Package ‘npsurv’

May 6, 2020

Title Nonparametric Survival Analysis
Version 0.4-0.1
Date 2017-10-13
Author Yong Wang
Maintainer ORPHANED
Depends lsei
Imports methods
Description Contains functions for non-parametric survival analysis of
 exact and interval-censored observations.
License GPL (>= 2)
URL https://www.stat.auckland.ac.nz/~yongwang
NeedsCompilation no
Repository CRAN
Date/Publication 2020-05-06 12:01:11 UTC
X-CRAN-Original-Maintainer Yong Wang <yongwang@auckland.ac.nz>
X-CRAN-Comment Orphaned on 2020-05-06 as requires ‘lsei’
 which is orphaned and by the same non-maintainer.

R topics documented:

 acfail ... 2
 ap .. 3
 cancer ... 4
 Deltamatrix ... 5
 gastric ... 6
 hazuh .. 7
 icendata ... 8
 idf .. 9
 km ... 11
 leukemia ...12
 logLikuh ...13
acfail

Air Conditioner Failure Data

Description

Contains the number of operating hours between successive failure times of the air conditioning systems in Boeing airplanes.

Usage

acfail

Format

A numeric vector storing the failure times.

Source

Proschan (1963)

References

See Also

Uhaz.

Examples

data(acfail)
\r = Uhaz(acfail, deg=2)
plot(r$h, fn="h")
plot(r$h, fn="d")
Description

Contains the survival times in years from the time of diagnosis for 2418 male patients with angina pectoris. Some patients are lost to follow-up, hence giving right-censored observations. Each integer-valued survival time is treated as being censored within a one-year interval.

Usage

ap

Format

A data frame with 30 observations and 3 variables:

- L: left-end point of an interval-censored retraction time;
- R: right-end point of an interval-censored retraction time;
- count: number of patients in the interval.

Source

Lee and Wang (2003), page 92.

References

See Also

npsurv.

Examples

```r
data(ap)
  r = UHaz(ap, deg=2)  # smooth U-shaped hazard
  plot(r$h, fn="h")  # hazard
  plot(r$h, fn="d")  # density

  # NPMLE and shape-restricted estimation
  plot(npsurv(ap), fn="s")  # survival under no shape restriction
  plot(r$h, fn="s", add=TRUE)  # survival with smooth U-shaped hazard
```
Breast Retraction Times after Breast Cancer Treatments.

Description

Contains the breast retraction times in months for 94 breast cancer patients who received either radiation therapy or radiation therapy plus adjuvant chemotherapy.

Usage

cancer

Format

A data frame with 94 observations and 3 variables:
L: left-end points of the interval-censored retraction times;
R: right-end points of the interval-censored retraction times;
group: either RT (radiation therapy) or RCT (radiation therapy plus adjuvant chemotherapy).

Source

References

See Also

npsurv.

Examples

data(cancer)
i = cancer$group == "RT"
plot(npsurv(cancer[i,1:2]), xlim=c(0,60))
plot(npsurv(cancer[!i,1:2]), add=TRUE, col="green3")
Deltamatrix

Description
Deltamatrix computes the Delta matrix, along with maximal intersection intervals, for a set of intervals.

Usage
Deltamatrix(LR)

Arguments
LR two-column matrix, each row of which stores an censoring interval of the form \((L_i, R_i]\). If \(L_i = R_i\), it is an exact observation.

Details
An intersection interval is a nonempty intersection of any combination of the given intervals, and a maximal intersection interval is an intersection interval that contains no other intersection interval.

The Delta matrix is a matrix of indicators (TRUE or FALSE). The rows correspond to the given interval-censored observations, and the columns the maximal intersection intervals. A TRUE value of the (i,j)-th element means that the i-th observation covers the j-th maximal intersection interval, and a FALSE value means the opposite.

Value
A list with components:

- left left endpoints of the maximal intersection intervals.
- right right endpoints of the maximal intersection intervals.
- Delta logical matrix, for the Delta matrix.

Author(s)
Yong Wang <yongwang@auckland.ac.nz>

References

See Also
icendata, idf.
Examples

\[(x = cbind(1:5,1:5*3-2))
Deltamatrix(x)\]

gastric \(\text{Gastric Cancer Survival Data}\)

Description

Contains the survival times of 45 gastrointestinal tumor patients who were treated with both chemotherapy and radiotherapy. It has both exact and right-censored observations.

Usage

gastric

Format

A data frame with 30 observations and 3 variables:

L: left-end points of the interval-censored survival times;
R: right-end points of the interval-censored survival times.

