Package ‘nproc’

October 13, 2022

Type Package
Title Neyman-Pearson (NP) Classification Algorithms and NP Receiver Operating Characteristic (NP-ROC) Curves
Version 2.1.5
Date 2020-01-13
Imports glmnet, e1071, randomForest, naivebayes, MASS, parallel, ada, stats, graphics, ROCR, tree
Description In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (i.e., the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (i.e., the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, alpha, on the type I error. Although the NP paradigm has a century-long history in hypothesis testing, it has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than alpha do not satisfy the type I error control objective because the resulting classifiers are still likely to have type I errors much larger than alpha. As a result, the NP paradigm has not been properly implemented for many classification scenarios in practice. In this work, we develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, including popular methods such as logistic regression, support vector machines and random forests. Powered by this umbrella algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands, motivated by the popular receiver operating characteristic (ROC) curves. NP-ROC bands will help choose in a data adaptive way and compare different NP classifiers.

License GPL-2
LazyData TRUE
RoxygenNote 6.1.0
URL http://advances.sciencemag.org/content/4/2/eaao1659
Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Yang Feng [aut, cre],
Jessica Li [aut],
Xin Tong [aut],
Ye Tian [ctb]

Maintainer Yang Feng <yangfengstat@gmail.com>

Repository CRAN

Date/Publication 2020-01-13 19:20:05 UTC

R topics documented:

- compare
- lines.nproc
- npc
- nproc
- plot.nproc
- predict.npc
- print.npc
- print.nproc
- rocCV

Index 14

<table>
<thead>
<tr>
<th>compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>Compare two NP classification methods at different type I error upper bounds.</td>
</tr>
</tbody>
</table>

Description

compare compares NP classification methods and provides the regions where one method is better than the other.

Usage

```r
compare(roc1, roc2, plot = TRUE, col1 = "black", col2 = "red")
```

Arguments

- **roc1** the first nproc object.
- **roc2** the second nproc object.
- **plot** whether to generate the two NP-ROC plots and mark the area of significant difference. Default = 'TRUE'.
- **col1** the color of the region where roc1 is significantly better than roc2. Default = 'black'.
- **col2** the color of the region where roc2 is significantly better than roc1. Default = 'red'.

Value
A list with the following items.

alpha1 the alpha values where roc1 is significantly better than roc2.
alpha2 the alpha values where roc2 is significantly better than roc1.
alpha3 the alpha values where roc1 and roc2 are not significantly different.

References
Xin Tong, Yang Feng, and Jingyi Jessica Li (2018), Neyman-Pearson (NP) classification algorithms and NP receiver operating characteristic (NP-ROC), Science Advances, 4, 2, eaao1659.

See Also
npc, nproc, predict.npc and plot.nproc

Examples
n = 1000
set.seed(1)
x1 = c(rnorm(n), rnorm(n) + 1)
x2 = c(rnorm(n), rnorm(n)*sqrt(6) + 1)
y = c(rep(0,n), rep(1,n))
fit1 = nproc(x1, y, method = 'lda')
fit2 = nproc(x2, y, method = 'lda')
v = compare(fit1, fit2)
legend('topleft',legend=c('x1','x2'),col=1:2,lty=c(1,1))

lines.nproc
Add NP-ROC curves to the current plot object.

Description
Add NP-ROC curves to the current plot object.

Usage
S3 method for class 'nproc'
lines(x, ...)

Arguments
x fitted NP-ROC object using nproc.
... additional arguments.
npc

See Also
npc, nproc and plot.nproc.

Examples

```r
n = 1000
x = matrix(rnorm(n*2), n, 2)
c = 1 + 3 * x[,1]
y = rbinom(n, 1, 1/(1 + exp(-c)))
fit = nproc(x, y, method = 'nb')
plot(fit)
fit2 = nproc(x, y, method = 'lda')
lines(fit2, col = 2)
```

npc

Construct a Neyman-Pearson Classifier from a sample of class 0 and class 1.

