Package ‘numbat’

February 23, 2024

Title Haplotype-Aware CNV Analysis from scRNA-Seq

URL https://github.com/kharchenkolab/numbat/,
https://kharchenkolab.github.io/numbat/

Version 1.4.0

Description A computational method that infers copy number variations (CNVs) in cancer scRNA-seq data and reconstructs the tumor phylogeny. 'numbat' integrates signals from gene expression, allelic ratio, and population haplotype structures to accurately infer allele-specific CNVs in single cells and reconstruct their lineage relationship. 'numbat' can be used to: 1. detect allele-specific copy number variations from single-cells; 2. differentiate tumor versus normal cells in the tumor microenvironment; 3. infer the clonal architecture and evolutionary history of profiled tumors. 'numbat' does not require tumor/normal-paired DNA or genotype data, but operates solely on the donor scRNA-data data (for example, 10x Cell Ranger output). Additional examples and documentations are available at <https://kharchenkolab.github.io/numbat/>. For details on the method please see Gao et al. Nature Biotechnology (2022) <doi:10.1038/s41587-022-01468-y>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 4.1.0), Matrix

biocViews

Imports ape, caTools, data.table, dendextend, dplyr, GenomicRanges, ggplot2, ggraph, ggtree, glue, hahmmr, igraph, IRanges, logger, magrittr, methods, optparse, parallel, parallelDist, patchwork, pryr, purrr, Rcpp, RhsclBLASctl, R.utils, scales, scistreer (>= 1.1.0), stats4, stringr, tibble, tidygraph, tidyr, vcfR, zoo

Suggests ggrastr, ggrepel, knitr, matrixStats, testthat (>= 3.0.0),

Config/testthat/edition 3

LinkingTo Rcpp, RcppArmadillo, roptim

NeedsCompilation yes

SystemRequirements GNU make
Author Teng Gao [cre, aut],
 Ruslan Soldatov [aut],
 Hirak Sarkar [aut],
 Evan Biederstedt [aut],
 Peter Kharchenko [aut]

Maintainer Teng Gao <tgaoteng@gmail.com>

RoxygenNote 7.2.3

Repository CRAN

Date/Publication 2024-02-23 08:00:02 UTC

R topics documented:

acen_hg19 ... 3
acen_hg38 ... 3
aggregate_counts ... 4
analyze_bulk .. 4
annotate_genes ... 6
annot_ref ... 6
bulk_example ... 7
chrom_sizes_hg19 ... 7
chrom_sizes_hg38 ... 7
cnv_heatmap ... 8
count_mat_example ... 8
count_mat_ref ... 9
detect_clonal_loh ... 9
df_allele_example ... 10
gaps_hg19 ... 10
gaps_hg38 ... 10
get_bulk ... 11
get_gtree ... 12
gexp_roll_example ... 12
gtf_hg19 ... 12
gtf_hg38 ... 13
gtf_mm10 .. 13
hc_example .. 14
joint_post_example ... 14
mut_graph_example ... 14
Numbat ... 15
phylogeny_example .. 17
plot_bulks .. 18
plot_consensus ... 18
plot_exp_roll .. 19
plot_mut_history ... 20
plot_phylo_heatmap ... 21
plot_psbulk .. 23
plot_sc_tree .. 24
acen_hg19

Description

centromere regions (hg19)

Usage

acen_hg19

Format

An object of class tbl_df (inherits from tbl, data.frame) with 22 rows and 3 columns.

acen_hg38

centromere regions (hg38)

Description

centromere regions (hg38)

Usage

acen_hg38

Format

An object of class tbl_df (inherits from tbl, data.frame) with 22 rows and 3 columns.
aggregate_counts

Utility function to make reference gene expression profiles

Description

Utility function to make reference gene expression profiles

Usage

aggregate_counts(count_mat, annot, normalized = TRUE, verbose = TRUE)

