Package ‘npsr’

May 18, 2018

Version 0.1.1
Type Package
Title Validate Instrumental Variables using NPS
Maintainer Fabian Sellmann <fa.sllmn@gmail.com>

Description An R implementation of the Necessary and Probably Sufficient (NPS) test for finding valid instrumental variables, as suggested by Amit Sharma (2016, Working Paper) <http://amitsharma.in/pubs/necessary_probably_sufficient_iv_test.pdf>. The NPS test, compares the likelihood that a given set of observational data of the three variables Z, X and Y is generated by a valid instrumental variable model (Z -> X -> Y) to the likelihood that the data is generated by an invalid IV model.

License GPL-2
Encoding UTF-8
LazyData true

Imports infotheo, MASS, gmp

RoxygenNote 6.0.1

NeedsCompilation no

Author Fabian Sellmann [aut, cre],
Bojan Nicolic [ctb, cph],
Jörn Grahl [ths]

Repository CRAN

Date/Publication 2018-05-18 14:33:18 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_air</td>
<td>2</td>
</tr>
<tr>
<td>M_air_excl</td>
<td>2</td>
</tr>
<tr>
<td>M_excl</td>
<td>3</td>
</tr>
<tr>
<td>nps.invalid</td>
<td>3</td>
</tr>
<tr>
<td>nps.necessary</td>
<td>4</td>
</tr>
</tbody>
</table>
M_air_excl

nps.test ... 4
nps.valid ... 5
product_fraction ... 5

Index 6

M_air M_air_excl

Description
Calculates the marginal likelihood M_air

Usage
M_air(Q, l, m, n)

Arguments
Q Histogram of dataset (l*m*n vector)
l |Z|
m |X|
n |Y|

Value
The probability that the observations were created from a model which violates the as-if-randomness criterion but not the exclusion criterion

M_air_excl m_air

Description
Calculates the marginal likelihood M_air_excl

Usage
M_air_excl(Q, l, m, n)

Arguments
Q Histogram of dataset (l*m*n vector)
l |Z|
m |X|
n |Y|
Value

The probability that the observations were created from a model which violates the as-if-randomness criterion but not the exclusion criterion

\[M_{\text{excl}} \]

Description

Calculates the marginal likelihood of \(M_{\text{excl}} \)

Usage

\[M_{\text{excl}}(Q, l, m, n, N = \text{sum}(Q), S = \text{sum}(Q)) \]

Arguments

- **Q**: Histogram of dataset (\(l \times m \times n \) vector)
- **l**: \(|Z|\)
- **m**: \(|X|\)
- **n**: \(|Y|\)
- **N**: Number of Repetitions for Nested Sampling
- **S**: Number of Starting Points for Nested Sampling

Value

The probability that the observations were created from a model which violates the exclusion criterion but not the as-if-randomness criterion

\[\text{nps.invalid} \]

Description

Calculates the ML_Invalid

Usage

\[\text{nps.invalid}(Q, l, m, n, N = \text{sum}(Q), S = \text{sum}(Q)) \]
Arguments

<table>
<thead>
<tr>
<th>Q</th>
<th>List of unique observations, should be lmn length</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Number of Repetitions for Nested Sampling</td>
</tr>
<tr>
<td>S</td>
<td>Number of Starting Points for Nested Sampling</td>
</tr>
</tbody>
</table>

Description

Tests the instrumental constraints on the given dataframe using entropy

Usage

```r
nps.necessary(df)
```

Arguments

- **df**: Dataframe with z, x and y

Value

FALSE if the data violates the constraints otherwise TRUE

nps.test

Main function of the package.

Description

Main function of the package.

Usage

```r
nps.test(df, l, m, n, N, S)
```

Arguments

- **df**: Dataframe with columns z,x and y
- **l**: Number of bins used to discretize Z
- **m**: Number of bins used to discretize X
- **n**: Number of bins used to discretize Y
- **N**: Number of Repetitions for Nested Sampling
- **S**: Number of Starting Points for Nested Sampling
nps.valid

Value

result object of the test including the fields: nt, valid, invalid, ratio

Examples

```r
nps.test(data.frame(x = runif(3), y = runif(3), z = runif(3)), 2, 2, 2, 3, 3)
```

Description

Calculates M_Valid

Usage

```r
nps.valid(Q, l, m, n, N = sum(Q), S = sum(Q))
```

Arguments

- **Q**
 - Histogram of dataset (|Z|*|X|*|Y| vector)
- **l**
 - |Z|
- **m**
 - |X|
- **n**
 - |Y|
- **N**
 - Number of Repetitions for Nested Sampling
- **S**
 - Number of Starting Points for Nested Sampling

product_fraction

Reduces out factors of fraction of products and calculates the fraction Analog to prod(num)/prod(den)

Description

Reduces out factors of fraction of products and calculates the fraction Analog to prod(num)/prod(den)

Usage

```r
product_fraction(num, den)
```

Arguments

- **num**
 - vector of factors of the numerator
- **den**
 - vector of factors of the denominator
Index

M_air, 2
M_air_excl, 2
M_excl, 3

nps.invalid, 3
nps.necessary, 4
nps.test, 4
nps.valid, 5

product_fraction, 5