Description

Given a type I error upper bound alpha and a violation upper bound delta, npc calculates the Neyman-Pearson Classifier which controls the type I error under alpha with probability at least 1-delta.

Usage

```r
npc(x = NULL, y, method = c("logistic", "penlog", "svm", "randomforest", "lda", "slda", "nb", "nnb", "ada", "tree"), alpha = 0.05, delta = 0.05, split = 1, split.ratio = 0.5, n.cores = 1, band = FALSE, nfolds = 10, randSeed = 0, warning = TRUE, ...)
```

Arguments

- **x**: n * p observation matrix. n observations, p covariates.
- **y**: n 0/1 observatons.
- **method**: base classification method.
 - logistic: Logistic regression. `glm` function with family = 'binomial'
 - penlog: Penalized logistic regression with LASSO penalty. `glmnet` in `glmnet` package
 - svm: Support Vector Machines. `svm` in `e1071` package
 - randomforest: Random Forest. `randomForest` in `randomForest` package
 - lda: Linear Discriminant Analysis. `lda` in `MASS` package
 - slda: Sparse Linear Discriminant Analysis with LASSO penalty.
 - nb: Naive Bayes. `naiveBayes` in `e1071` package
 - nnb: Nonparametric Naive Bayes. `naive_bayes` in `naivebayes` package

Description

Given a type I error upper bound alpha and a violation upper bound delta, npc calculates the Neyman-Pearson Classifier which controls the type I error under alpha with probability at least 1-delta.

Usage

```r
npc(x = NULL, y, method = c("logistic", "penlog", "svm", "randomforest", "lda", "slda", "nb", "nnb", "ada", "tree"), alpha = 0.05, delta = 0.05, split = 1, split.ratio = 0.5, n.cores = 1, band = FALSE, nfolds = 10, randSeed = 0, warning = TRUE, ...)
```

Arguments

- **x**: n * p observation matrix. n observations, p covariates.
- **y**: n 0/1 observatons.
- **method**: base classification method.
 - logistic: Logistic regression. `glm` function with family = 'binomial'
 - penlog: Penalized logistic regression with LASSO penalty. `glmnet` in `glmnet` package
 - svm: Support Vector Machines. `svm` in `e1071` package
 - randomforest: Random Forest. `randomForest` in `randomForest` package
 - lda: Linear Discriminant Analysis. `lda` in `MASS` package
 - slda: Sparse Linear Discriminant Analysis with LASSO penalty.
 - nb: Naive Bayes. `naiveBayes` in `e1071` package
 - nnb: Nonparametric Naive Bayes. `naive_bayes` in `naivebayes` package
- ada: Ada-Boost. \texttt{ada} in \texttt{ada} package

\begin{itemize}
 \item \texttt{alpha}: the desirable upper bound on type I error. Default = 0.05.
 \item \texttt{delta}: the violation rate of the type I error. Default = 0.05.
 \item \texttt{split}: the number of splits for the class 0 sample. Default = 1. For ensemble version, choose \texttt{split} > 1.
 \item \texttt{split.ratio}: the ratio of splits used for the class 0 sample to train the base classifier. The rest are used to estimate the threshold. Can also be set to be "adaptive", which will be determined using a data-driven method implemented in \texttt{find.optim.split}. Default = 0.5.
 \item \texttt{n.cores}: number of cores used for parallel computing. Default = 1. WARNING: windows machine is not supported.
 \item \texttt{band}: whether to generate both lower and upper bounds of type II error. Default = \texttt{FALSE}.
 \item \texttt{nfolds}: number of folds for performing adaptive split ratio selection. Default = 10.
 \item \texttt{randSeed}: the random seed used in the algorithm.
 \item \texttt{warning}: whether to show various warnings in the program. Default = \texttt{TRUE}.
\end{itemize}