Arguments

count_mat
matrix/dgCMatrix Gene expression counts

annot
dataframe Cell annotation with columns "cell" and "group"

normalized
logical Whether to return normalized expression values

verbose
logical Verbosity

Value

matrix Reference gene expression levels

Examples

ref_custom = aggregate_counts(count_mat_ref, annot_ref, verbose = FALSE)

analyze_bulk

Call CNVs in a pseudobulk profile using the Numbat joint HMM

Description

Call CNVs in a pseudobulk profile using the Numbat joint HMM

Usage

analyze_bulk(
 bulk,
 t = 1e-05,
 gamma = 20,
 theta_min = 0.08,
 logphi_min = 0.25,
 nu = 1,
 min_genes = 10,
 exp_only = FALSE,
 allele_only = FALSE,
analyze_bulk

bal_cv = TRUE,
retest = TRUE,
find_diploid = TRUE,
diploid_chroms = NULL,
classify_allele = FALSE,
run_hmm = TRUE,
prior = NULL,
exclude_neu = TRUE,
phasing = TRUE,
verbose = TRUE
)

Arguments

bulk dataframe Pesudobulk profile
t numeric Transition probability
gamma numeric Dispersion parameter for the Beta-Binomial allele model
theta_min numeric Minimum imbalance threshold
logphi_min numeric Minimum log expression deviation threshold
nu numeric Phase switch rate
min_genes integer Minimum number of genes to call an event
exp_only logical Whether to run expression-only HMM
allele_only logical Whether to run allele-only HMM
bal_cv logical Whether to call balanced amplifications/deletions
retest logical Whether to retest CNVs after Viterbi decoding
find_diploid logical Whether to run diploid region identification routine
diploid_chroms character vector User-given chromosomes that are known to be in diploid state
classify_allele logical Whether to only classify allele (internal use only)
run_hmm logical Whether to run HMM (internal use only)
prior numeric vector Prior probabilities of states (internal use only)
exclude_neu logical Whether to exclude neutral segments from retesting (internal use only)
phasing logical Whether to use phasing information (internal use only)
verbose logical Verbosity

Value

a pseudobulk profile dataframe with called CNV information

Examples

bulk_analyzed = analyze_bulk(bulk_example, t = 1e-5, find_diploid = FALSE, retest = FALSE)
annotate_genes

Annotate genes on allele dataframe

Description

Annotate genes on allele dataframe

Usage

annotate_genes(df, gtf)

Arguments

- **df**: dataframe Allele count dataframe
- **gtf**: dataframe Gene gtf

Value

dataframe Allele dataframe with gene column

annot_ref

example reference cell annotation

Description

example reference cell annotation

Usage

annot_ref

Format

An object of class `data.frame` with 50 rows and 2 columns.
bulk_example

description
example pseudobulk dataframe

usage
bulk_example

format
An object of class tbl_df (inherits from tbl.data.frame) with 3935 rows and 83 columns.

chrom_sizes_hg19

description
chromosome sizes (hg19)

usage
chrom_sizes_hg19

format
An object of class data.table (inherits from data.frame) with 22 rows and 2 columns.

chrom_sizes_hg38

description
chromosome sizes (hg38)

usage
chrom_sizes_hg38

format
An object of class data.table (inherits from data.frame) with 22 rows and 2 columns.
cnv_heatmap

Plot CNV heatmap

Usage

```r
cnv_heatmap(
  segs,
  var = "group",
  label_group = TRUE,
  legend = TRUE,
  exclude_gap = TRUE,
  genome = "hg38"
)
```

Arguments

- `segs` dataframe Segments to plot. Need columns "seg_start", "seg_end", "cnv_state"
- `var` character Column to facet by
- `label_group` logical Label the groups
- `legend` logical Display the legend
- `exclude_gap` logical Whether to mark gap regions
- `genome` character Genome build, either 'hg38' or 'hg19'

Value

ggplot Heatmap of CNVs along the genome

Examples

```r
p = cnv_heatmap(segs_example)
```

count_mat_example

example gene expression count matrix

Description

example gene expression count matrix

Usage

```r
count_mat_example
```
count_mat_ref

Format

An object of class dgCMatrix with 1024 rows and 173 columns.

count_mat_ref example reference count matrix

Description

test reference count matrix

Usage

count_mat_ref

Format

An object of class dgCMatrix with 1000 rows and 50 columns.

detect_clonal_loh Call clonal LOH using SNP density. Recommended for cell lines or tumor samples with no normal cells.

