which are simulated data.

Author(s)

Frederic Commo, Brian M. Bot

References

See Also

cvtColorProp, getEstimates, plot.nplr, nplrAccessors

Examples

```r
# Using the PC-3 data
globalrequire(nplr)
path <- system.file("extdata", "pc3.txt", package = "nplr")
pc3 <- read.delim(path)
model <- nplr(x = pc3$CONC, y = pc3$GIPROP)
plot(model)
```
nplrAccessors

nplr accessor functions

Description

Methods for extracting information from an object of class nplr. Each of the below methods are simply convenience functions which extract the corresponding slots (as the name of each method suggests) from the object of class nplr.

Methods

signature(object = "nplr") • getX(object)
• getY(object)
• getXcurve(object)
• getYcurve(object)
• getFitValues(object)
• getInflexion(object)
• getPar(object)
• getAUC(object)
• getGoodness(object)
• getStdErr(object)
• getWeights(object)

See Also

nplr, getEstimates

overlay

Plotting Multiple nplr Objects

Description

To superimpose multiple logistic models fitted using nplr.

Usage

overlay(modellist = NULL, showLegend = TRUE, Cols = NULL, ...)

Arguments

modellist : list. A list of objects of class nplr.
showLegend : logical. Whether the legend has to be displayed.
Cols : character. A vector of colors to use. If NULL (default), greys will be used.
... : Other graphical parameters. See par.
plot.nplr

Details
None

Source
None

References
None

See Also
plot.nplr

Examples

path <- system.file("extdata", "multicell.tsv", package="nplr")
multicell <- read.delim(path)

Computing models (to store in a list)
cellsList <- split(multicell, multicell$cell)
Models <- lapply(cellsList, function(tmp){
 nplr(tmp$conc, tmp$resp, silent = TRUE)
})

Visualizing
overlay(Models, xlab = expression(Log[10](Conc.)), ylab = "Resp.",
 main="Superimposing multiple curves", cex.main=1.5)
Arguments

- **x**: an object of class `nplr`
- **pcol**: the points color.
- **lcol**: the line color.
- **showEstim**: logical/numeric. If a numerical value is passed (a y value to reach), the estimated x value, and interval, is displayed on the plot. Default is `FALSE`.
- **showCI**: logical. show the estimated confidence interval
- **showGOF**: logical. show the estimated goodness-of-fit.
- **showInf1**: logical. add the inflexion point on the plot.
- **showPoints**: logical. add the points on the plot.
- **showSDerr**: logical. add the standard errors on the plot (maybe useful in case of experiment with replicates).
- **B**: the length of simulated y values. Used to estimate the confidence interval
- **conf.level**: the confidence level. See `getEstimates`
- **unit**: the unit to specify when `showEstim` is `TRUE`. Default is an empty string.
- **...**: other graphical parameters. See `par`.

Details

None

Note

The data used in the examples are samples from the NCI-60 Growth Inhibition Data: https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data, except for multicell.tsv which are simulated data.

Source

None

References

None

See Also

- `overlay`

Examples

```
# Using the PC-3 data
require(nplr)
path <- system.file("extdata", "pc3.txt", package = "nplr")
pc3 <- read.delim(path)
model <- nplr(x = pc3$CONC, y = pc3$GIPROP)
plot(model, showEstim = 0.5, unit = "nM")
```
summary.nplr

Description

A S3 method to visualize a model summary as a table.

Usage

```r
## S3 method for class 'nplr'
summary(object, ...)
```

Arguments

- `object`: an object of class `nplr`
- `...`: other optional parameters (not used).

Details

None

Note

The data used in the examples are samples from the NCI-60 Growth Inhibition Data: https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data, except for multicell.tsv which are simulated data.

Source

None

References

None

See Also

- `plot.nplr`

Examples

```r
# Using the PC-3 data
require(nplr)
path <- system.file("extdata", "pc3.txt", package = "nplr")
pc3 <- read.delim(path)
model <- nplr(x = pc3$CONC, y = pc3$GIPROP)
summary(model)
```
Index

*Topic \textasciitilde kwd1
 convertToProp, 2
 getEstimates, 3
*Topic \textasciitilde kwd2
 convertToProp, 2
 getEstimates, 3
*Topic datasets
 overlay, 8
 plot.nplr, 9
 summary.nplr, 11

convertToProp, 2, 7

getAUC (nplrAccessors), 8
getAUC, nplr-method (nplrAccessors), 8
getAUC-methods (nplrAccessors), 8
getEstimates, 3, 7, 8, 10
getEstimates.nplr-method (getEstimates), 3
getEstimates-methods (getEstimates), 3
getFitValues (nplrAccessors), 8
getFitValues, nplr-method (nplrAccessors), 8
getFitValues-methods (nplrAccessors), 8
getGoodness (nplrAccessors), 8
getGoodness, nplr-method (nplrAccessors), 8
getGoodness-methods (nplrAccessors), 8
getInflexion (nplrAccessors), 8
getInflexion, nplr-method (nplrAccessors), 8
getInflexion-methods (nplrAccessors), 8
getPar (nplrAccessors), 8
getPar, nplr-method (nplrAccessors), 8
getPar-methods (nplrAccessors), 8
getStdErr (nplrAccessors), 8
getStdErr, nplr-method (nplrAccessors), 8
getStdErr-methods (nplrAccessors), 8
getWeights (nplrAccessors), 8
getWeights, nplr-method (nplrAccessors), 8
getWeights-methods (nplrAccessors), 8
getX (nplrAccessors), 8
getX, nplr-method (nplrAccessors), 8
getX-methods (nplrAccessors), 8
getXcurve (nplrAccessors), 8
getXcurve, nplr-method (nplrAccessors), 8
getXcurve-methods (nplrAccessors), 8
getY (nplrAccessors), 8
getY, nplr-method (nplrAccessors), 8
getY-methods (nplrAccessors), 8
getYcurve (nplrAccessors), 8
getYcurve, nplr-method (nplrAccessors), 8
getYcurve-methods (nplrAccessors), 8

nplr, 3, 4, 5, 8–11
nplr-class (nplr), 5
nplrAccessors, 4, 7, 8
nplrAccessors.nplr-method (nplrAccessors), 8
nplrAccessors-methods (nplrAccessors), 8

overlay, 8, 10
par, 8, 10
plot.nplr, 4, 7, 9, 11
summary.nplr, 11

12