Source

Klein and Moeschberger (2003), page 224.

References

See Also

npsurv, Uhaz.

Examples

data(gastric)
plot(npsurv(gastric), col="grey") # survival function
plot(h0<-Uhaz(gastric, deg=0)$h, fn="s", add=TRUE, col="green3")
plot(h1<-Uhaz(gastric, deg=1)$h, fn="s", add=TRUE)
plot(h2<-Uhaz(gastric, deg=2)$h, fn="s", add=TRUE, col="red3")
plot(h0, fn="h", col="green3") # hazard function
plot(h1, fn="h", add=TRUE)
plot(h2, fn="h", add=TRUE, col="red3")
plot(h0, fn="d", col="green3") # density function
Description

Given an object of class uh:

- hazuh computes the hazard values;
- chazuh computes the cumulative hazard values;
- survuh computes the survival function values;
- denuh computes the density function values.

Usage

```r
hazuh(t, h)
chazuh(t, h)
survuh(t, h)
denuh(t, h)
```

Arguments

- `t` : time points at which the function is to be evaluated.
- `h` : an object of class uh.

Value

A numeric vector of the function values.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

References

See Also

Uhaz, icendata, plot.uh
icendata

Class of Interval-censored Data

Description

Function icendata creates an object of class 'icendata', which can be used to save both interval-censored and exact observations.

Function is.icendata simply checks if an object is of class 'icendata'.

Usage

icendata(x, w=1)
is.icendata(x)

Arguments

x vector or matrix.
w weights or multiplicities of the observations.

Details

If x is a vector, it contains only exact observations, with weights given in w.

If x is a two-column matrix, it contains interval-censored observations and stores their left and right endpoints in the first and second column, respectively. If the left and right endpoints are equal, then the observation is exact. Weights are provided by w.

If x is a three-column matrix, it contains interval-censored observations and stores their left and right endpoints in the first and second column, respectively. The weight of each observation is the third-column value multiplied by the corresponding weight value in w.

It is useful to turn interval-censored (and exact) observations into the format imposed by icendata so that they can be processed in a standardized format by other functions. Also, exact and interval-censored observations are stored separately in this format and can hence be dealt with more easily. Most functions in the package npsurv first ensure that the data has this format before processing.

Observations of zero weights are removed. Identical observations are aggregated.

An interval-valued observation is either \((L_i, R_i]\) if \(L_i < R_i\), or \([L_i, R_i]\) if \(L_i = R_i\).
Value

- **t** numeric vector, storing exact observations.
- **wt** numeric vector, storing the weights of exact observations.
- **o** two-column numeric matrix, storing interval-censored observations.
- **wo** numeric vector, storing the weights of interval-censored observations.
- **i1** logical vector, indicating whether exact observations are less than **upper**.
- **upper** the largest finite value of **t** and **o**.
- **u** numeric vector, containing 0 and all unique finite values in **t** and **o**.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

References

See Also

`npsurv`, `Uhaz`.

Examples

```r
data(ap)
(x = icendata(ap))
is.icendata(x)

data(gastric)
icendata(gastric)

data(leukemia)
i = leukemia[,"group"] == "6-MP"
icendata(leukemia[i,1:2])
```

idf

Interval Distribution Function

Description

`idf` creates an object of class `idf`. An `idf` object stores a distribution function defined on a set of intervals.
Usage

```
idf(left, right, p)
## S3 method for class 'idf'
print(x, ...)
```

Arguments

- `left, right`: left and right endpoints of intervals on which the distribution function is defined.
- `p`: probabilities allocated to the intervals. Probability values will be normalized inside the function.
- `x`: an object of class `idf`.
- `...`: other arguments for printing.

Details

When left and right endpoints are equal, the intervals are in fact points.

`print.idf` prints an object of class `idf` as a three-column matrix.

Value

- `left, right`: left and right endpoints of intervals on which the distribution function is defined.
- `p`: probabilities allocated to the intervals.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

See Also

- `icendata`, `Deltamatrix`, `npsurv`.

Examples

```
idf(1:5, 1:5*3-2, c(1,1,2,2,4))
npsurv(cbind(1:5, 1:5*3-2))$f  # NPMLE
```
km
Kaplan-Meier Estimation

Description

`km` computes the nonparametric maximum likelihood estimate (NPMLE) of a survival function for right-censored data.

Usage

```r
km(data, w=1)
```

Arguments

- `data`: vector or matrix, or an object of class icendata.
- `w`: weights/multiplicities of observations.