Description

Call clonal LOH using SNP density. Recommended for cell lines or tumor samples with no normal cells.

Usage

detect_clonal_loh(bulk, t = 1e-05, snp_rate_loh = 5, min_depth = 0)

Arguments

bulk dataframe Pseudobulk profile

 t numeric Transition probability

 snp_rate_loh numeric The assumed SNP density in clonal LOH regions

 min_depth integer Minimum coverage to filter SNPs

Value

dataframe LOH segments

Examples

segs_loh = detect_clonal_loh(bulk_example)
df_allele_example example allele count dataframe

Description
example allele count dataframe

Usage
df_allele_example

Format
An object of class data.frame with 41167 rows and 11 columns.

gaps_hg19 genome gap regions (hg19)

Description
genome gap regions (hg19)

Usage
gaps_hg19

Format
An object of class data.table (inherits from data.frame) with 28 rows and 3 columns.

gaps_hg38 genome gap regions (hg38)

Description
genome gap regions (hg38)

Usage
gaps_hg38

Format
An object of class data.table (inherits from data.frame) with 30 rows and 3 columns.
get_bulk

Aggregate single-cell data into combined bulk expression and allele profile

Description

Aggregate single-cell data into combined bulk expression and allele profile

Usage

```r
get_bulk(
  count_mat,
  lambdas_ref,
  df_allele,
  gtf,
  subset = NULL,
  min_depth = 0,
  nu = 1,
  segs_loh = NULL,
  verbose = TRUE
)
```

Arguments

- `count_mat` : dgCMatrix Gene expression counts
- `lambdas_ref` : matrix Reference expression profiles
- `df_allele` : dataframe Single-cell allele counts
- `gtf` : dataframe Transcript gtf
- `subset` : vector Subset of cells to aggregate
- `min_depth` : integer Minimum coverage to filter SNPs
- `nu` : numeric Phase switch rate
- `segs_loh` : dataframe Segments with clonal LOH to be excluded
- `verbose` : logical Verbosity

Value

dataframe Pseudobulk gene expression and allele profile

Examples

```r
bulk_example = get_bulk(
  count_mat = count_mat_example,
  lambdas_ref = ref_hca,
  df_allele = df_allele_example,
  gtf = gtf_hg38)
```
get_gtree
Get a tidygraph tree with simplified mutational history.

Description

Specify either `max_cost` or `n_cut`. `max_cost` works similarly as `h` and `n_cut` works similarly as `k` in `stats::cutree`. The top-level normal diploid clone is always included.

Usage

```r
gget_gtree(tree, P, n_cut = 0, max_cost = 0)
```

Arguments

- `tree` phylo Single-cell phylogenetic tree
- `P` matrix Genotype probability matrix
- `n_cut` integer Number of cuts on the phylogeny to define subclones
- `max_cost` numeric Likelihood threshold to collapse internal branches

Value

- `tbl_graph` Phylogeny annotated with branch lengths and mutation events

gexp_roll_example
example smoothed gene expression dataframe

Description

example smoothed gene expression dataframe

Usage

```r
gexp_roll_example
```

Format

An object of class `data.frame` with 10 rows and 2000 columns.
gtf_hg19

<table>
<thead>
<tr>
<th>gtf_hg19</th>
<th>gene model (hg19)</th>
</tr>
</thead>
</table>

Description
gene model (hg19)

Usage
gtf_hg19

Format
An object of class `data.table` (inherits from `data.frame`) with 26841 rows and 5 columns.

gtf_hg38

<table>
<thead>
<tr>
<th>gtf_hg38</th>
<th>gene model (hg38)</th>
</tr>
</thead>
</table>

Description
gene model (hg38)

Usage
gtf_hg38

Format
An object of class `data.table` (inherits from `data.frame`) with 26807 rows and 5 columns.

gtf_mm10

<table>
<thead>
<tr>
<th>gtf_mm10</th>
<th>gene model (mm10)</th>
</tr>
</thead>
</table>

Description
gene model (mm10)

Usage
gtf_mm10

Format
An object of class `data.table` (inherits from `data.frame`) with 30336 rows and 5 columns.
<table>
<thead>
<tr>
<th>mut_graph_example</th>
<th>example mutation graph</th>
</tr>
</thead>
</table>

Description

example mutation graph

Usage

mut_graph_example

Format

An object of class igraph of length 5.