\textbf{Value}

An object with S3 class \texttt{npc}.

\begin{itemize}
 \item \texttt{fits}: a list of length \texttt{max(1,split)}, represents the fit during each split.
 \item \texttt{method}: the base classification method.
 \item \texttt{split}: the number of splits used.
\end{itemize}

\textbf{References}

\textbf{See Also}

\texttt{nproc} and \texttt{predict.npc}

\textbf{Examples}

\begin{verbatim}
set.seed(1)
n = 1000
x = matrix(rnorm(n*2),n,2)
c = 1+3*x[,1]
y = rbinom(n,1,1/(1+exp(-c)))
xtest = matrix(rnorm(n*2),n,2)
ctest = 1+3*xtest[,1]
ytest = rbinom(n,1,1/(1+exp(-ctest)))

Use lda classifier and the default type I error control with alpha=0.05, delta=0.05
\end{verbatim}
fit = npc(x, y, method = 'lda')
pred = predict(fit,xtest)
fit.score = predict(fit,x)
accuracy = mean(pred$pred.label==ytest)
cat('Overall Accuracy: ', accuracy,'\n')
ind0 = which(ytest==0)
typeI = mean(pred$pred.label[ind0]!=ytest[ind0]) #type I error on test set
cat('Type I error: ', typeI, '\n')

Not run:
Ensembled lda classifier with split = 11, alpha=0.05, delta=0.05
fit = npc(x, y, method = 'lda', split = 11)
pred = predict(fit,xtest)
accuracy = mean(pred$pred.label==ytest)
cat('Overall Accuracy: ', accuracy,'\n')
ind0 = which(ytest==0)
typeI = mean(pred$pred.label[ind0]!=ytest[ind0]) #type I error on test set
cat('Type I error: ', typeI, '\n')

Now, change the method to logistic regression and change alpha to 0.1
fit = npc(x, y, method = 'logistic', alpha = 0.1)
pred = predict(fit,xtest)
accuracy = mean(pred$pred.label==ytest)
cat('Overall Accuracy: ', accuracy,'\n')
ind0 = which(ytest==0)
typeI = mean(pred$pred.label[ind0]!=ytest[ind0]) #type I error on test set
cat('Type I error: ', typeI, '\n')

Now, change the method to adaboost
fit = npc(x, y, method = 'ada', alpha = 0.1)
pred = predict(fit,xtest)
accuracy = mean(pred$pred.label==ytest)
cat('Overall Accuracy: ', accuracy,'\n')
ind0 = which(ytest==0)
typeI = mean(pred$pred.label[ind0]!=ytest[ind0]) #type I error on test set
cat('Type I error: ', typeI, '\n')

Now, try the adaptive splitting ratio
fit = npc(x, y, method = 'ada', alpha = 0.1, split.ratio = 'adaptive')
pred = predict(fit,xtest)
accuracy = mean(pred$pred.label==ytest)
cat('Overall Accuracy: ', accuracy,'\n')
ind0 = which(ytest==0)
typeI = mean(pred$pred.label[ind0]!=ytest[ind0]) #type I error on test set
cat('Type I error: ', typeI, '\n')
cat('Splitting ratio: ', fit$split.ratio)

End(Not run)
Description

nproc calculates the Neyman-Pearson Receiver Operating Characteristics band for a given sequence of type I error values.

Usage

```r
nproc(x = NULL, y, method = c("logistic", "penlog", "svm", "randomforest", "lda", "nb", "nnb", "ada", "tree"), delta = 0.05, split = 1, split.ratio = 0.5, n.cores = 1, randSeed = 0, ...)
```