Details

For details about the arguments, see icendata.

Value

A list with components:

- `f`: NPMLE, an object of class idf.
- `ll`: log-likelihood value of the NPMLE `f`.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

References

See Also

icendata, npsurv.idf.
Examples

```r
x = cbind(1:5, c(1,Inf,3,4,Inf))
(f = km(x)$f)
plot(f)

data(leukemia)
i = leukemia[,"group"] == "Placebo"
plot(km(leukemia[i,1:2])$f, xlim=c(0,40), col="green3") # placebo
plot(km(leukemia[!i,1:2])$f, add=TRUE) # 6-MP
```

leukemia

Remission Times for Acute Leukemia Patients

Description

Contains remission times in weeks of 42 acute leukemia patients, who received either the treatment of drug 6-mercaptopurine or the placebo treatment. Each remission time is either exactly observed or right-censored.

Usage

```r
leukemia
```

Format

A data frame with 42 observations and 3 variables:

- L: left-end points of the interval-censored remission times in weeks;
- R: right-end points of the interval-censored remission times;
- group: either 6-MP (6-mercaptopurine) or Placebo.

Source

Freireich et al. (1963).

References

See Also

[npsurv](#)
Examples

data(leukemia)
i = leukemia[,"group"] == "Placebo"
plot(npsurv(leukemia[i,1:2]), xlim=c(0,40), col="green3") # placebo
plot(npsurv(leukemia[!i,1:2]), add=TRUE) # 6-MP

Treat each remission time as interval-censored:
x = leukemia
ii = x[,1] == x[,2]
x[ii,2] = x[ii,1] + 1
plot(npsurv(x[ii,1:2]), xlim=c(0,40), col="green3") # placebo
plot(npsurv(x[!i,1:2]), add=TRUE) # 6-MP

logLikuh

Computes the Log-likelihood Value of a U-shaped Hazard Function

Description

logLikuh returns the log-likelihood value of a U-shaped hazard function, given a data set.

Usage

logLikuh(h, data)

Arguments

- **h**: an object of class uh.
- **data**: numeric vector or matrix for exact or interval-censored observations, or an object of class icendata.

Value

Log-likelihood value evaluated at h, given data.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

References

See Also

Uhaz, icendata, plot.uh
Examples

data(ap)
(h0 = uh(.2, NULL, NULL, NULL, NULL, 15, 1)) # Uniform hazard
plot(h0, ylim=c(0,.3))
logLikuh(h0, ap)

r = UHaz(ap, deg=2)
r$ll
logLikuh(r$h, ap)
plot(r$h, add=TRUE, col="red3")

marijuana

Angina Pectoris Survival Data

Description

Contains the answers of 191 California high school students to the question: "When did you first use marijuana?". An answer can be an exact age, or "I have never used it", which gives rise to a right-censored observation, or "I have used it but cannot recall just when the first time was", which gives rise to a left-censored observation.

Usage

marijuana

Format

A data frame with 21 observations and 3 variables:
L: left-end point of an interval-censored time;
R: right-end point of an interval-censored time;
count: number of students in the interval.

Source

References

See Also

npsurv.
npsurv

Examples

```r
data(marijuana)
r = Uhaz(marijuana, deg=2)
plot(r$h, fn="h")
plot(r$h, fn="s")
```

npsurv Nonparametric Survival Function Estimation

Description

npsurv computes the nonparametric maximum likelihood estimate (NPMLE) of a survival function for general interval-censored data.

Usage

```r
npsurv(data, w=1, maxit=100, tol=1e-6, verb=0)
```

Arguments

- **data**: vector or matrix, or an object of class *icendata*.
- **w**: weights or multiplicities of the observations.
- **maxit**: maximum number of iterations.
- **tol**: tolerance level for stopping the algorithm. It is used as the threshold on the increase of the log-likelihood after each iteration.
- **verb**: verbosity level for printing intermediate results at each iteration.

Details

If *data* is a vector, it contains only exact observations, with weights given in *w*.

If *data* is a matrix with two columns, it contains interval-censored observations, with the two columns storing their left and right end-points, respectively. If the left and right end-points are equal, then the observation is exact. Weights are provided by *w*.

If *data* is a matrix with three columns, it contains interval-censored observations, with the first two columns storing their left and right end-points, respectively. The weight of each observation is the third-column value multiplied by the corresponding weight value in *w*.