<table>
<thead>
<tr>
<th>joint_post_example</th>
<th>example joint single-cell cnv posterior dataframe</th>
</tr>
</thead>
</table>

Description

example joint single-cell cnv posterior dataframe

Usage

joint_post_example

Format

An object of class data.table (inherits from data.frame) with 3806 rows and 71 columns.

<table>
<thead>
<tr>
<th>hc_example</th>
<th>example hclust tree</th>
</tr>
</thead>
</table>

Description

example hclust tree

Usage

hc_example

Format

An object of class hclust of length 7.
Description

Used to allow users to plot results

Value

a new 'Numbat' object

Public fields

- label character Sample name
- gtf dataframe Transcript annotation
- joint_post dataframe Joint posterior
- exp_post dataframe Expression posterior
- allele_post dataframe Allele posetrior
- bulk_subtrees dataframe Bulk profiles of lineage subtrees
- bulk_clones dataframe Bulk profiles of clones
- segs_consensus dataframe Consensus segments
- tree_post list Tree posterior
- mut_graph igraph Mutation history graph
- gtree tbl_graph Single-cell phylogeny
- clone_post dataframe Clone posteriors
- gexp_roll_wide matrix Smoothed expression of single cells
- P matrix Genotype probability matrix
- treeML matrix Maximum likelihood tree as phylo object
- hc hclust Initial hierarchical clustering

Methods

Public methods:

- Numbat$new()
- Numbat$plot_phylo_heatmap()
- Numbat$plot_exp_roll()
- Numbat$plot_mut_history()
- Numbat$plot_sc_tree()
- Numbat$plot_consensus()
- Numbat$plot_clone_profile()
- Numbat$cutree()
Method $\texttt{new}()$: initialize Numbat class

Usage:
Numbat$new(out_dir, i = 2, gtf = gtf_hg38, verbose = TRUE)

Arguments:
out_dir character string Output directory
i integer Get results from which iteration (default=2)
gtf dataframe Transcript gtf (default=gtf_hg38)
verbose logical Whether to output verbose results (default=TRUE)

Returns: a new 'Numbat' object

Method $\texttt{plot_phylo_heatmap}()$: Plot the single-cell CNV calls in a heatmap and the corresponding phylogeny

Usage:
Numbat$plot_phylo_heatmap(...)

Arguments:
... additional parameters passed to plot_phylo_heatmap()

Method $\texttt{plot_exp_roll}()$: Plot window-smoothed expression profiles

Usage:
Numbat$plot_exp_roll(k = 3, n_sample = 300, ...)

Arguments:
k integer Number of clusters
n_sample integer Number of cells to subsample
... additional parameters passed to plot_exp_roll()

Method $\texttt{plot_mut_history}()$: Plot the mutation history of the tumor

Usage:
Numbat$plot_mut_history(...)

Arguments:
... additional parameters passed to plot_mut_history()

Method $\texttt{plot_sc_tree}()$: Plot the single cell phylogeny

Usage:
Numbat$plot_sc_tree(...)

Arguments:
... additional parameters passed to plot_sc_tree()

Method $\texttt{plot_consensus}()$: Plot consensus segments

Usage:
Numbat$plot_consensus(...)

Method $\texttt{clone}()$
Method plot_clone_profile(): Plot clone cnv profiles

Usage:

Numbat$plot_clone_profile(...)

Arguments:

... additional parameters passed to plot_clone_profile()

Method cutree(): Re-define subclones on the phylogeny.