Arguments

- **x**: n * p observation matrix. n observations, p covariates.
- **y**: n 0/1 observations.
- **method**: base classification method(s).
 - logistic: Logistic regression. `glm` function with family = `binomial`
 - penlog: Penalized logistic regression with LASSO penalty. `glmnet` in `glmnet` package
 - svm: Support Vector Machines. `svm` in `e1071` package
 - randomforest: Random Forest. `randomForest` in `randomForest` package
 - lda: Linear Discriminant Analysis. `lda` in `MASS` package
 - nb: Naive Bayes. `naiveBayes` in `e1071` package
 - nnb: Nonparametric Naive Bayes. `naive_bayes` in `naivebayes` package
 - ada: Ada-Boost. `ada` in `ada` package
- **delta**: the violation rate of the type I error. Default = 0.05.
- **split**: the number of splits for the class 0 sample. Default = 1. For ensemble version, choose split > 1.
- **split.ratio**: the ratio of splits used for the class 0 sample to train the classifier. Default = 0.5.
- **n.cores**: number of cores used for parallel computing. Default = 1.
- **randSeed**: the random seed used in the algorithm.
- **...**: additional arguments.

Value

An object with S3 class `nproc`.

- **typeI.u**: sequence of upper bound of type I error.
- **typeII.l**: sequence of lower bound of type II error.
- **typeII.u**: sequence of upper bound of type II error.
- **auc.l**: the auc value of the lower NP-ROC curve.
- **auc.u**: the auc value of the upper NP-ROC curve.
- **method**: the base classification method implemented.
- **delta**: the violation rate.
References

Xin Tong, Yang Feng, and Jingyi Jessica Li (2018), Neyman-Pearson (NP) classification algorithms and NP receiver operating characteristic (NP-ROC), Science Advances, 4, 2, eaao1659.

See Also

npc

Examples

n = 200
x = matrix(rnorm(n*2),n,2)
c = 1 - 3*x[,1]
y = rbinom(n,1,1/(1+exp(-c)))
#fit = nproc(x, y, method = 'svm')
fit2 = nproc(x, y, method = 'penlog')
#Plot the nproc curve
plot(fit2)

Not run:
fit3 = nproc(x, y, method = 'penlog', n.cores = 2)
#In practice, replace 2 by the number of cores available 'detectCores()'
fit4 = nproc(x, y, method = 'penlog', n.cores = detectCores())

#Confidence nproc curves
fit6 = nproc(x, y, method = 'lda')
plot(fit6)
nproc ensembled version
fit7 = nproc(x, y, method = 'lda', split = 11)
plot(fit7)

End(Not run)

plot.nproc

Plot the nproc band(s).

Description

Plot the nproc band(s).

Usage

S3 method for class 'nproc'
plot(x, ...)

Arguments

x fitted nproc object using nproc.
...
 additional arguments.
predict.npc

See Also

npc, nproc

Examples

n = 1000
x = matrix(rnorm(n*2),n,2)
c = 1+3*x[,1]
y = rbinom(n,1,1/(1+exp(-c)))
fit = nproc(x, y, method = 'lda')
plot(fit)
Examples

\[
\begin{align*}
 n &= 1000 \\
 x &= \text{matrix}(\text{rnorm(n*2)},n,2) \\
 c &= 1+3\times x[,1] \\
 y &= \text{rbinom}(n,1,1/(1+\exp(-c))) \\
 xtest &= \text{matrix}(\text{rnorm(n*2)},n,2) \\
 ctest &= 1+3\times xtest[,1] \\
 ytest &= \text{rbinom}(n,1,1/(1+\exp(-ctest)))
\end{align*}
\]

Not run:

Use logistic classifier and the default type I error control with alpha=0.05

fit = npc(x, y, method = 'logistic')

pred = predict(fit,xtest)

fit.score = predict(fit,x)

accuracy = mean(pred$pred.label==ytest)

cat('Overall Accuracy: ', accuracy, 'n')

ind0 = which(ytest==0)

ind1 = which(ytest==1)

typeI = mean(pred$pred.label[ind0]!=ytest[ind0]) #type I error on test set

cat('Type I error: ', typeI, 'n')

typeII = mean(pred$pred.label[ind1]!=ytest[ind1]) #type II error on test set

cat('Type II error: ', typeII, 'n')

End(Not run)

print.npc

Print the npc object.