The algorithm used for computing the NPMLE is either the constrained Newton method (CNM) (Wang, 2008), or the hierarchical constrained Newton method (HCNM) (Wang and Taylor, 2013) when there are a large number of maximal intersection intervals.

Inside the function, it examines if *data* has only right censoring, and if so, the Kaplan-Meier estimate is computed directly by function *km*.

An interval-valued observation is either \((L_i, R_i]\) if \(L_i < R_i\), or \([L_i, R_i]\) if \(L_i = R_i\).
Value

An object of class npsurv, which is a list with components:

- **f** NPMLE, an object of class idf.
- **upper** largest finite value in the data.
- **convergence** = TRUE, converged successfully; = FALSE, maximum number of iterations reached.
- **method** method used internally, either cnm or hcnm.
- **ll** log-likelihood value of the NPMLE f.
- **maxgrad** maximum gradient value of the NPMLE f.
- **numiter** number of iterations used.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

References

See Also

icendata, Deltamatrix, idf, km.

Examples

```r
## all exact observations
data(acfail)
plot(npsurv(acfail))

## right-censored (and exact) observations
data(gastric)
plot(npsurv(gastric))

data(leukemia)
i = leukemia[,"group"] == "Placebo"
plot(npsurv(leukemia[i,1:2]), xlim=c(0,40), col="blue") # placebo
plot(npsurv(leukemia[!i,1:2]), add=TRUE, col="red") # 6-MP

## purely interval-censored data
data(ap)
plot(npsurv(ap))

data(cancer)
cancerRT = with(cancer, cancer[group=="RT",1:2])
```
```r
plot(npsurv(cancerRT), xlim=c(0,60)) # survival of RT
cancerRCT = with(cancer, cancer[group=="RCT",1:2])
plot(npsurv(cancerRCT), add=TRUE, col="green") # survival of RCT
```

nzmort
New Zealand Mortality in 2000

Description

Contains the number of deaths of Maori and Non-Maori people at each age in New Zealand in 2000.

Usage

`nzmort`

Format

A data frame with 210 observations and 3 variables:
- `age`: at which age the deaths occurred;
- `deaths`: number of people died at the age;
- `ethnic`: either Maori or Non-Maori.

Details

Data contains no age with zero death.

Source

`http://www.mortality.org/`

See Also

`Uhaz`.

Examples

```r
data(nzmort)
x = with(nzmort, nzmort[ethnic=="maori",][,1:2]) # Maori mortality
# x = with(nzmort, nzmort[ethnic!="maori",][,1:2]) # Non-Maori mortality

## As exact observations
# Plot hazard functions
h0 = Uhaz(x[,1]+0.5, x[,2], deg=0)$h # U-shaped hazard
plot(h0, fn="h", col="green3", pch=2)
h1 = Uhaz(x[,1]+0.5, x[,2], deg=1)$h # convex hazard
plot(h1, fn="h", add=TRUE, pch=1)
h2 = Uhaz(x[,1]+0.5, x[,2], deg=2)$h # smooth U-shaped hazard
plot(h2, fn="h", add=TRUE, col="red3")
```
Plot densities

```r
age = 0:max(x[,1])
count = integer(length(age))
count[x[,"age"]+1] = x[,"deaths"]
barplot(count/sum(count), space=0, col="lightgrey", ylab="Density")
axis(1, pos=NA, at=0:10*10)
plot(h0, fn="d", add=TRUE, col="green3", pch=2)
plot(h1, fn="d", add=TRUE, col="blue3", pch=1)
plot(h2, fn="d", add=TRUE, col="red3", pch=19)
```

As interval-censored observations

Plot hazard functions

```r
x2 = cbind(x[,1], x[,1]+1, x[,2])
h0 = Uhaz(x2, deg=0)$h  # U-shaped hazard
plot(h0, fn="h", col="green3", pch=2)
h1 = Uhaz(x2, deg=1)$h  # convex hazard
plot(h1, fn="h", add=TRUE, pch=1)
h2 = Uhaz(x2, deg=2)$h  # smooth U-shaped hazard
plot(h2, fn="h", add=TRUE, col="red3", pch=1)
```

Plot densities

```r
barplot(count/sum(count), space=0, col="lightgrey")
axis(1, pos=NA, at=0:10*10)
plot(h0, fn="d", add=TRUE, col="green3", pch=2)
plot(h1, fn="d", add=TRUE, col="blue3", pch=1)
plot(h2, fn="d", add=TRUE, col="red3", pch=19)
```

plot.npsurv

Plot Functions for Nonparametric Survival Estimation

Description

`plot.npsurv` and `plot.idf` are wrapper functions that call either `plotsurvidf` or `plotgradidf`. `plotsurvidf` plots the survival function of the nonparametric maximum likelihood estimate (NPMLE). `plotgradidf` plots the gradient function of the NPMLE.