Usage:

Numbat$cutree(max_cost = 0, n_cut = 0)

Arguments:

max_cost numeric Likelihood threshold to collapse internal branches
n_cut integer Number of cuts on the phylogeny to define subclones

Method clone(): The objects of this class are cloneable with this method.

Usage:

Numbat$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

phylogeny_example example single-cell phylogeny

Description

example single-cell phylogeny

Usage

phylogeny_example

Format

An object of class tbl_graph (inherits from igraph) of length 345.
plot_bulks

Plot a group of pseudobulk HMM profiles

Description
Plot a group of pseudobulk HMM profiles

Usage
plot_bulks(bulks, ..., ncol = 1, title = TRUE, title_size = 8)

Arguments
bulks dataframe Pseudobulk profiles annotated with "sample" column
... additional parameters passed to plot_psbulk()
ncol integer Number of columns
title logical Whether to add titles to individual plots
title_size numeric Size of titles

Value
a ggplot object

Examples
p = plot_bulks(bulk_example)

plot_consensus

Plot consensus CNVs

Description
Plot consensus CNVs

Usage
plot_consensus(segs)

Arguments
segs dataframe Consensus segments

Value
ggplot object
Examples

```r
p = plot_consensus(segs_example)
```

plot_exp_roll

Plot single-cell smoothed expression magnitude heatmap

Description

Plot single-cell smoothed expression magnitude heatmap

Usage

```r
plot_exp_roll(
  gexp_roll_wide,
  hc,
  k,
  gtf,
  lim = 0.8,
  n_sample = 300,
  reverse = TRUE,
  plot_tree = TRUE
)
```

Arguments

- `gexp_roll_wide`: matrix Cell x gene smoothed expression magnitudes
- `hc`: hclust Hierarchical clustering result
- `k`: integer Number of clusters
- `gtf`: dataframe Transcript GTF
- `lim`: numeric Limit for expression magnitudes
- `n_sample`: integer Number of cells to subsample
- `reverse`: logical Whether to reverse the cell order
- `plot_tree`: logical Whether to plot the dendrogram

Value

`ggplot` A single-cell heatmap of window-smoothed expression CNV signals

Examples

```r
p = plot_exp_roll(gexp_roll_example, gtf = gtf_hg38, hc = hc_example, k = 3)
```
plot_mut_history

Plot mutational history

Description

Plot mutational history

Usage

```r
plot_mut_history(
  G,
  clone_post = NULL,
  edge_label_size = 4,
  node_label_size = 6,
  node_size = 10,
  arrow_size = 2,
  show_clone_size = TRUE,
  show_distance = TRUE,
  legend = TRUE,
  edge_label = TRUE,
  node_label = TRUE,
  horizontal = TRUE,
  pal = NULL
)
```

Arguments

- `G` : igraph Mutation history graph
- `clone_post` : dataframe Clone assignment posteriors
- `edge_label_size` : numeric Size of edge label
- `node_label_size` : numeric Size of node label
- `node_size` : numeric Size of nodes
- `arrow_size` : numeric Size of arrows
- `show_clone_size` : logical Whether to show clone size
- `show_distance` : logical Whether to show evolutionary distance between clones
- `legend` : logical Whether to show legend
- `edge_label` : logical Whether to label edges
- `node_label` : logical Whether to label nodes
- `horizontal` : logical Whether to use horizontal layout
- `pal` : named vector Node colors
plot_phylo_heatmap

Value

ggplot object

Examples

p = plot_mut_history(mut_graph_example)

plot_phylo_heatmap Plot single-cell CNV calls along with the clonal phylogeny

Description

Plot single-cell CNV calls along with the clonal phylogeny

Usage

plot_phylo_heatmap(
 gtree,
 joint_post,
 segs_consensus,
 clone_post = NULL,
 p_min = 0.9,
 annot = NULL,
 pal_annot = NULL,
 annot_title = "Annotation",
 annot_scale = NULL,
 clone_dict = NULL,
 clone_bar = TRUE,
 clone_stack = TRUE,
 pal_clone = NULL,
 clone_title = "Genotype",
 clone_legend = TRUE,
 line_width = 0.1,
 tree_height = 1,
 branch_width = 0.2,
 tip_length = 0.2,
 annot_bar_width = 0.25,
 clone_bar_width = 0.25,
 bar_label_size = 7,
 tvn_line = TRUE,
 clone_line = FALSE,
 exclude_gap = FALSE,
 root_edge = TRUE,
 raster = FALSE,
 show_phylo = TRUE
)
Arguments