Description

Print the npc object.

Usage

```r
## S3 method for class 'npc'
print(x, ...)
```

Arguments

- `x` fitted npc object using npc.
- `...` additional arguments.

See Also

- `npc`, `nproc`
print.nproc

Examples

n = 1000
x = matrix(rnorm(n*2),n,2)
c = 1+3*x[,1]
y = rbinom(n,1,1/(1+exp(-c)))
fit = nproc(x, y, method = 'lda')
print(fit)

print.nproc

Print the nproc object.

Description

Print the nproc object.

Usage

S3 method for class 'nproc'
print(x, ...)

Arguments

x fitted nproc object using nproc.
...
additional arguments.

See Also

nproc, nproc

Examples

n = 1000
x = matrix(rnorm(n*2),n,2)
c = 1+3*x[,1]
y = rbinom(n,1,1/(1+exp(-c)))
fit = nproc(x, y, method = 'lda')
print(fit)
rocCV

Calculate the Receiver Operating Characteristics with Cross-validation or Subsampling

Description

rocCV calculates the receiver operating characteristic with cross-validation

Usage

rocCV(x = NULL, y, method = c("logistic", "penlog", "svm", "randomforest", "lda", "nb", "ada", "tree"), metric = "CV", n.folds = 5, train.frac = 0.5, n.cores = 1, randSeed = 0, ...)

Arguments

- **x**: n * p observation matrix. n observations, p covariates.
- **y**: n 0/1 observations.
- **method**: classification method(s).
 - logistic: Logistic regression. `glm` function with family = 'binomial'
 - penlog: Penalized logistic regression with LASSO penalty. `glmnet` in `glmnet` package
 - svm: Support Vector Machines. `svm` in `e1071` package
 - randomforest: Random Forest. `randomForest` in `randomForest` package
 - Linear Discriminant Analysis. lda: `lda` in MASS package
 - nb: Naive Bayes. `naiveBayes` in `e1071` package
 - ada: Ada-Boost. `ada` in `ada` package
- **metric**: metric used for averaging performance. Includes 'CV' and 'SS' as options. Default = 'CV'.
- **n.folds**: number of folds used for cross-validation or the number of splits in the subsampling. Default = 5.
- **train.frac**: fraction of training data in the subsampling process. Default = 0.5.
- **n.cores**: number of cores used for parallel computing. Default = 1.
- **randSeed**: the random seed used in the algorithm. Default = 0.
- **...**: additional arguments.

Value

A list.

- **fpr**: sequence of false positive rate.
- **tpr**: sequence of true positive rate.
References

Xin Tong, Yang Feng, and Jingyi Jessica Li (2018), Neyman-Pearson (NP) classification algorithms and NP receiver operating characteristic (NP-ROC), *Science Advances*, 4, 2, eaao1659.

See Also

nproc

Examples

```r
n = 200
x = matrix(rnorm(n*2),n,2)
c = 1 - 3*x[,1]
y = rbinom(n,1,1/(1+exp(-c)))
fit = rocCV(x, y, method = 'svm')
fit2 = rocCV(x, y, method = 'penlog')
fit3 = rocCV(x, y, method = 'penlog', metric = 'SS')
```
Index

ada, 5, 7, 12

compare, 2

glm, 4, 7, 12
glmnet, 4, 7, 12

lda, 4, 7, 12
lines.nproc, 3

naive_bayes, 4, 7
naiveBayes, 4, 7, 12
npc, 3, 4, 4, 8–11
nproc, 3–5, 6, 9–11, 13

plot.nproc, 3, 4, 8
predict.npc, 3, 5, 9
print.npc, 10
print.nproc, 11

randomForest, 4, 7, 12
rocCV, 12

svm, 4, 7, 12