Usage

```r
## S3 method for class 'npsurv'
plot(x, ...)
## S3 method for class 'idf'
plot(x, data, fn=c("surv","grad"), ...)
plotsurvidf(f, style=c("box","uniform","left","right","midpoint"),
  xlab="Time", ylab="Survival Probability", col="blue3", fill=0,
  add=FALSE, lty=1, lty.inf=2, xlim, ...)
plotgradidf(f, data, w=1, col1="red3", col2="blue3",
  xlab="Survival Time", ylab="Gradient", xlim, ...)
```
plot.npsurv

Arguments

- **x**: an object of class npsurv (i.e., an output of function npsurv) or an object of class idf.
- **fn**: either "surv" or "grad", to indicate plotting either the survival or the gradient function.
- **f**: an object of class idf.
- **style**: for how to plot the survival function on a "maximal intersection interval":
 - box, plot a rectangle, which shows the uncertainty of probability allocation within the interval;
 - uniform, treat it as a uniform distribution and hence the diagonal line of the rectangle is plotted;
 - left, plot only the left side of the rectangle;
 - right, plot only the right side of the rectangle;
 - midpoint, plot a vertical line at the midpoint of the interval.
- **xlab, ylab**: x- or y-axis label.
- **add**: = TRUE, adds the curve to the existing plot;
 = FALSE, plots the curve in a new one.
- **col**: color for all line segments, including box/rectangle borders.
- **fill**: color for filling a box/rectangle. By default, a lighter semi-transparent color is used.
- **lty**: line type
- **lty.inf**: line type for the rectangle that may extend to infinity.
- **data**: vector or matrix that stores observations, or an object of class icendata.
- **w**: additional weights/multiplicities of the observations stored in x.
- **col1**: color for drawing maximal intersection intervals allocated with positive probabilities.
- **col2**: color for drawing all gradients and the maximal intersection intervals allocated with zero probabilities.
- **xlim**: x-coordinate limit points.
- **...**: arguments for other graphical parameters (see par).

Details

- **plotsurvidf** by default chooses a less saturated color for fill than col.
- **plotgradidf** plots gradient values as vertical lines located as the left endpoints of the maximal intersection intervals. Each maximal intersection interval is plotted as a wider line on the horizontal zero-gradient line, with a circle to represent the open left endpoint of the interval and a solid point the closed right endpoint of the interval. The maximal intersection intervals allocated with positive probabilities have zero gradients, and hence no vertical lines are drawn for them.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>
References

See Also

`icendata, idf, npsurv`.

Examples

```r
data(ap)
plot(r<-npsurv(ap))       # survival function
plot(r$f, ap, fn="g")    # all gradients virtually zeros.

data(cancer)
cancerRT = with(cancer, cancer[group=="RT",1:2])
plot(rt<-npsurv(cancerRT), xlim=c(0,60)) # survival of RT
cancerRCT = with(cancer, cancer[group=="RCT",1:2])
plot(rct<-npsurv(cancerRCT), add=TRUE, col="green3") # survival of RCT
# as uniform distributions.
plot(rt, add=TRUE, style="uniform", col="blue3")
plot(rct, add=TRUE, style="uniform", col="green3")

## plot gradients; must supply data
plot(rt, cancerRT, fn="g") # for group RT
plotgradidf(rct$f, cancerRCT) # or, for group RCT
```

Description

`plot.Uhaz` and `plot.uh` are wrapper functions that can be used to invoke `plot.hazuh`, `plot.chazuh`, `plot.survuh`, `plot.denuh` or `plot.graduh`.

`plot.hazuh` plots a U-shaped hazard function.

`plot.chazuh` plots a cumulative hazard function that has a U-shaped hazard function.

`plot.survuh` plots the survival function that has a U-shaped hazard function.

`plot.denuh` plots the density function that has a U-shaped hazard function.

`plot.graduh` plots the gradient function that has a U-shaped hazard function.