- **gtree**: tbl_graph The single-cell phylogeny
- **joint_post**: dataframe Joint single cell CNV posteriors
- **segs_consensus**: dataframe Consensus segment dataframe
- **clone_post**: dataframe Clone assignment posteriors
- **p_min**: numeric Probability threshold to display CNV calls
- **annot**: dataframe Cell annotations, dataframe with ‘cell’ and additional annotation columns
- **pal_annot**: named vector Colors for cell annotations
- **annot_title**: character Legend title for the annotation bar
- **annot_scale**: ggplot scale Color scale for the annotation bar
- **clone_dict**: named vector Clone annotations, mapping from cell name to clones
- **clone_bar**: logical Whether to display clone bar plot
- **clone_stack**: character Whether to plot clone assignment probabilities as stacked bar
- **pal_clone**: named vector Clone colors
- **clone_title**: character Legend title for the clone bar
- **clone_legend**: logical Whether to display the clone legend
- **line_width**: numeric Line width for CNV heatmap
- **tree_height**: numeric Relative height of the phylogeny plot
- **branch_width**: numeric Line width in the phylogeny
- **tip_length**: numeric Length of tips in the phylogeny
- **annot_bar_width**: numeric Width of annotation bar
- **clone_bar_width**: numeric Width of clone genotype bar
- **bar_label_size**: numeric Size of sidebar text labels
- **tvn_line**: logical Whether to draw line separating tumor and normal cells
- **clone_line**: logical Whether to display borders for clones in the heatmap
- **exclude_gap**: logical Whether to mark gap regions
- **root_edge**: logical Whether to plot root edge
- **raster**: logical Whether to raster images
- **show_phylo**: logical Whether to display phylogeny on y axis

Value

- ggplot panel

Examples

```r
p = plot_phylo_heatmap(
  gtree = phylogeny_example,
  joint_post = joint_post_example,
  segs_consensus = segs_example)
```
plot_psbulk

Plot a pseudobulk HMM profile

Description

Plot a pseudobulk HMM profile

Usage

plot_psbulk(
 bulk,
 use_pos = TRUE,
 allele_only = FALSE,
 min_LLR = 5,
 min_depth = 8,
 exp_limit = 2,
 phi_mle = TRUE,
 theta_roll = FALSE,
 dot_size = 0.8,
 dot_alpha = 0.5,
 legend = TRUE,
 exclude_gap = TRUE,
 genome = "hg38",
 text_size = 10,
 raster = FALSE
)

Arguments

bulk dataframe Pseudobulk profile
use_pos logical Use marker position instead of index as x coordinate
allele_only logical Only plot alleles
min_LLR numeric LLR threshold for event filtering
min_depth numeric Minimum coverage depth for a SNP to be plotted
exp_limit numeric Expression logFC axis limit
phi_mle logical Whether to plot estimates of segmental expression fold change
theta_roll logical Whether to plot rolling estimates of allele imbalance
dot_size numeric Size of marker dots
dot_alpha numeric Transparency of the marker dots
legend logical Whether to show legend
exclude_gap logical Whether to mark gap regions and centromeres
genome character Genome build, either 'hg38' or 'hg19'
text_size numeric Size of text in the plot
raster logical Whether to raster images
Value

ggplot Plot of pseudobulk HMM profile

Examples

p = plot_psbulk(bulk_example)

plot_sc_tree

Plot single-cell smoothed expression magnitude heatmap

Description

Plot single-cell smoothed expression magnitude heatmap

Usage

plot_sc_tree(
 gtree, # tbl_graph The single-cell phylogeny
 label_mut = TRUE, # logical Whether to label mutations
 label_size = 3, # numeric Size of mutation labels
 dot_size = 2, # numeric Size of mutation nodes
 branch_width = 0.5, # numeric Width of branches in tree
 tip = TRUE, # logical Whether to plot tip point
 tip_length = 0.5, # numeric Length of the tips
 pal_clone = NULL # named vector Clone colors
)