Usage

```r
## S3 method for class 'Uhaz'
plot(x, ...) # S3 method for class 'uh'
```
plot(x, data, fn=c("haz","grad","surv","den","chaz"), ...)
lplothazuh(h, add=FALSE, col="darkblue", lty=1, xlim, ylim,
 lwd=2, pch=19, len=500, vert=FALSE, add.knots=TRUE,
 xlab="Time", ylab="Hazard", ...)
lplochazuh(h, add=FALSE, lwd=2, len=500, col="darkblue",
 pch=19, add.knots=TRUE, vert=FALSE, xlab, ylab, ...)
lplotdenuh(h, add=FALSE, lty=1, lwd=2, col="darkblue",
 add.knots=TRUE, pch=19, ylim, len=500, vert=FALSE, ...)
lplothsurvuh(h, add=FALSE, lty=1, lwd=2, len=500, vert=FALSE,
 col="darkblue", pch=19, add.knots=TRUE, xlab, ylab, ...)
lplograduh(h, data, w=1, len=500, xlab="Time", ylab="Gradient",
 col0="red3", col1="blue3", col2="green3", order=0, ...)

Arguments

x an object of class Uhaz, i.e., an output of function Uhaz, or an object of class uh..
h an object of class uh.
data vector or matrix that stores observations, or an object of class icendata.
w additional weights/multiplicities for the observations stored in data.
fn function to be plotted. It can be
 = haz, for hazard function;
 = chaz, for cumulative hazard function;
 = den, for density function;
 = surv, for survival function;
 = gradient, for gradient functions.
xlim, ylim numeric vectors of length 2, giving the x and y coordinates ranges.

xlab, ylab x- or y-axis labels.
add = TRUE, adds the curve to the existing plot;
 = FALSE, plots the curve in a new one.
col color used for plotting the curve.
lty line type for plotting the curve.
lwd line width for plotting the curve.
len number of points used to plot a curve.
add.knots logical, indicating if knots are also plotted.
pch point character/type for plotting knots.
vert logical, indicating if grey vertical lines are plotted to show the interval that separates the two discrete measures.

col0 color for gradient function 0, i.e., for the hazard-constant part, or alpha.

col1 color for gradient function 1, i.e., for the hazard-decreasing part.

col2 color for gradient function 1, i.e., for the hazard-increasing part.
order = 0, the gradient functions are plotted;
 = 1, their first derivatives are plotted;
 = 2, their second derivatives are plotted.

... arguments for other graphical parameters (see par).

Details

A U-shaped hazard function is given by

\[
h(t) = \alpha + \sum_{j=1}^{k} \nu_j \tau_j - t)^p_j + \sum_{j=1}^{m} \mu_j (t - \eta_j)^p_j,
\]

where \(\alpha, \nu_j, \mu_j \geq 0\), \(\tau_1 < \cdots < \tau_k \leq \eta_1 < \cdots < \eta_m\), and \(p \geq 0\).

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

References

See Also

icendata, uh, npsurv.

Examples

```r
## Angina Pectoris Survival Data
data(ap)
plot(r<-Uhaz(ap)) # hazard function for a convex hazard
plot(r, fn="c") # cumulative hazard function
plot(r, fn="s") # survival function
plot(r, fn="d") # density function
plot(r, ap, fn="g") # gradient functions
plot(r, ap, fn="g", order=1) # first derivatives of gradient functions
plot(r, ap, fn="g", order=2) # second derivatives of gradient functions

## New Zealand Mortality in 2000
data(nzmort)
i = nzmort$ethnic == "maori"
x = nzmort[i,1:2] # Maori mortality
h = Uhaz(x[,1]+0.5, x[,2], deg=2)$h # smooth U-shaped hazard
plot(h) # hazard function
plot(h, fn="d") # density function
plot(h, fn="s") # survival function

x2 = nzmort[!i,1:2] # Non-Maori mortality
h2 = Uhaz(x2[,1]+0.5, x2[,2], deg=2)$h
plot(h2, fn="s", add=TRUE, col="green3")
```
uh

U-shaped Hazard Function

Description

uh creates an object of class uh, which stores a U-shaped hazard function.

print.uh prints an object of class uh.

Usage

uh(alpha, tau, nu, eta, mu, upper=Inf, deg=1, collapse=TRUE)
S3 method for class 'uh'
print(x, ...)

Arguments

alpha a nonnegative value, for the constant coefficient.
tau vector of nonnegative real values, for left knots.
nu vector of nonnegative values, for masses associated with the left knots.
etra vector of nonnegative real values, for right knots.
mu vector of nonnegative real values, for masses associated with the right knots.
upper a positive value, at which point the hazard starts to become infinite.
deg nonnegative real number for spline degree (i.e., p in the formula below).
collapse logical, indicating if identical knots should be collapsed.
x an object of class uh.
... other arguments for printing.

Details

A U-shape hazard function, as generalized by Wang and Fani (2017), is given by

\[h(t) = \alpha + \sum_{j=1}^{k} \nu_j (\tau_j - t)_+^p + \sum_{j=1}^{m} \mu_j (t - \eta_j)_+^p, \]

where \(\alpha, \nu_j, \mu_j \geq 0, \tau_1 < \cdots < \tau_k \leq \eta_1 < \cdots < \eta_m, \) and \(p \geq 0 \) is the the spline degree which determines the smoothness of the U-shaped hazard. As \(p \) increases, the family of hazard functions becomes increasingly smoother, but at the same time, smaller. When \(p = 0 \), the hazard function is U-shaped, as studied by Bray et al. (1967). When \(p = 1 \), the hazard function is convex, as studied by Jankowski and Wellner (2009a,b).

print.uh prints an object of class uh. While alpha, upper and deg are printed as they are, tau and nu are printed as a two-column matrix, and so are eta and mu.
Uhaz

Value

uh returns an object of class uh. It is a list with components alpha, tau, nu, eta, mu, upper and deg, which store their corresponding values as described above.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>

References

See Also

Uhaz, icendata, plot.uh

Examples

(h0 = uh(3, 2, 3, 4, 5, 7, deg=0)) # deg = 0
plot(h0, ylim=c(0,20))

(h1 = uh(4, 2, 3, 5, 6, 7, deg=1)) # deg = 1
plot(h1, add=TRUE, col="green3")

(h2 = uh(1, 1:2, 3:4, 5:6, 7:8, 9, deg=2)) # deg = 2
plot(h2, add=TRUE, col="red3")

Description

Uhaz computes the nonparametric maximum likelihood estimate (NPMLE) of a U-shaped hazard function from exact or interval-censored data, or a mix of the two types of data.

Usage

Uhaz(data, w=1, deg=1, maxit=100, tol=1e-6, verb=0)
Arguments

- **data**: vector or matrix, or an object of class `icendata`.
- **w**: weights or multiplicities of the observations.
- **deg**: nonnegative real number for spline degree (i.e., p in the formula below).
- **maxit**: maximum number of iterations.
- **tol**: tolerance level for stopping the algorithm. It is used as the threshold on the increase of the log-likelihood after each iteration.
- **verb**: verbosity level for printing intermediate results in each iteration.

Details

If **data** is a vector, it contains only exact observations, with weights given in **w**.

If **data** is a matrix with two columns, it contains interval-censored observations, with the two columns storing their left and right end-points, respectively. If the left and right end-points are equal, then the observation is exact. Weights are provided by **w**.

If **data** is a matrix with three columns, it contains interval-censored observations, with the first two columns storing their left and right end-points, respectively. The weight of each observation is the third-column value multiplied by the corresponding weight value in **w**.

The algorithm used for the computing the NPMLE of a hazard function under the U-shape restriction is is proposed by Wang and Fani (2015). Such a hazard function is given by

$$ h(t) = \alpha + \sum_{j=1}^{k} \nu_j (\tau_j - t)^p_+ + \sum_{j=1}^{m} \mu_j (t - \eta_j)^p_+, $$

where $\alpha, \nu_j, \mu_j \geq 0$, $\tau_1 < \cdots < \tau_k \leq \eta_1 < \cdots < \eta_m$, and $p \geq 0$ is the the spline degree which determines the smoothness of the U-shaped hazard. As p increases, the family of hazard functions becomes increasingly smoother, but at the time, smaller. When $p = 0$, the hazard function is U-shaped, as studied by Bray et al. (1967). When $p = 1$, the hazard function is convex, as studied by Jankowski and Wellner (2009a,b).

Note that **deg** (i.e., p in the above mathematical display) can take on any nonnegative real value.

Value

An object of class `Uhaz`, which is a list with components:

- **convergence**: = TRUE, converged successfully; = FALSE, maximum number of iterations reached.
- **grad**: gradient values at the knots.
- **numiter**: number of iterations used.
- **ll**: log-likelihood value of the NPMLE h.
- **h**: NPMLE of the U-shaped hazard function, an object of class `uh`.

Author(s)

Yong Wang <yongwang@auckland.ac.nz>
References

See Also

icendata, nzmort.