Arguments

gtree tbl_graph The single-cell phylogeny
label_mut logical Whether to label mutations
label_size numeric Size of mutation labels
dot_size numeric Size of mutation nodes
branch_width numeric Width of branches in tree
tip logical Whether to plot tip point
tip_length numeric Length of the tips
pal_clone named vector Clone colors

Value

ggplot A single-cell phylogeny with mutation history labeled

Examples

p = plot_sc_tree(phylogeny_example)
pre_likelihood_hmm
HMM object for unit tests

Description
HMM object for unit tests

Usage
pre_likelihood_hmm

Format
An object of class `list` of length 10.

ref_hca
reference expression magnitudes from HCA

Description
reference expression magnitudes from HCA

Usage
ref_hca

Format
An object of class `matrix` (inherits from `array`) with 24756 rows and 12 columns.

ref_hca_counts
reference expression counts from HCA

Description
reference expression counts from HCA

Usage
ref_hca_counts

Format
An object of class `matrix` (inherits from `array`) with 24857 rows and 12 columns.
run_numbat

Run workflow to decompose tumor subclones

Description

Run workflow to decompose tumor subclones

Usage

```r
run_numbat(
  count_mat,
  lambdas_ref,
  dfallele,
  genome = "hg38",
  outdir = tempdir(),
  max_iter = 2,
  max_nni = 100,
  t = 1e-05,
  gamma = 20,
  min_llr = 5,
  alpha = 1e-04,
  eps = 1e-05,
  max_entropy = 0.5,
  init_k = 3,
  min_cells = 50,
  tau = 0.3,
  nu = 1,
  max_cost = ncol(count_mat) * tau,
  ncut = 0,
  min_depth = 0,
  common_diploid = TRUE,
  min_overlap = 0.45,
  ncores = 1,
  ncores_nni = ncores,
  random_init = FALSE,
  segs_loh = NULL,
  call_clonal_loh = FALSE,
  verbose = TRUE,
  diploid_chroms = NULL,
  segs_consensus_fix = NULL,
  use_loh = NULL,
  min_genes = 10,
  skip_nj = FALSE,
  multi_allelic = TRUE,
  p_multi = 1 - alpha,
  plot = TRUE,
  check_convergence = FALSE,
)```

Arguments

- **count_mat**: dgCMatrix Raw count matrices where rownames are genes and column names are cells.
- **lambdas_ref**: matrix Either a named vector with gene names as names and normalized expression as values, or a matrix where rownames are genes and columns are pseudobulk names.
- **df_allele**: dataframe Allele counts per cell, produced by preprocess_allele.
- **genome**: character Genome version (hg38, hg19, or mm10).
- **out_dir**: string Output directory.
- **max_iter**: integer Maximum number of iterations to run the phylogeny optimization.
- **max_nni**: integer Maximum number of iterations to run NNI in the ML phylogeny inference.
- **t**: numeric Transition probability.
- **gamma**: numeric Dispersion parameter for the Beta-Binomial allele model.
- **min_LLRR**: numeric Minimum LLR to filter CNVs.
- **alpha**: numeric P value cutoff for diploid finding.
- **eps**: numeric Convergence threshold for ML tree search.
- **max_entropy**: numeric Entropy threshold to filter CNVs.
- **init_k**: integer Number of clusters in the initial clustering.
- **min_cells**: integer Minimum number of cells to run HMM on.
- **tau**: numeric Factor to determine max_cost as a function of the number of cells (0-1).
- **nu**: numeric Phase switch rate.
- **max_cost**: numeric Likelihood threshold to collapse internal branches.
- **n_cut**: integer Number of cuts on the phylogeny to define subclones.
- **min_depth**: integer Minimum allele depth.
- **common_diploid**: logical Whether to find common diploid regions in a group of pseudobulks.
- **min_overlap**: numeric Minimum CNV overlap threshold.
- **ncores**: integer Number of threads to use.
- **ncores_nni**: integer Number of threads to use for NNI.
- **random_init**: logical Whether to initiate phylogney using a random tree (internal use only).
- **segs_loh**: dataframe Segments of clonal LOH to be excluded.
- **call_clonal_loh**: logical Whether to call segments with clonal LOH.
- **verbose**: logical Verbosity.
- **diploid_chroms**: vector Known diploid chromosomes.
segs_consensus_fix
dataframe Pre-determined segmentation of consensus CNVs

use_loh
logical Whether to include LOH regions in the expression baseline

min_genes
integer Minimum number of genes to call a segment

skip_nj
logical Whether to skip NJ tree construction and only use UPGMA

multi_allelic
logical Whether to call multi-allelic CNVs

p_multi
numeric P value cutoff for calling multi-allelic CNVs

plot
logical Whether to plot results

check_convergence
logical Whether to terminate iterations based on consensus CNV convergence

exclude_neu
logical Whether to exclude neutral segments from CNV retesting (internal use only)

Value
a status code

segs_example
dataframe Pre-determined segmentation of consensus CNVs

description
example CNV segments dataframe

Usage
segs_example

Format
An object of class data.table (inherits from data.frame) with 27 rows and 30 columns.

upgma
UPGMA and WPGMA clustering

Description
UPGMA and WPGMA clustering

Usage
upgma(D, method = "average", ...)
### Arguments

- **D**
  
  A distance matrix.

- **method**
  
  The agglomeration method to be used. This should be (an unambiguous abbreviation of) one of "ward", "single", "complete", "average", "mcquitty", "median" or "centroid". The default is "average".

- **...**
  
  Further arguments passed to or from other methods.

### Description

**example VCF header**

### Usage

**vcf_meta**

### Format

An object of class **character** of length 65.
Index

* datasets
  acen_hg19, 3
  acen_hg38, 3
  annot_ref, 6
  bulk_example, 7
  chrom_sizes_hg19, 7
  chrom_sizes_hg38, 7
  count_mat_example, 8
  count_mat_ref, 9
  df allele_example, 10
  gaps_hg19, 10
  gaps_hg38, 10
  get bulk, 11
  get gtree, 12
  gexp roll example, 12
  gtf hg19, 13
  gtf hg38, 13
  gtf mm10, 13
  hc example, 14
  joint post example, 14
  mut graph example, 14
  Numbat, 15
  phylogeny example, 17
  plot bulks, 18
  plot consensus, 18
  plot exp roll, 19
  plot mut history, 20
  plot phylo heatmap, 21
  plot psbulk, 23
  plot sc tree, 24
  pre likelihood hmm, 25
  ref hca, 25
  ref hca counts, 25
  segs example, 28
  vcf meta, 29

acen_hg19, 3
acen_hg38, 3
aggregate_counts, 4
analyze bulk, 4
annot ref, 6
annotate genes, 6

bulk example, 7

chrom_sizes_hg19, 7
chrom_sizes_hg38, 7
cnv heatmap, 8
count_mat_example, 8
count_mat_ref, 9

detect clonal loh, 9
df allele_example, 10
gaps_hg19, 10
gaps_hg38, 10
get bulk, 11
get gtree, 12
gexp roll example, 12
gtf hg19, 13
gtf hg38, 13
gtf mm10, 13
hc example, 14
joint post example, 14
mut graph example, 14
Numbat, 15
phylogeny example, 17
plot bulks, 18
plot consensus, 18
plot exp roll, 19
plot mut history, 20
plot phylo heatmap, 21
plot psbulk, 23
plot sc tree, 24
pre likelihood hmm, 25
ref hca, 25
ref hca counts, 25
run numb at, 26
segs example, 28
upgma, 28
vcf meta, 29