Examples

Interval-censored observations

data(ap)
(r = Uhaz(ap, deg=0))
plot(r, ylim=c(0,.3), col=1)
for(i in 1:6) plot(Uhaz(ap, deg=i/2), add=TRUE, col=i+1)
legend(15, 0.01, paste0("deg = ", 0:6/2), lwd=2, col=1:7, xjust=1, yjust=0)

Exact observations

data(nzmort)
x = with(nzmort, nzmort[ethnic=="maori",][,1:2]) # Maori mortality
(h0 = Uhaz(x[,1]+0.5, x[,2], deg=0)$h) # U-shaped hazard
(h1 = Uhaz(x[,1]+0.5, x[,2], deg=1)$h) # convex hazard
(h2 <- Uhaz(x[,1]+0.5, x[,2], deg=2)$h) # smooth U-shaped hazard

plot(h0, pch=2) # plot hazard functions
plot(h1, add=TRUE, col="green3", pch=1)
plot(h2, add=TRUE, col="red3", pch=19)
age = 0:max(x[,1]) # plot densities
count = integer(length(age))
count[x,"age"]+1 = x[,"deaths"]
barplot(count/sum(count), space=0, col="lightgrey")
axis(1, pos=NA, at=0:10*10)
plot(h0, fn="d", add=TRUE, pch=2)
plot(h1, fn="d", add=TRUE, col="green3", pch=1)
plot(h2, fn="d", add=TRUE, col="red3", pch=19)

plot(h0, fn="s", pch=2) # plot survival functions
plot(h1, fn="s", add=TRUE, col="green3", pch=1)
plot(h2, fn="s", add=TRUE, col="red3", pch=19)

Exact and right-censored observations

data(gastric)
plot(h0<-Uhaz(gastric, deg=0)$h) # plot hazard functions
plot(h1<-Uhaz(gastric, deg=1)$h, add=TRUE, col="green3")
plot(h2<-Uhaz(gastric, deg=2)$h, add=TRUE, col="red3")

plot(npsurv(gastric), fn="s", col="grey") # plot survival functions
plot(h0, fn="s", add=TRUE)
plot(h1, fn="s", add=TRUE, col="green3")
plot(h2, fn="s", add=TRUE, col="red3")
Index

*Topic **datasets**
 - acfail, 2
 - ap, 3
 - cancer, 4
 - gastric, 6
 - leukemia, 12
 - marijuana, 14
 - nzmort, 17

*Topic **function**
 - Deltamatrix, 5
 - hazuh, 7
 - icendata, 8
 - idf, 9
 - km, 11
 - logLikuh, 13
 - npsurv, 3, 4, 6, 9–12, 14, 15, 20, 22
 - nzmort, 17, 26
 - plot.idf (plot.npsurv), 18
 - plot.npsurv, 18
 - plot.uh, 7, 13, 24
 - plot.uh (plot.Uhaz), 20
 - plot.Uhaz, 20
 - plotchazuh (plot.Uhaz), 20
 - plotdenuh (plot.Uhaz), 20
 - plotgradidf (plot.npsurv), 18
 - plotgraduh (plot.Uhaz), 20
 - plotlahuzuh (plot.Uhaz), 20
 - plotnpsurv (plot.npsurv), 18
 - plotsurv (plot.Uhaz), 20
 - print.idf (idf), 9
 - print.uh (uh), 23
 - survuh (hazuh), 7

 uh, 22, 23
 Uhaz, 2, 6, 7, 9, 13, 17, 24, 24

acfail, 2
ap, 3

cancer, 4
chazuh (hazuh), 7

Deltamatrix, 5, 10, 16
denuh (hazuh), 7

gastric, 6

hazuh, 7

icendata, 5, 7, 8, 10, 11, 13, 16, 20, 22, 24, 26
idf, 5, 9, 11, 16, 20
is.icendata (icendata), 8

km, 11, 16

leukemia, 12

logLikuh, 13

marijuana, 14

npsurv, 3, 4, 6, 9–12, 14, 15, 20, 22
nzmort, 17, 26

plot.idf (plot.npsurv), 18
plot.npsurv, 18
plot.uh, 7, 13, 24
plot.uh (plot.Uhaz), 20
plot.Uhaz, 20
plotchazuh (plot.Uhaz), 20
plotdenuh (plot.Uhaz), 20
plotgradidf (plot.npsurv), 18
plotgraduh (plot.Uhaz), 20
plotlahuzuh (plot.Uhaz), 20
plotnpsurv (plot.npsurv), 18
plotsurv (plot.Uhaz), 20
print.idf (idf), 9
print.uh (uh), 23

survuh (hazuh), 7

uh, 22, 23
Uhaz, 2, 6, 7, 9, 13, 17, 24, 24

km, 11, 16

leukemia, 12